COUPLED FIXED POINT THEOREMS FOR SINGLE-VALUED MAPPINGS IN COMPLETE b-METRIC SPACES

Madhu Singh ${ }^{1}$, Naval Singh ${ }^{2}$, Om Prakash Chauhan ${ }^{3}$ and Mudasir Younis ${ }^{4}$
${ }^{1}$ Department of Mathematics VNS Engineering College Bhopal, Madhya Pradesh, India
e-mail: madhusingh2871@gmail.com
${ }^{2}$ Department of Mathematics
Govt. Science and Commerce College Benazeer, Bhopal, Madhya Pradesh, India
e-mail: drsinghnaval12@gmail.com
${ }^{3}$ Department of Applied Mathematics Jabalpur Engineering College, Jabalpur, Madhya Pradesh, India e-mail: chauhaan.op@gmail.com
${ }^{4}$ Department of Applied Mathematics, University Institute of Technology Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, India e-mail: mudasiryouniscuk@gmail.com

Abstract

In this note, certain common fixed point results for single-valued mappings in complete b-metric spaces are obtained. Some illustrative examples are also given which demonstrate the validity of the hypotheses of our results. In process, a host of previously known results in the context of complete b-metric spaces are generalized and improved.

1. Introduction and preliminaries

In 1922, Banach proved contraction principle [2] which provides a technique for solving existence problems in many branches of mathematical sciences. Further Banach contraction principle was generalized and improved by many authors in different ways. The concept of b-metric space was introduced and

[^0]studied by Bakhtin [1] and Czerwik [5] as a generalization of metric spaces. Since then, several papers have dealt with fixed point theory for single-valued and multi-valued operators in b-metric spaces ([7],[8],[9]). In this paper, we give some fixed point results in such spaces. Our fixed point theorems, in the case of b-metric spaces generalize and improve some well-known results in the literature. Moreover, some examples are provided to illustrate the usability of the obtained results.

Definition 1.1. Let X be a non empty set and $s \geq 1$ a given real number. A function $d: X \times X \rightarrow C$ is called a b-metric space on x if d satisfies the following conditions:
(BM1) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0 \Leftrightarrow x=y$;
(BM2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(BM3) $d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.
Then d is called a b-metric on X, and (X, d) is called b-metric space. It is obvious that a b-metric space with base $s=1$ is a metric space.

The notions of a Cauchy sequence and a convergent sequence in b-metric spaces are defined by Boriceanu [4].

Definition 1.2. Let $\left\{x_{n}\right\}$ be a sequence in a b-metric space (X, d).
(i) A sequence $\left\{x_{n}\right\}$ is called convergent if and only if there is $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$, when $n \rightarrow+\infty$.
(ii) $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if

$$
d\left(x_{n}, x_{m}\right) \rightarrow 0, \quad \text { when } \quad n, m \rightarrow+\infty .
$$

In general, a b-metric space is said to be complete if and only if each Cauchy sequence in this space is convergent. From the properties of a b-metric space, we recall that if the limit of a convergent sequence exists, then it is unique. Also, each convergent sequence is a Cauchy sequence. But note that a b metric, in the general case, is not continuous (see Roshan et al. [7]). The continuity of a mapping with respect to a b-metric is defined as follows.

Definition 1.3. Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be two b-metric spaces with constant s and s^{\prime}, respectively. A mapping $T: X \rightarrow X^{\prime}$ is called continuous if for each sequence $\left\{x_{n}\right\}$ in X, which converges to $x \in X$ with respect to d, then $T x_{n}$ converges to $T x$ with respect to d^{\prime}.

If (X, \precsim) is a partially ordered set and $T: X \rightarrow X$ such that for $x, y \in$ $X, x \precsim y$ implies $T x \precsim T y$ then a mapping T is said to be non-decreasing. Similarly, mapping $T: X \times X \rightarrow X$ is said to be non-decreasing, if for
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times X \rightarrow X$ and $x_{1} \precsim x_{2}, y_{1} \precsim y_{2}$ implies $T\left(x_{1}, y_{1}\right) \precsim$ $T\left(x_{2}, y_{2}\right)$. Here we state some useful definitions.

Definition 1.4. ([3], [6]) An element $(x, y) \in X \times X$ is called:
(C1) A coupled fixed point of mappings $T: X \times X \rightarrow X$ if

$$
x \leq T(x, y), y \leq T(y, x)
$$

(C2) A coupled coincidence point of mappings $T: X \times X \rightarrow X$ and f : $X \rightarrow X$ if $f(x)=T(x, y)$ and $f(y)=T(y, x)$ and in this case $\left(f_{x}, f_{y}\right)$ is called coupled point of coincidence.
(C3) A coupled common fixed point of mapping $T: X \times X \rightarrow X$ and $f: X \rightarrow X$ if $x=f(x)=T(x, y)$ and $y=f(y)=T(y, x)$.

Definition 1.5. An element $(x, y) \in X \times X \rightarrow X$ is called:
(CC1) a common coupled coincidence point of the mapping $T: X \times X \rightarrow X$ and $f, g: X \rightarrow X$ if $T(x, y)=f x=g x$ and $T(y, x)=f y=g y$;
(CC2) a common coupled fixed point of mappings $T: X \times X \rightarrow X$ and $f, g: X \rightarrow X$ if $T(x, y)=f x=g x=x$ and $T(y, x)=f y=g y=y$.

Our technique of proof is simpler and essentially different from the ones used in the numerous papers devoted to coupled fixed point as we have used more natural mappings(non-decreasing) than that of in other papers.

Concept of weakly related mappings on ordered spaces as follows.
Definition 1.6. Let (X, \precsim) be a partially ordered space, $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. Then the pair F, g is said to be weakly related if $F(x, y) \precsim$ $g F(x, y)$ and $g x \precsim F(g x, g y)$ also $F(y, x) \precsim g F(y, x)$ and $g y \precsim F(g y, g x)$ for all $(x, y) \in X \times X$.

Now we prove the common coupled fixed point existence theorem for the weakly related mappings.

We first prove the following lemma.
Lemma 1.7. Let (X, d) be a b-metric space and $\phi: X \rightarrow R$. Define the relation, \precsim on X as follows: $x \precsim y \Leftrightarrow d(x, y) \leq s[\phi(y)-\phi(x)], s \geq 1$ then \precsim is partial order on X, called the partial order induced by ϕ.
Proof. For all $x \in X, d(x, x)=0=s[\phi(x)-\phi(x)]$ then $x \precsim x$ that is \precsim is reflexive. Now for $x, y \in X$ satisfy $x \precsim y$ and $y \precsim x$ then,

$$
d(x, y) \leq s[\phi(y)-\phi(x)]
$$

and

$$
d(y, x) \leq s[\phi(x)-\phi(y)]
$$

this shows that $d(x, y)=0$ i.e., $x=y$. Thus \precsim is antisymmetric.
Again for $x, y, z \in X$ satisfy $x \precsim y$ and $y \precsim z$, then

$$
d(x, y) \leq s[\phi(y)-\phi(x)]
$$

and

$$
d(y, z) \leq s[\phi(z)-\phi(y)]
$$

we have

$$
\begin{aligned}
d(x, z) & \leq d(x, y)+d(y, z) \\
& \leq s[\phi(y)-\phi(x)]+s[\phi(z)-\phi(y)] \\
& =s[\phi(z)-\phi(x)]
\end{aligned}
$$

then $x \precsim z$. Thus \precsim is transitive and so the relation \precsim is a partial order on X.

Example 1.8. Let $X=[0,1]$ and $d(x, y)=\frac{2}{3}(x-y)^{2}$ then (X, d) is a b-metric space on \mathbb{R} with $s=2$. Let $\phi: X \rightarrow R, \phi(x)=4 x$. Therefore, X is a partially ordered space.

2. Main results

Now we prove our main theorems.
Theorem 2.1. Let (X, d) is a complete b-metric space, $\phi: X \rightarrow R$ be a bounded from above function and \precsim the partial order induced by ϕ. Let F : $X \times X \rightarrow X$ be a non decreasing continuous mapping on X such that there exist two elements $x_{0}, y_{0} \in X$ with $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$. Then F has coupled fixed point in X.

Proof. Let $x_{0}, y_{0} \in X$ such that $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$. We construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as follows

$$
\begin{equation*}
x_{n+1}=F\left(x_{n}, y_{n}\right) \text { and } y_{n+1}=F\left(y_{n}, x_{n}\right) \text { for all } n \geq 0 \tag{2.1}
\end{equation*}
$$

We shall show that

$$
\begin{align*}
& x_{n} \precsim x_{n+1} \text { for all } n \geq 0, \tag{2.2}\\
& y_{n} \precsim y_{n+1} \text { for all } n \geq 0 . \tag{2.3}
\end{align*}
$$

We shall use the mathematical induction.
Let $n=0$, since $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$ and as $x_{1}=F\left(x_{0}, y_{0}\right)$ and $y_{1}=F\left(y_{0}, x_{0}\right)$ we have $x_{0} \precsim x_{1}$ and $y_{0} \precsim y_{1}$. Thus (2.2) and (2.3) hold
for $n=0$. Suppose now that (2.2) and (2.3) hold for some fixed $n \geq 0$. Then since $x_{n} \precsim x_{n+1}$ and $y_{n} \precsim y_{n+1}$ and since F is non decreasing, we have

$$
\begin{align*}
x_{n+2} & =F\left(x_{n+1}, y_{n+1}\right) \succsim F\left(x_{n}, y_{n}\right)=x_{n+1}, \tag{2.4}\\
y_{n+2} & =F\left(y_{n+1}, x_{n+1}\right) \succsim F\left(y_{n}, x_{n}\right)=y_{n+1} .
\end{align*}
$$

Thus by mathematical induction we conclude that (2.2) and (2.3) hold for all $n \geq 0$. Therefore,

$$
\begin{aligned}
& x_{0} \precsim x_{1} \precsim x_{2} \precsim x_{3} \precsim \cdots \precsim x_{n} \precsim x_{n+1} \precsim \cdots, \\
& y_{0} \precsim y_{1} \precsim y_{2} \precsim y_{3} \precsim \cdots \precsim y_{n} \precsim y_{n+1} \precsim \cdots .
\end{aligned}
$$

That is the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are non decreasing in X. By the definition of \precsim, we have

$$
\begin{aligned}
& \phi\left(x_{0}\right) \precsim \phi\left(x_{1}\right) \precsim \phi\left(x_{2}\right) \precsim \phi\left(x_{3}\right) \precsim \cdots, \\
& \phi\left(y_{0}\right) \precsim \phi\left(y_{1}\right) \precsim \phi\left(y_{2}\right) \precsim \phi\left(y_{3}\right) \precsim \cdots .
\end{aligned}
$$

In other words, the sequences $\left\{\phi\left(x_{n}\right)\right\}$ and $\left\{\phi\left(y_{n}\right)\right\}$ are non-decreasing sequences in the set of real numbers. Since ϕ is bounded from above, $\left\{\phi\left(x_{n}\right)\right\}$ and $\left\{\phi\left(y_{n}\right)\right\}$ are convergent and hence b-Cauchy. So, for all $\epsilon \geq 0$, there exists $n_{0} \in N$ such that for all $m>n>n_{0}$. We have $\left|\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right|=$ $\phi\left(x_{m}\right)-\phi\left(x_{n}\right) \leq \frac{\epsilon}{s}$ and $\left|\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right|=\phi\left(y_{m}\right)-\phi\left(y_{n}\right) \leq \frac{\epsilon}{s}$. Since $x_{n} \precsim x_{m}$, it follows that

$$
d\left(x_{n}, x_{m}\right) \leq s\left[\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right]<\epsilon
$$

and since $y_{n} \precsim y_{m}$, it follows that

$$
d\left(y_{n}, y_{m}\right) \leq s\left[\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right]<\epsilon
$$

This shows that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-Cauchy in X and since X is complete, there exist points $x, y \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. Consequently, taking the limit as $n \rightarrow \infty$ in (2.1) and using the continuity of F, we get

$$
x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} F\left(x_{n-1}, y_{n-1}\right)=F\left(\lim _{n \rightarrow \infty} x_{n-1}, \lim _{n \rightarrow \infty} y_{n-1}\right)=F(x, y)
$$

and

$$
y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} F\left(y_{n-1}, x_{n-1}\right)=F\left(\lim _{n \rightarrow \infty} y_{n-1}, \lim _{n \rightarrow \infty} x_{n-1}\right)=F(y, x) .
$$

Thus we proved that $x=F(x, y)$ and $y=F(y, x)$. Hence (x, y) is a coupled fixed point of F.

Example 2.2. Let $X=[0,1], d(x, y)=\frac{2}{3}(x-y)^{2}$, then (X, d) is a complete b-metric space for $s=2$. We define $\phi: X \rightarrow R$ by $\phi(x)=-2 x$ and define the
relation \precsim on X as $x \precsim y$ iff $d(x, y) \leq s[\phi(y)-\phi(x)]$. Then \precsim is partial order induced by ϕ. Also let $F: X \times X \rightarrow X$ as follows:

$$
F(x, y)=\frac{x(1+y)}{2},
$$

which is obviously a non-decreasing function on X. If we let $x_{0}=0$ and $y_{0}=1$, then $F\left(x_{0}, y_{0}\right)=\frac{x_{0}\left(1+y_{0}\right)}{2}=0$ and $F\left(y_{0}, x_{0}\right)=\frac{y_{0}\left(1+x_{0}\right)}{2}=\frac{1}{2}$. So we see that $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$. Hence all conditions of Theorem 2.1 are satisfied. Thus $(0,0)$ is a coupled fixed point of F.
2.1. Common coupled fixed point for weakly related single-valued mappings in complete b-metric spaces. Concept of weakly related mappings on ordered spaces is as follows:

Definition 2.3. Let (X, \precsim) be a partially ordered space, $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. Then the pair $\{F, g\}$ is said to be weakly related if $F(x, y) \precsim$ $g F(x, y)$ and $g x \precsim F(g x, g y)$ also $F(y, x) \precsim g F(y, x)$ and $g y \precsim F(g y, g x)$ for all $x, y \in X \times X$.

Now we prove the common coupled fixed point existence theorem for the weakly related mappings.

Theorem 2.4. Let (X, d) is a complete b-metric space, $\phi: X \rightarrow R$ be a bounded from above function and \precsim the partial order induced by ϕ. Let F : $X \times X \rightarrow X$ and $G: X \rightarrow X$ are two continuous mappings such that the pair $\{F, G\}$ is weakly related on X. If there exist two elements $x_{0}, y_{0} \in X$ with $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$ then F and G have a common coupled fixed point in X.
Proof. Let $x_{0}, y_{0} \in X$ such that $x_{0} \precsim F\left(x_{0}, y_{0}\right)$ and $y_{0} \precsim F\left(y_{0}, x_{0}\right)$. We construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as follows

$$
\begin{equation*}
x_{2 n+1}=F\left(x_{2 n}, y_{2 n}\right) \quad \text { and } \quad x_{2 n+2}=G x_{2 n+1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2 n+1}=F\left(y_{2 n}, x_{2 n}\right) \quad \text { and } \quad y_{2 n+2}=G y_{2 n+1} \tag{2.6}
\end{equation*}
$$

for all $n \geq 0$. We shall show that

$$
x_{n} \precsim x_{n+1}, \quad y_{n} \precsim y_{n+1} \quad \text { for all } \quad n \geq 0 .
$$

Since $x_{0} \precsim F\left(x_{0}, y_{0}\right)$, using (2.5) we have $x_{0} \precsim x_{1}$. Again since the pair $\{F, G\}$ is weakly related, we have $F\left(x_{0}, y_{0}\right) \precsim G F\left(x_{0}, y_{0}\right)$ i.e., $x_{1} \precsim G x_{1}$ and using (2.6) we get $x_{1} \precsim x_{2}$. Also, since $G x_{1} \precsim F\left(G x_{1}, G y_{1}\right)$, using (2.5) we have $x_{2} \precsim x_{3}$. Similarly using weakly related property for $\{F, G\}$ and repeated use of (2.3) gives

$$
x_{0} \precsim x_{1} \precsim x_{2} \precsim x_{3} \precsim \cdots \precsim x_{n} \precsim x_{n+1} \precsim \cdots .
$$

Also, since $y_{0} \precsim F\left(y_{0}, x_{0}\right)$, using (2.5) we have $y_{0} \precsim y_{1}$. Again since the pair $\{F, G\}$ is weakly related, we have $F\left(y_{0}, x_{0}\right) \precsim G F\left(y_{0}, x_{0}\right)$ i.e., $y_{1} \precsim G y_{1}$ and using (2.5) we get $y_{1} \precsim y_{2}$. Also, since $G y_{1} \precsim F\left(G y_{1}, G x_{1}\right)$, using (2.5) we have $y_{2} \precsim y_{3}$. Similarly using the weakly related property for $\{F, G\}$ and repeated use of (2.5) gives

$$
y_{0} \precsim y_{1} \precsim y_{2} \precsim y_{3} \precsim \cdots \precsim y_{n} \precsim y_{n+1} \precsim \cdots .
$$

That is the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ non decreasing in X. By the definition of \precsim, we have

$$
\begin{aligned}
& \phi\left(x_{0}\right) \precsim\left(x_{1}\right) \precsim \phi\left(x_{2}\right) \precsim \phi\left(x_{3}\right) \precsim \cdots, \\
& \phi\left(y_{0}\right) \precsim\left(y_{1}\right) \\
& \precsim \phi\left(y_{2}\right) \precsim \phi\left(y_{3}\right) \precsim \cdots .
\end{aligned}
$$

In other words, the sequences $\left\{\phi\left(x_{n}\right)\right\}$ and $\left\{\phi\left(y_{n}\right)\right\}$ are non-decreasing sequences in the set of real numbers. Since ϕ is bounded from above, $\left\{\phi\left(x_{n}\right)\right\}$ and $\left\{\phi\left(y_{n}\right)\right\}$ are b-convergent and hence are b-Cauchy. So, for all $\epsilon>0$, there exists $n_{0} \in N$ such that for all $m>n>n_{0}$, we have

$$
\left|\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right|=\left\{\phi\left(x_{m}\right)\right\}-\left\{\phi\left(x_{n}\right)\right\}<\frac{\epsilon}{s}
$$

and

$$
\left|\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right|=\phi\left(y_{m}\right)-\phi\left(y_{n}\right)<\frac{\epsilon}{s} .
$$

Since $x_{n} \precsim x_{m}$, it follows that $d\left(x_{n}, x_{m}\right) \leq s\left[\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right]<\epsilon$. Since $y_{n} \precsim y_{m}$, it follows that

$$
d\left(y_{n}, y_{m}\right) \leq s\left[\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right]<\epsilon .
$$

This shows that the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-Cauchy in X and since X is b-complete, there exist points $x, y \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. Since the sequences $\left\{x_{2 n}\right\},\left\{x_{2 n+1}\right\}$ and $\left\{x_{2 n+2}\right\}$ are sub sequences of $\left\{x_{n}\right\}$, therefore $x_{2 n} \rightarrow x, x_{2 n+1} \rightarrow x$ and $x_{2 n+2} \rightarrow x$. Also the sequence $\left\{y_{2 n}\right\}$, $\left\{y_{2 n+1}\right\}$ and $\left\{y_{2 n+2}\right\}$ are sub sequences of $\left\{y_{n}\right\}$, therefore $y_{2 n} \rightarrow y, y_{2 n+1} \rightarrow y$ and $y_{2 n+2} \rightarrow y$.

Consequently, taking the limit as $n \rightarrow \infty$ in (2.5) and using the continuity of F and G, we get

$$
x=\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} F\left(x_{2 n}, y_{2 n}\right)=F\left(\lim _{n \rightarrow \infty} x_{2 n}, \lim _{n \rightarrow \infty} y_{2 n}\right)=F(x, y)
$$

and

$$
\left.x=\lim _{n \rightarrow \infty} x_{2 n+2}=\lim _{n \rightarrow \infty} G x_{2 n+1}=G \lim _{n \rightarrow \infty} x_{2 n+1}\right)=G x .
$$

Similarly, taking the limit as $n \rightarrow \infty$ in (2.6) and using the continuity of F and G, we get

$$
y=\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} F\left(y_{2 n}, x_{2 n}\right)=F\left(\lim _{n \rightarrow \infty} y_{2 n}, \lim _{n \rightarrow \infty} x_{2 n}\right)=F(y, x)
$$

and

$$
y=\lim _{n \rightarrow \infty} y_{2 n+2}=\lim _{n \rightarrow \infty} G y_{2 n+1}=G\left(\lim _{n \rightarrow \infty} y_{2 n+1}\right)=G y .
$$

Thus we proved that $G x=x=F(x, y)$ and $G y=y=F(y, x)$. Hence (x, y) is a common coupled fixed point of F and G.

Theorem 2.5. Let (X, d) is a complete b-metric space, $\phi: X \rightarrow R$ be a bounded from above function and \precsim the partial order induced by ϕ. Let $F: X \times X \rightarrow X$ and $G, H: X \rightarrow X$ are three continuous mappings such that the pair $\{F, G\}$ and $\{F, H\}$ are weakly related on X. Then F, G and H have a common coupled fixed point in X.
Proof. We construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as follows

$$
\begin{equation*}
x_{3 n}=G x_{3 n-1}, x_{3 n-1}=F\left(x_{3 n-2}, y_{3 n-2}\right) \text { and } \quad x_{3 n-2}=H x_{3 n-3} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{3 n}=\left(G y_{3 n-1}, y_{3 n-1}\right)=F\left(y_{3 n-2}, x_{3 n-2}\right) \quad \text { and } \quad y_{3 n-2}=H y_{3 n-3} \tag{2.8}
\end{equation*}
$$

for all $n \geq 0$. We shall show that

$$
x_{n} \precsim x_{n+1}, \quad y_{n} \precsim y_{n+1} \quad \text { for all } \quad n \geq 0 .
$$

We have $x_{1}=H x_{0}$. Since the pair $\{F, H\}$ is weakly related, we have $H x_{0} \precsim$ $F\left(H x_{0}, H y_{0}\right)$ i.e., $x_{1} \precsim F\left(x_{1}, y_{1}\right)$ and using (2.7), we get $x_{1} \precsim x_{2}$. Again since the pair $\{F, G\}$ is weakly related, we have $F\left(x_{1}, y_{1}\right) \precsim G F\left(x_{1}, y_{1}\right)$. Using (2.7), we get $x_{2} \precsim x_{3}$. Similarly using the weakly related property for $\{F, G\}$ and $\{F, H\}$ repeated use of (2.7) gives

$$
x_{1} \precsim x_{2} \precsim x_{3} \precsim \cdots \precsim x_{n} \precsim x_{n+1} \precsim \cdots .
$$

Also, we have $y_{1}=H y_{0}$. Since the pair $\{F, H\}$ is weakly related, we have $H y_{0} \precsim F\left(H y_{0}, H x_{0}\right)$ i.e., $y_{1} \precsim F\left(y_{1}, x_{1}\right)$. Using (2.8), we get $y_{1} \precsim y_{2}$. Again since the pair $\{F, G\}$ is weakly related, we have $F\left(y_{1}, x_{1}\right) \precsim G F\left(y_{1}, x_{1}\right)$ i.e., $y_{2} \precsim G y_{2}$ and using (2.8) we get $y_{2} \precsim y_{3}$.

Similarly using the weakly related property for $\{F, G\}$ and $\{F, H\}$ and repeated use of (2.7) and (2.8) gives

$$
y_{1} \precsim y_{2} \precsim y_{3} \precsim \cdots \precsim y_{n} \precsim y_{n+1} \precsim \cdots .
$$

That is the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are non decreasing in X. By the definition of \precsim, we have

$$
\phi\left(x_{0}\right) \precsim \phi\left(x_{1}\right) \precsim \phi\left(x_{2}\right) \precsim \phi\left(x_{3}\right) \precsim \cdots
$$

and

$$
\phi\left(y_{0}\right) \precsim \phi\left(y_{1}\right) \precsim \phi\left(y_{2}\right) \precsim \phi\left(y_{3}\right) \precsim \cdots .
$$

In other words, the sequence $\left\{\phi\left(x_{n}\right)\right\}$ and $\left\{\phi\left(y_{n}\right)\right\}$ are non decreasing sequences in the set of real numbers. Since ϕ is bounded from above, $\left\{\phi\left(x_{n}\right)\right\}$
and $\left\{\phi\left(y_{n}\right)\right\}$ are b-convergent and hence are b-Cauchy. So, for all $\epsilon>0$, there exists $n_{0} \in N$ such that for all $m>n>n_{0}$. We have $\left|\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right|=$ $\phi\left(x_{m}\right)-\phi\left(x_{n}\right)<\frac{\epsilon}{s}$ and $\left|\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right|=\phi\left(y_{m}\right)=\phi\left(y_{n}\right)<\frac{\epsilon}{s}$. Since $x_{n} \precsim x_{m}$, it follows that

$$
d\left(x_{n}, x_{m}\right) \leq s\left[\phi\left(x_{m}\right)-\phi\left(x_{n}\right)\right]<\epsilon
$$

and since $y_{n} \precsim y_{m}$, it follows that

$$
d\left(y_{n}, y_{m}\right) \leq s\left[\phi\left(y_{m}\right)-\phi\left(y_{n}\right)\right]<\epsilon
$$

This shows that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-Cauchy in X and since X is b-complete, there exist points $x, y \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. Since the sequences $\left\{x_{3 n}\right\},\left\{x_{3 n-1}\right\}$ and $\left\{x_{3 n-2}\right\}$ are subsequences of $\left\{x_{n}\right\}$, therefore $x_{3 n} \rightarrow x, x_{3 n-1} \rightarrow x$ and $x_{3 n-2} \rightarrow x$. Also the sequences $\left\{y_{3 n}\right\}$, $\left\{y_{3 n-1}\right\}$ and $\left\{y_{3 n-2}\right\}$ are subsequences of $\left\{y_{n}\right\}$, therefore $y_{3 n} \rightarrow y, y_{3 n-1} \rightarrow y$ and $y_{3 n-2} \rightarrow y$.

Consequently, taking the limit as $n \rightarrow \infty$ in (2.7) and using the continuity of F, G and H, we get

$$
\begin{aligned}
x & =\lim _{n \rightarrow \infty} x_{3 n-1}=\lim _{n \rightarrow \infty} F\left(x_{3 n-2}, y_{3 n-2}\right) \\
& =F\left(\lim _{n \rightarrow \infty} x_{3 n-2}, \lim _{n \rightarrow \infty} y_{3 n-2}\right)=F(x, y), \\
x & =\lim _{n \rightarrow \infty} x_{3 n}=\lim _{n \rightarrow \infty} G x_{3 n-1}=G\left(\lim _{n \rightarrow \infty} x_{3 n-1}\right)=G x
\end{aligned}
$$

and also

$$
x=\lim _{n \rightarrow \infty} x_{3 n-2}=\lim _{n \rightarrow \infty} H x_{3 n-3}=H\left(\lim _{n \rightarrow \infty} x_{3 n-3}\right)=H x
$$

Similarly, taking the limit as $n \rightarrow \infty$ in (2.8) and using the continuity of F and G, we get

$$
\begin{gathered}
y=\lim _{n \rightarrow \infty} y_{3 n-1}=\lim _{n \rightarrow \infty} F\left(y_{3 n-2}, x_{3 n-2}\right)=F\left(\lim _{n \rightarrow \infty} y_{3 n-2}, \lim _{n \rightarrow \infty}\right)=F(y, x) \\
y=\lim _{n \rightarrow \infty} y_{3 n}=\lim _{n \rightarrow \infty} G y_{3 n-1}=G\left(\lim _{n \rightarrow \infty} y_{3 n-1}\right)=G y
\end{gathered}
$$

and also

$$
y=\lim _{n \rightarrow \infty} y_{3 n-2}=\lim _{n \rightarrow \infty} H y_{3 n-3}=H\left(\lim _{n \rightarrow \infty} y_{3 n-3}\right)=H y
$$

Thus we proved that $H x=G x=x=F(x, y)$ and $H y=G y=y=F(y, x)$. Hence (x, y) is a common coupled fixed point of H, G and F.

References

[1] IA. Bakhtin, The contraction mapping principle in almost metric spaces, In: Functional Analysis, Ulyanovsk Gos. Ped. Inst., Ulyanovsk, 30 (1989), 26-37.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 3 (1922), 133-181.
[3] T.G. Bhaskar and V. Lakshmikantham, Fixed points theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393.
[4] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3) (2009), 285-301.
[5] S. Czerwik, Nonlinear set-valued contraction mapping in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263-276.
[6] V. Lakshmikantham and Lj. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.
[7] J. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi) s$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013, Article ID 130 (2013).
[8] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction, Fixed Point Theory Appl., 2013, Article ID 275 (2013).
[9] W. Shatanawi, A. Pitea and R. Lazovic, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory and Appl., 2014, 2014:135.

[^0]: ${ }^{0}$ Received March 23, 2016 Revised June 21, 2016.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: Coupled fixed point, complete b-metric space, weakly related mappings.

