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Abstract. We present a new convergence analysis for the Kurchatov method using our new

idea of restricted convergence domains in order to solve nonlinear equations in a Banach space

setting. The sufficient convergence conditions are weaker than in earlier studies. Hence, we

extend the applicability of this method. Moreover, our radius of convergence is larger leading

to a wider choice of initial guesses and fewer iterations to achieve a desired error tolerance.

Numerical examples are also provided showing the advantages of our approach over earlier

work.

1. Introduction

In [8], Argyros and Ren studied the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1.1)

where F is Fréchet-differentiable operator defined on a convex subset of a
Banach space B1 with values in a Banach space B2. In the present paper, we
study the local as well as semilocal convergence of the method considered in
[8], using the idea of restricted convergence domains. That is we consider the
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quadratically convergent Kurchatov method defined for each n = 0, 1, · · · by

xn+1 = xn −A−1n F (xn), (1.2)

where, x−1, x0 are initial points and An = [2xn − xn−1, xn−1;F ] and [x, y;F ]
denotes the divided difference of operator F at the points x, y ∈ Ω.

We need the definition of divided differences of order one and two.

Definition 1.1. Let x, y be two points in Ω. The linear operator [x, y.;F ] ∈
L(B1,B2) is called a divided difference of order one of operator F at the x, y
if the following holds

[x, y;F ](x− y) = F (x)− F (y) for any x, y ∈ Ω with x 6= y.

If F is Fréchet-differentiable on Ω, then F ′(x) = [x, x;F ]. Similarly, [x, y, z;F ]
is a divided difference of order two at points x, y, z ∈ Ω, if

[x, y, z;F ](y − z) = [x, y;F ]− [x, z;F ].

If F is twice-Fréchet-differentiable on Ω, then 1
2F
′′(x) = [x, x, x;F ].

The convergence of the Kurchatov method has been studied under hypothe-
ses up to the divided difference of order two in [1, 3] and up to the divided
difference of one in [2]-[7]. In particular, the condition

‖A−10 ([u, x, y;F ]− [v, x, y;F ])‖ ≤ δ‖u− v‖, (1.3)

for each x, y, u, v ∈ Ω has been used. However, there are examples where
(1.3) is violated or [·, ·, ·;F ] does not exist. For an example, define function
f : [−1, 1]→ (−∞,∞) by

f(x) = x2 lnx2 + c1x
2 + c2x+ c3, f(0) = c3,

where c1, c2, c3 are given real numbers. Then, we have that limx→0 x
2 lnx2 = 0,

limx→0 x lnx2 = 0, f ′(x) = 2x lnx2 + 2(c1 + 1)x + c2 and f ′′(x) = 2(lnx2 +
3 + c1). Then, function f does not satisfy (1.3).

Here, we use the idea of restricted convergence domains and the hypotheses
on the divided difference of order one. When, we use divided difference of order
two the convergence conditions are weaker than in [3]-[5], [8], [10]. Hence, the
applicability of the Kurchatov method is extended.

The results in [8] are proved using the following Lemmas.

Lemma 1.2. ([8, Lemma 2.1]) Let L > 0, Li > 0, i = −1, 0, 1, 2, 3, t0 ≥ 0,
t1 > 0 be given parameters. Denote by α the smallest root of polynomial p in
the interval (0, 1) defined by

p(t) = 2L0t
3 + (−L0 + L1 + L2)t

2 + L3t− (L2 + L3).
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Suppose that

0 <
L0(t1 − t−1) + L1(t0 − t−1)
1− (L−1(2t1 − t0) + Lt0)

≤ α, (1.4)

0 <
L2(t2 − t0) + L3(t1 − t0)
1− (L0(2t2 − t1) + L1t1)

≤ α (1.5)

and

0 < α ≤ 1− (L0 + L1)(t1 − t0)
1− (L0 + L1)t0

, (1.6)

where, t−1 = 0 and

t2 = t1 +
L0(t1 − t−1) + L1(t0 − t−1)
1− (L−1(2t1 − t0) + Lt0)

(t1 − t0).

Then, scalar sequence {tn} defined by

tn+2 = tn+1+ L2(tn+1−tn−1)+L3(tn−tn−1)
1−(L0(2tn+1−tn)+L1tn)

(tn+1−tn) for each n = 1, 2, · · ·
(1.7)

is well defined, increasing, bounded above by

t?? =
t1 − t0
1− α

+ t0 (1.8)

and converges to its unique least upper bound t? which satisfies

t? ∈ [t1, t
??]. (1.9)

Moreover, the following estimates hold for each n = 0, 1, · · ·
tn+2 − tn+1 ≤ α(tn+1 − tn). (1.10)

Next we present an alternative to Lemma 1.2.

Lemma 1.3. ([8, Lemma 2.2]) Let L > 0, Li > 0, i = −1, 0, 1, 2, 3, K ≥ 0,
s0 ≥ 0, s1 > 0 be given parameters. Suppose β is the smallest positive root of
polynomial p defined in interval [0, 1] by

p(t) = 2L0t
3+[

L2 + L3

2
+K(s1−s0)−L0+L1]t

2−K(s1−s0)t−
L2 + L3

2
. (1.11)

Moreover, suppose

0 <
L0+L1

2 (s1 − s−1) +K(s0 − s−1)2

1− [L−1(2s1 − s0) + Ls0]
≤ β, (1.12)

0 <
L2+L3

2 (s2 − s0) +K(s1 − s0)2

1− [L0(2s2 − s1) + L1s1]
≤ β, (1.13)

β ≤ 1− (L0 + L1)(s1 − s0)
1− (L0 + L1)s0

, (1.14)
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where, s−1 = 0 and

s2 = s1 +
L0+L1

2 (s1 − s−1) +K(s0 − s−1)2

1− [L−1(2s1 − s0) + Ls0]
(s1 − s0).

Then, scalar sequence {sn} defined for each n = 1, 2, · · · by

sn+2 = sn+1 +
L2+L3

2 (sn+1 − sn−1) +K(sn − sn−1)2

1− [L0(2sn+1 − sn) + L1sn]
(sn+1 − sn) (1.15)

is well defined, increasing, bounded above by

s?? =
s1 − s0
1− β

+ s0 (1.16)

and converges to its unique least upper bound s? which satisfies

s? ∈ [s1, s
??]. (1.17)

Moreover, the following estimates hold for each n = 0, 1, · · ·

sn+2 − sn+1 ≤ β(sn+1 − sn). (1.18)

The paper is organized as follows: Section 2 contains results on the semilo-
cal convergence analysis of the Kurchatov method while the local convergence
analysis is presented in Section 3. Finally, the numerical examples are pre-
sented in the concluding Section 4.

2. Semilocal convergence

Let U(x, ξ), U(x, ξ), stand respectively, for the open and closed balls in B1,
with center x ∈ B1 and of radius ξ > 0.

Next, we present two semilocal convergence results for Kurchatov method
(1.2). In the first one, we use Lemma 1.2 and hypotheses on the divided
difference of order one for F . In the second result, we use Lemma 1.3 and
divided differences up to order two.

Theorem 2.1. Let F : Ω ⊂ B1 → B2 be a Fréchet-differentiable operator.
Suppose that there exists a divided difference [·, ·;F ] of order one for operator
F on Ω × Ω. Moreover, suppose that there exist x−1, x0 ∈ Ω, L > 0, Li >
0, i = −1, 0, 1, 2, 3, t0 ≥ 0, t1 > 0 such that for each x, y, z, v ∈ Ω

A−10 ∈ L(B2,B1), (2.1)

‖x0 − x−1‖ ≤ t0, (2.2)

‖A−10 F (x0)‖ ≤ t1 − t0,
‖A−10 (A1 −A0)‖ ≤ L−1‖2(x1 − x0)− (x0 − x−1)‖+ L‖x0 − x−1‖.

(2.3)
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Let r̄0 = 1
2L0+L1

. Furthermore, suppose that for each x, y, z, v ∈ Ω1 := Ω ∩
U(x0, r̄0)

‖A−10 ([x, y;F ]−A0)‖ ≤ L0‖x− 2x0 + x−1‖+ L1‖y − x−1‖, (2.4)

‖A−10 ([x, y;F ]− [z, v;F ])‖ ≤ L2‖x− z‖+ L3‖y − v‖, (2.5)

U(x0, r0) ⊆ Ω, r0 = max(2(t1 − t0), t? − t0) (2.6)

and hypotheses of Lemma 1.2 hold, where x1 = x0 − A−10 F (x0), A0 = [2x0 −
x−1, x−1;F ] and t? is given in Lemma 1.2. Then, sequence {xn} generated by
the Kurchatov method (1.2) is well defined, remains in U(x0, r0) and converges
to a solution x? ∈ U(x0, r0) of equation F (x) = 0. Moreover, the following
estimates hold for each n = 0, 1, · · · ,

‖xn − x?‖ ≤ t? − tn. (2.7)

Furthermore, if there exists R > r0 such that

U(x0, R) ⊆ Ω (2.8)

and

L0t
? + L1(R+ t0) < 1, (2.9)

then the point x? is the only solution of F (x) = 0 in U(x0, R).

Proof. It follows from the corresponding proof in [8] by simply noticing that
the iterates xn lie in Ω0 which is a more precise location than Ω used in [8],
since Ω0 ⊆ Ω. �

Theorem 2.2. Let F : Ω ⊂ B1 → B2 be a Fréchet-differentiable operator.
Suppose that there exist divided differences [·, ·;F ], [·, ·, ·;F ] of order one and
order two for operator F on Ω × Ω and Ω × Ω × Ω, respectively. Moreover,
suppose that there exist x−1, x0 ∈ Ω, L > 0, Li > 0, i = −1, 0, 1, 2, 3, K ≥ 0,
s0 ≥ 0, s1 > 0 such that for each x, y ∈ Ω

A−10 ∈ L(B2,B1),

‖x0 − x−1‖ ≤ s0,
‖A−10 F (x0)‖ ≤ s1 − s0,

‖A−10 (A1 −A0)‖ ≤ L−1‖2(x1 − x0)− (x0 − x−1)‖+ L‖x0 − x−1‖,
‖A−10 ([x, y;F ]−A0)‖ ≤ L0‖x− 2x0 + x−1‖+ L1‖y − x−1‖

and for each x, y, z, v ∈ Ω1,

‖A−10 ([x, y;F ]− [z, v;F ])‖ ≤ L2‖x− z‖+ L3‖y − v‖,

‖A−10 ([x, v, y;F ]− [x, z, y;F ])‖ ≤ K‖v − z‖,
U(x0, R0) ⊆ Ω, R0 = max(2(s1 − s0), s? − s0)
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and hypotheses of Lemma 1.3 hold, where x1 = x0 − A−10 F (x0), A0 = [2x0 −
x−1, x−1;F ] and s? is given in Lemma 1.3. Then, sequence {xn} generated by
the Kurchatov method (1.2) is well defined, remains in U(x0, R0) and converges
to a solution x? ∈ U(x0, R0) of equation F (x) = 0. Moreover, the following
estimates hold for each n = 0, 1, · · · ,

‖xn − x?‖ ≤ s? − sn. (2.10)

Furthermore, if there exists R > R0 such that

U(x0, R) ⊆ Ω

and
L0s

? + L1(R+ s0) < 1,

then the point x? is the only solution of F (x) = 0 in U(x0, R).

Remark 2.3. (a) The limit point t? (or s?) can be replaced by t?? (or
s??) given in the corresponding closed form by (2.5) (or (2.21)) in
both theorems.

(b) We have that
L−1 ≤ L0, (2.11)

L ≤ L1, (2.12)

hold in general. If the divided difference [x, y;F ] is symmetric, then
we have that L2 = L3 and L0 = L1. Notice that in the literature they
use L−1 = L = L0 = L1 = L2 = L3 to study iterative methods with
divided differences [8], [10]-[14]. However, if strict inequality holds in
any of the inequality in (2.11) or (2.12), then, our approach leads to
tighter majorizing sequences weaker sufficient convergence conditions
and an at least as precise information on the location of the solutions
[8], [10]-[14].

(c) Let us denote by L̄2, L̄3 the corresponding constants, when (1.18) holds
on Ω. Then, we have that

L2 ≤ L̄2, L3 ≤ L̄3, L0 ≤ L̄2, L1 ≤ L̄3 (2.13)

leading to even more improved results than in [8].
(d) Condition (2.6) can be replaced by for all x, y ∈ Ω ⇒ 2y − x ∈ Ω,

which holds e.g., if B1 = B2 = Ω ([3, 4, 5]).
(f) The preceding results can be extended even further, if we work on the

ball Ω∗1 = Ω∩U(x1, r̄0− t1 + t0) instead of the ball Ω1. The new Lips-
chitz constants L1

0, L
1
1, L

1
2, L

1
3 will be at least as small as L0, L1, L2, L3,

respectively, since Ω∗1 ⊂ Ω leading to even weaker sufficient semilocal
convergence criteria, tighter error bounds on the distances involved
and an at least as precise information on the location of the solution.
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3. Local convergence

In this section, we present the local convergence of Kurchatov method (1.2).

Theorem 3.1. Let F be a continuous nonlinear operator defined on an open
subset Ω of a Banach space B1 with values in a Banach space B2. Suppose:

(a) equation F (x) = 0 has a solution x? ∈ Ω at which the Fréchet deriva-
tive exists and is invertible;

(b) there exist Mi ≥ 0, i = 0, 1, 2, M ≥ 0 with M0 + M1 + M2 + M > 0
such that the divided differences of order one and two of F on Ω0 ⊆ Ω
satisfy the following Lipschitz conditions:

‖F ′(x?)−1([x, y;F ]− F ′(x?))‖
≤M0‖x− x?‖+M1‖y − x?‖ for each x, y ∈ Ω0.

(3.1)

Let

r̄∗ =
1

3M0 +M1
.

Moreover, suppose

‖F ′(x?)−1([x, x?;F ]− [y, x?;F ])‖
≤M2‖x− y‖ for each x, y ∈ Ω2 := Ω0 ∩ U(x?, r̄∗),

(3.2)

‖F ′(x?)−1([x, v, y;F ]− [x, z, y;F ])‖
≤M‖v − z‖ for each x, y, z, v ∈ Ω2;

(3.3)

(c) the ball
U? = U(x?, 3r?) ⊆ Ω0, (3.4)

where, r? is the unique positive root of polynomial q defined by

q(t) = 4M2t
3 + 2Mt2 + (3M0 +M1)t− 1. (3.5)

Then, the sequence {xn} generated by method (1.2) is well defined, remains in
U(x?, r?) for each n = 0, 1, 2, · · · and converges to x? provided that

x−1, x0 ∈ U(x?, r?). (3.6)

Moreover, the following estimates hold for n ≥ 0:

‖xn+1 − x?‖

≤ M‖xn−1−x?‖‖xn−xn−1‖+M2‖xn−xn−1‖2‖xn−x?‖
1−M0(‖xn−x?‖+‖xn−xn−1‖)−M1‖xn−1−x?‖

‖xn − x?‖

≤ ‖xn − x?‖ < r?.

(3.7)

Furthermore, if there exists R? ∈ [r?, 1
M0

) (M0 6= 0) such that U(x?, R?) ⊆ Ω0,

then the limit point x? is the only solution of equation F (x) = 0 in U(x?, R?).
If M0 = 0, x? is unique in U(x?, r?).
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Remark 3.2. If M +M2 > 0, the estimates (3.7) means that sequence {xn}
converges to x? quadratically. In fact, by (3.7), we have that the following
estimates holds for all n ≥ 0:

‖xn+1 − x?‖

≤ M‖xn−1−x?‖‖xn−x?‖+M‖xn−1−x?‖2+M2(‖xn−x?‖+‖xn−1−x?‖)2‖xn−x?‖
1−M0(2‖xn − x?‖+ ‖xn−1 − x?‖)−M1‖xn−1 − x?‖

× ‖xn−x?‖

≤ Mr?‖xn − x?‖2 +M‖xn − x?‖‖xn−1 − x?‖2 + 4M2r
?2‖xn − x?‖2

1− (3M0 +M1)r?
,

(3.8)
which means

‖xn+1 − x?‖
r?

≤
(Mr?2 + 4M2r

?3)(‖xn−x?‖
r? )2 +Mr?2 ‖xn−x?‖

r? (‖xn−1−x?‖
r? )2

1− (3M0 +M1)r?
, n ≥ 0.

(3.9)

If we drop the divided difference of order two from the hypotheses, we can
show two more local convergence results along the same lines of Theorem 3.1.
In the next result, we suppose the divided difference of order one [x, y;F ] can
be expression as

[x, y;F ] =

∫ 1

0
F (tx+ (1− t)y)dt, for x, y ∈ Ω0 ⊆ Ω,

which holds in many cases [2, 6].

Theorem 3.3. Let F : Ω ⊆ B1 → B2 be a Fréchet-differentiable operator.
Suppose:

(a) equation F (x) = 0 has a solution x? ∈ Ω at which the Fréchet-
derivative exists and is invertible;

(b) there exist Ni ≥ 0, i = 0, 1, N ≥ 0 with N0 +N1 +N > 0 such that the
divided difference of order one of F on Ω0 ⊆ Ω satisfies the following
Lipschitz conditions

‖F ′(x?)−1(F ′(x)− F ′(x?))‖ ≤ N0‖x− x?‖ for each x ∈ Ω0,

Let 0 < r̄∗0 = 1
N0
− 1

2‖x−1 − x
?‖. For each x, y ∈ Ω0 ∩ U(x?, r̄∗0),

‖F ′(x?)−1([x, y;F ]− [x, x?;F ])‖ ≤ N‖y − x?‖,
‖F ′(x?)−1([x, x?;F ]− [y, x?;F ])‖ ≤ N1‖x− y‖;

(c) the ball

U(x?, 3r?0) ⊆ Ω0,
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where,

r?0 =
1

3
2N0 +N + 2N1

.

Then, the sequence {xn} generated by method (1.2) is well defined, remains in
U(x?, r?0) for all n ≥ 0 and converges to x? provided that

x−1, x0 ∈ U(x?, r?0).

Moreover, the following estimates hold for each n = 0, 1, 2, · · · :

‖xn+1 − x?‖ ≤
N‖xn−1 − x?‖+N1‖xn − xn−1‖

1−N0(‖xn − x?‖+ 1
2‖xn−1 − x?‖)

‖xn − x?‖. (3.10)

Furthermore, if there exists R?0 ∈ [r?0,
1
N1

), N1 6= 0 such that U(x?, R?0) ⊆ Ω0,

then the limit point x? is the only solution of equation F (x) = 0 in U(x?, R?0).
If N1 = 0, x? is unique in U(x?, r?0).

Theorem 3.4. Let F : Ω ⊆ B1 → B2 be a continuous operator. Suppose:

(a) equation F (x) = 0 has a solution x? ∈ Ω at which the Fréchet-
derivative exists and is invertible;

(b) there exist Hi ≥ 0, i = 0, 1, 2, H ≥ 0 with H0 + H1 + H2 + H > 0
such that the divided difference of order one of F on Ω0 ⊆ Ω satisfies
following Lipschitz conditions

‖F ′(x?)−1([x, y;F ]− F ′(x?))‖
≤ H0‖x− x?‖+H‖y − x?‖ for each x, y ∈ Ω0,

For ¯̄r∗ = 1
3H0+H

‖F ′(x?)−1([y, x?;F ]− [2y − x, x;F ])‖
≤ H1‖y − x‖+H2‖x− x?‖ for each x, y ∈ Ω3 := Ω0 ∩ U(x?, ¯̄r∗);

(c) the ball

U(x?, 3r?1) ⊆ Ω0,

where

r?1 =
1

H + 3H0 + 2H1 +H2
.

Then the sequence {xn} generated by method (1.2) is well defined, remains in
U(x?, r?1) for all n ≥ 0 and converges to x? provided that

x−1, x0 ∈ U(x?, r?1).

Moreover, the following estimates hold for each n = 0, 1, 2, · · · :

‖xn+1 − x?‖ ≤
H1‖xn − xn−1‖+H2‖xn−1 − x?‖

1− (H0‖2xn − xn−1 − x?‖+H‖xn−1 − x?‖)
‖xn − x?‖.
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Furthermore, if there exists R?1 ∈ [r?1,
1

H0+H
), H0+H 6= 0 such that U(x?, R?1) ⊆

Ω0, then the limit point x? is the only solution of equation F (x) = 0 in
U(x?, R?1). If H0 = H = 0, x? is unique in U(x?, r?1).

Remark 3.5. A comment similar to the one in Remark 3.2 (b) and (c) can
now follow.

4. Numerical examples

In this section, we present some numerical examples.

Example 4.1. Let B1 = B2 = R, Ω0 = Ω = (−1, 1) and define F on Ω by

F (x) = ex − 1. (4.1)

Then, x? = 0 is a solution of (1.1) and F ′(x?) = 1. Note that for any x, y ∈ Ω0,
we have

|F ′(x?)−1([x, y;F ]− [x?, x?;F ])| = |
∫ 1
0 F

′(tx+ (1− t)y)dt− F ′(x?)|
= |
∫ 1
0 (etx+(1−t)y − 1)dt|

= |
∫ 1
0 (tx+ (1− t)y)(1 + tx+(1−t)y

2! + (tx+(1−t)y)2
3! + · · · )dt|

≤ |
∫ 1
0 (tx+ (1− t)y)(1 + 1

2! + 1
3! + · · · )dt|

≤ e−1
2 (|x− x?|+ |y − x?|),

(4.2)

|F ′(x?)−1([x, x?;F ]− [y, x?;F ])|
= |
∫ 1
0 F

′(tx+ (1− t)x?)dt−
∫ 1
0 F

′(ty + (1− t)x?)dt|
= |
∫ 1
0 (etx+(1−t)x? − ety+(1−t)x?)dt|

= |
∫ 1
0 (t(x− y) + t2(x2−y2)

2! + t3(x3−y3)
3! + · · · )dt|

= |
∫ 1
0 t(x− y)(1 + t(x+y)

2! + t2(x2+xy+y2)
3! + · · · )dt|

≤
∫ 1
0 t(1 + t+ t2

2! + · · · )dt|x− y| =
∫ 1
0 te

tdt|x− y| = |x− y|

(4.3)

and

|F ′(x?)−1([x, v, y;F ]− [x, z, y;F ])|
= |[x, v, z, y;F ](v − z)| = |F

′′′(ξ)
3! (v − z)|

= | eξ6 (v − z)| ≤ e
6 |v − z| for some ξ ∈ Ω2.

(4.4)

Then we can choose M0 = M1 = e−1
2 , M2 = 1 and M̄ = e

6 in the old Theorem
3.1. By (3.5), we get r?old ≈ 0.254664790 and U(x?, 3r?) ⊆ Ω0 holds. That
is, all conditions in Theorem 3.1 are satisfied and Theorem 3.1 applies. Note
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that

|F ′(x?)−1([x, y;F ]− [z, u;F ])|
= |
∫ 1
0 (F ′(tx+ (1− t)y)− F ′(tz + (1− t)u))dt|

= |
∫ 1
0

∫ 1
0 (F ′′

(
θ(tx+ (1− t)y)

+(1− θ)(tz + (1− t)u)
)(
tx+ (1− t)y − (tz + (1− t)u)

)
dθdt|

= |
∫ 1
0

∫ 1
0 (eθ(tx+(1−t)y)+(1−θ)(tz+(1−t)u)(tx+(1−t)y−(tz+(1−t)u)

)
dθdt|

≤
∫ 1
0 e|t(x− z) + (1− t)(y − u)|dt

≤ e
2(|x− z|+ |y − u|),

(4.5)

then if we only use condition (4.5) instead of conditions (3.1) and (3.2) in
old Theorem 3.1, we get M0 = M1 = M2 = e

2 , M̄ = e
6 and the small radius

r? ≈ 0.136065472 of convergence ball for method (1.2) than r?old.

However, if we use the new Theorem 3.1 with M = e
1

2(e−1)

6 < M̄, we obtain
r∗new = 0.25633521748772 and r̄∗new > r̄∗old. Let us choose x−1 = 0.136, x0 =
0.128. Suppose sequences {xn} is generated by method (1.2). Tables give a
comparison results of error estimates for Example 4.1, which shows that tighter
error estimates can be obtained from (3.7) by using both condition (3.1) and
condition (3.2) instead of by using only the condition (4.5). Moreover, the new
results are more precise than the old ones. Notice that these advantages are
obtained under the same computational cost, since in practice the computation
of the old Lipschitz constants requires the Computation of the new constants
as special cases.

Table 1. The comparison old results of error estimates for Example 4.1

n the first estimates of (3.7) by using the first estimates of (3.7) by using only
both conditions (3.1) and (3.2) condition (4.5) instead of (3.1) and (3.2)

0 8.37016E-05 0.000102359
1 7.12968E-05 8.5783E-05
2 1.39545E-09 1.40671E-09
3 1.92636E-18 1.92646E-18

Table 2. The comparison new results of error estimates for Example 4.1

n the first estimates of (3.7) by using the first estimates of (3.7) by using only
both conditions (3.1) and (3.2) condition (4.5) instead of (3.1) and (3.2)

0 7.2884e-05 8.9207e-05
1 6.2079e-05 7.4756e-05
2 1.2121e-09 1.2219e-09
3 1.6733e-18 1.6733e-18
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Example 4.2. Let B1 = B2 = R, Ω0 = Ω = (0.72, 1.28) and define F on Ω by

F (x) = x3 − 0.75. (4.6)

Let x−1 = 0.95, x0 = 1 be two initial points for the Kurchatov method (1.2).
Then, we have A0 = 3.0025, x1 ≈ 0.916736053, t0 = 0.05 and t1 = t0 +
|A−10 F (x0)| ≈ 0.133263947. Note that, for any x, y, z, v ∈ Ω, we have

|A−10 ([x, y;F ]− [z, v;F ])|
= |A−10 (x2 + xy + y2 − (z2 + zv + v2))|
= |A−10 ((x+ z)(x− z) + xy − xv + xv − zv + (y + v)(y − v))|
= |A−10 ((x+ z + v)(x− z) + (x+ y + v)(y − v))|
≤ |A−10 |(|x+ z + v||x− z|+ |x+ y + v||y − v|).

(4.7)

Then condition (2.5) in Theorem 2.3 holds for constants L̄2 = L̄3 = L2 =
L3 = 3× 1.28× |A−10 | ≈ 1.278934221. Setting z = 2x0−x−1, v = x−1 in (4.7),

we deduce that condition (2.4) holds for L0 = 3.28×|A−10 | ≈ 1.092422981 and

L1 = 3.51 × |A−10 | ≈ 1.169025812. Furthermore, setting x = 2x1 − x0, y =
x0, z = 2x0−x−1, v = x−1 in (4.7), we deduce that the second condition of (2.3)
holds for L−1 = |2x1+x0|×|A−10 | ≈ 0.943704282 and L = |2x1+x−1|×|A−10 | ≈
0.927051493.

Using method (1.2), we get that t2 ≈ 0.155936165, t3 ≈ 0.164388084, t4 ≈
0.165312739, t5 ≈ 0.165346407, t6 ≈ 0.165346537 and t7 ≈ 0.165346537. That
is to say, we have t? ≈ 0.165346537. Then, we have r0 = max(2(t1 − t0), t? −
t0) ≈ 0.166527893, and U(x0, r0) ≈ (0.833472107, 1.166527893) ⊂ Ω.

Next, we verify that all conditions of Lemma 1.2 hold. In fact, by the
definition of polynomial p, we get that α ≈ 0.737640298. We also have

0 <
L0(t1 − t−1) + L1(t0 − t−1)
1− (L−1(2t1 − t0) + Lt0)

≈ 0.272293345 ≤ α,

0 <
L2(t2 − t0) + L3(t1 − t0)
1− (L0(2t2 − t1) + L1t1)

≈ 0.372787434 ≤ α

and

0 < α ≤ 1− (L0 + L1)(t1 − t0)
1− (L0 + L1)t0

≈ 0.787697259.

By now, we see that all conditions of Theorem 2.3 are satisfied, so Theorem
2.3 applies. However, we will show some condition of [13, Theorem 3.1] is not
satisfied and so it does not apply. In fact, we can obtain constants in [13,
Theorem 3.1] as follows:

a = 0.05, c ≈ 0.083263947, p0 ≈ 1.278934221, q0 ≈ 0.333055787,
s ≈ 1.636117697, r ≈ 0.340814461, r0 ≈ 0.095245569.
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Then the condition V0 = U(x0, 3r0) ≈ (0.714263293, 1.285736707) ⊂ Ω of [13,
Theorem 3.1] is not satisfied.

Next we will give two examples with multivariable. For x = (x1, x2, · · · , xm) ∈
Rm(m > 1), we define ‖x‖ = ‖x‖∞ = max1≤i≤m |xi| and the corresponding
norm on A = (aij) ∈ Rm×m as

||A|| = max
1≤i≤m

m∑
j=1

|aij |.

The divided difference [u, v;F ] of operator F = (F1, F2, ..., Fm)t at the points
u = (u1, u2, · · · , um)t, v = (v1, v2, · · · , vm)t ∈ Rm is an matrix in Rm×m and
its entries can be expressed by [8]

[u, v;F ]ij =
1

uj − vj
(Fi(u1, · · · , uj , vj+1, · · · , vm)

−Fi(u1, · · · , uj−1, vj , · · · , vm)) for 1 ≤ i, j ≤ m.

Example 4.3. Let B1 = B2 = R3, Ω0 = Ω = (−1, 1)3 and define F =
(F1, F2, F3)

t on Ω by

F (x) = F (x1, x2, x3) = (ex1 − 1, x2
2 + x2, x3)

t. (4.8)

For the points u = (u1, u2, u3)
t, v = (v1, v2, v3)

t ∈ Ω, we get

[u, v;F ] =

 eu1−ev1
u1−v1 0 0

0 u2 + v2 + 1 0
0 0 1

 .

Let x−1 = (0.1, 0.1, 0.1)t, x0 = (0.11, 0.11, 0.11)t be two initial points for the
Kurchatov method (1.2). Here, we use xn instead of xn to distinct iterative
points with its component for some integer n ≥ −1. Then, we have

2x0 − x−1 = (0.12, 0.12, 0.12), t0 = 0.01,

A0 ≈

 1.116296675 0 0
0 1.22 0
0 0 1

 , A−10 ≈

 0.895819205 0 0
0 0.819672131 0
0 0 1

 ,

t1 = t0 + ‖A−10 F (x0)‖ = 0.12, x1 ≈ (0.005835871, 0.009918033, 0).

Note that, for any

x = (x1, x2, x3)
t, y = (y1, y2, y3)

t, z = (z1, z2, z3)
t, v = (v1, v2, v3)

t ∈ Ω,

we have

[x, y;F ]− [z, v;F ] =

 ex1−ey1
x1−y1 −

ez1−ev1
z1−v1 0 0

0 x2 + y2 − z2 − v2 0
0 0 0

 . (4.9)
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In view of

| ex1−ey1x1−y1 −
ez1−ev1
z1−v1 | = |

∫ 1
0 (ey1+t(x1−y1) − ev1+t(z1−v1))dt|

= |
∫ 1
0

∫ 1
0 e

v1+t(z1−v1)+θ(y1+t(x1−y1)−v1−t(z1−v1))

×
(
y1 + t(x1 − y1)− v1 − t(z1 − v1)

)
dθdt|

≤
∫ 1
0

∫ 1
0 e|t(x1 − z1) + (1− t)(y1 − v1)|dθdt

≤ e
2(|x1 − z1|+ |y1 − v1|),

we have

‖A−10 ([x, y;F ]− [z, v;F ])‖
≤ max( e×0.8958192052 (|x1−z1|+|y1−v1|), 0.819672131(|x2−z2|+|y2−v2|))
≤ max( e×0.8958192052 (‖x−z‖+‖y−v‖), 0.819672131(‖x−z‖+‖y−v‖))
= e×0.895819205

2 (‖x− z‖+ ‖y − v‖).
(4.10)

In particular, set z = 2x0 − x−1 and v = x−1 in (4.10), we have

‖A−10 ([x, y;F ]−A0)‖
≤ e×0.895819205

2 (‖x− (2x0 − x−1)‖+ ‖y − x−1‖).
(4.11)

That is, we can choose constants L0 = L1 = L2 = L3 = L̄2 = L̄3 ≈
e×0.895819205

2 ≈ 1.217544533 in Theorem 2.3.
By the definition of A1, we have

A1 ≈

 1.007672865 0 0
0 1.019836066 0
0 0 1


and

‖A−10 (A1 −A0)‖ ≈ 0.384068799.

Since ‖2x1 − x0 − (2x0 − x−1)‖ = 0.23 and ‖x0 − x−1‖ = 0.01, the following
inequlity holds

‖A−10 (A1 −A0)‖ ≈ 0.384068799
≤ L−1‖2x1 − x0 − (2x0 − x−1)‖+ L‖x0 − x−1‖

(4.12)

provided that we choose L−1 = L ≈ 0.384068799
0.24 ≈ 1.600286661. So, the second

inequlity of (2.3) is true. Using method (1.2), we get that t2 ≈ 0.148267584,
t3 ≈ 0.161640408, t4 ≈ 0.163517484, t5 ≈ 0.163626179 and t6 ≈ 0.163627029.
That is to say, we have t? ≈ 0.163627029. Then, we have r0 = max(2(t1 −
t0), t

? − t0) = 0.22, and U(x0, r0) = (−0.11, 0.33)3 ⊂ Ω.
Next, we verify that all conditions of Lemma 2.1 hold. In fact, by the

definition of polynomial p, we get that α ≈ 0.722714177. We also have

0 <
L0(t1 − t−1) + L1(t0 − t−1)
1− (L−1(2t1 − t0) + Lt0)

≈ 0.256978034 ≤ α,
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0 <
L2(t2 − t0) + L3(t1 − t0)
1− (L0(2t2 − t1) + L1t1)

≈ 0.473079844 ≤ α

and

0 < α ≤ 1− (L0 + L1)(t1 − t0)
1− (L0 + L1)t0

≈ 0.725454782.

By now, we see that all conditions of Theorem 2.3 are satisfied, so Theorem
2.3 applies.

Example 4.4. Let B1 = B2 = R6, Ω0 = Ω = (−1, 1)6 and define F =
(F1, F2, · · · , F6)

t on Ω by

F (x) = F (x1, x2, · · · , x6)

=

( 6∑
k=1

dxk − dx1 + ex1 − 1,

6∑
k=1

dxk − dx2 + ex2 − 1,

· · · ,
6∑

k=1

dxk − dx6 + ex6 − 1

)t
, (4.13)

where, d ∈ R is a constant. For the points u = (u1, u2, · · · , u6)t, v =
(v1, v2, · · · , v6)t ∈ Ω, we get

[u, v;F ] =



eu1−ev1
u1−v1 d d d d d

d eu2−ev2
u2−v2 d d d d

d d eu3−ev3
u3−v3 d d d

d d d eu4−ev4
u4−v4 d d

d d d d eu5−ev5
u5−v5 d

d d d d d eu6−ev6
u6−v6


.

Let x−1 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)t, x0 = (0.12, 0.12, 0.12, 0.12, 0.12, 0.12)t

be two initial points for the Kurchatov method (1.2). Here, we use xn instead
of xn to distinct iterative points with its component for some integer n ≥ −1.
Then, we have

2x0 − x−1 = (0.14, 0.14, 0.14, 0.14, 0.14, 0.14), t0 = 0.02,

A0 =


c1 d d d d d
d c1 d d d d
d d c1 d d d
d d d c1 d d
d d d d c1 d
d d d d d c1

 , A−10 = c3


c2 d d d d d
d c2 d d d d
d d c2 d d d
d d d c2 d d
d d d d c2 d
d d d d d c2

 ,
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where, c1 = e0.14−e0.1
0.14−0.1 ≈ 1.12757202, c2 = −4d − c1, c3 = 1

(d−c1)(5d+c1) . Set

d = 3, we have c2 ≈ −13.12757202 and c3 ≈ 0.033115086. Hence, we have

A−10 F (x0) ≈ (0.119515625, 0.119515625, 0.119515625,

0.119515625, 0.119515625, 0.119515625),

t1 = t0 + ‖A−10 F (x0)‖ ≈ 0.139515625,

x1 ≈ (0.000484375, 0.000484375, 0.000484375,

0.000484375, 0.000484375, 0.000484375).

Note that, for any x = (x1, x2, · · · , x6)t, y = (y1, y2, · · · , y6)t, z = (z1, z2, · · · , z6)t,
v = (v1, v2, · · · , v6)t ∈ Ω, we have

[x, y;F ]− [z, v;F ] =


c11 0 0 0 0 0
0 c22 0 0 0 0
0 0 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , (4.14)

where

ckk =
exk − eyk
xk − yk

− ezk − evk
zk − vk

, k = 1, 2, · · · , 6.

Similarily as the last example, we have

|ckk| ≤ e
2(|xk − zk|+ |yk − vk|) ≤ e

2(‖x− z‖+ ‖y − v‖), k = 1, 2, · · · , 6

and

‖A−10 ([x, y;F ]− [z, v;F ]) ≤ e|c3|(|c2|+5|d|)
2 (‖x− z‖+ ‖y − v‖). (4.15)

That is, we can choose constants

L0 = L1 = L2 = L3 = L̄2 = L̄3 ≈
e|c3|(|c2|+ 5|d|)

2
≈ 1.265967683

in Theorem 2.3. By the definition of A1, we have

A1 ≈


c4 d d d d d
d c4 d d d d
d d c4 d d d
d d d c4 d d
d d d d c4 d
d d d d d c4

 ,

where, c4 ≈ 1.002868011. Then we have

‖A−10 (A1 −A0)‖ ≈ 0.11615517.
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Since ‖2x1 − x0 − (2x0 − x−1)‖ ≈ 0.25903125 and ‖x0 − x−1‖ = 0.02, the
following inequlity holds

‖A−10 (A1 −A0)‖ ≈ 0.11615517

≤ L−1‖2x1 − x0 − (2x0 − x−1)‖+ L‖x0 − x−1‖
(4.16)

provided that we choose L−1 = L ≈ 0.11615517
0.27903125 ≈ 0.416280148. So, the second

inequlity of (2.3) is true.
Using method (1.2), we get that t2 ≈ 0.139034507, t3 ≈ 0.138810276, t4 ≈

0.138810795 and t5 ≈ 0.138810795. That is to say, we have t? ≈ 0.138810795.
Then we have r0 = max(2(t1 − t0), t? − t0) ≈ 0.23903125, and U(x0, r0) ≈
(−0.11903125, 0.35903125)6 ⊂ Ω.

Next, we verify that all conditions of Lemma 2.1 hold. In fact, by the
definition of polynomial p, we get that α ≈ 0.722714177. We also have

0 <
L0(t1 − t−1) + L1(t0 − t−1)
1− (L−1(2t1 − t0) + Lt0)

≈ 0.196138868 ≤ α,

0 <
L2(t2 − t0) + L3(t1 − t0)
1− (L0(2t2 − t1) + L1t1)

≈ 0.42698869 ≤ α

and

0 < α ≤ 1− (L0 + L1)(t1 − t0)
1− (L0 + L1)t0

≈ 0.734593002.

By now, we see that all conditions of Theorem 2.3 are satisfied, so Theorem
2.3 applies.

Note that, we can verify that other choices of parameter d such as d = 5
and d = 10 are also suitable for this example.
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