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Abstract. By constructing proper cones and by making use of fixed point theory together

with the properties of Green’s function, the paper deals with the existence of positive so-

lutions for fourth-order singular nonlinear Sturm-Liouville boundary value problems. The

main results which are obtained essentially improve, generalize and unify many well-known

results. Examples are given to show the validity of the main results.

1. Introduction

The present paper considers the existence results for the following fourth-
order nonlinear singular boundary value problems of the form

y(4)(t)− λa(t)F (t, y(t)) = 0, 0 < t < 1, (1.1){
a1y(0)− b1y

′(0) = 0 = c1y(1) + d1y
′(1),

a2y
′′(0)− b2y

′′′(0) = 0 = c2y
′′(1) + d2y

′′′(1), (1.2)
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where λ > 0, a(t) may be singular at t = 0 and/or 1; F : [0, 1]× [0,+∞) −→
[0, +∞) is continuous, and F (t, y) is not identically zero on any subinterval of
[0, 1], for all 0 < y < +∞; ai, bi, ci, di ≥ 0, such that

∆i = bici + aici + aidi > 0, i = 1, 2.

The boundary value problems for differential equations arise quite naturally
in a variety of mathematical models ( see [1, 2, 8] for references along this line
and therein). Much more attention has been put to the existence of positive
solutions for fourth order non-singular boundary value problems. For example,
when λa(t)F (t, y(t)) = e(t)− g(t, y(t))+π4y(t), the differential equation (1.1)
with the following boundary conditions

y(0) = y(1) = y′′(0) = y′′(1) = 0 (1.3)

describes the bending of an elastic beam which is simply supported at both
ends and is at resonance. Gupta [2] established the existence and uniqueness
results of the nonlinear boundary value problem (1.1)− (1.3), where g(t, y) is
strictly increasing on y for every t in [0, 1] and

∫ 1
0 g(t, 0) sinπtdt = 0. When

λa(t)F (t, y(t)) = e(t)− g(t)y(t), 0 < t < 1, Usmani [7] presented a uniqueness
theorem for the linear boundary value problem (1.1) − (1.3), where g(t) and
e(t) are given real-valued continuous function on [0, 1]. Y. Yang [10] proved an
existence theorem for the equation (1.1) with the following general nonlinear
boundary condition

y(0) = ty0, y(1) = ty1, y′′(0) = ty0, y′′(1) = ty1. (1.4)

When F (t, y) = f(y), the differential equation (1.1) with the following bound-
ary conditions

y(0) = y′(1) = y′′(0) = y′′′(1) = 0 (1.5)

describes an elastic beam with one of its end simply supported and the other
end clamped by sliding clamps. By employing Krasnosel’skii fixed point theo-
rem of norm type cone expansion and compression, Ma and Wang [4] studied
the existence of positive solutions for the problem (1.1)− (1.3), and the prob-
lem (1.1)− (1.5), where superlinear or sublinear conditions imposed on f .

However, the singular problems have been received much more attention in
recent years (see [5, 6, 9] and the references therein). Motivated by [5, 6, 9],
the aim of the paper, we consider more general differential equation (1.1)
with more general boundary conditions (1.2), under some weaker assumptions
imposed on a(t) and F (t, y). Also, we allow a(t) may be singular at t = 0
and/or 1. Moreover, the paper is not only to obtain at least one positive
solutions for the problem (1.1) − (1.2), but also to derive an explicit interval
for λ, and for any λ in this interval. Our results extend, contain and improve
many known results in [1, 4, 10].
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The paper is organized as follows: In Section 2, we collect some preliminaries
and properties of Green’s functions. We also construct valid integral operator.
In Section 3, The main results will be stated and proved. In Section 4, some
examples are given to show the validity of our main results.

2. Some Preliminaries

In this section we shall present some preliminaries which will be used to
prove the main results.

We denote by H(t, s) the Green’s function for the homogeneous boundary
value problem:

y(4)(t) = 0, t ∈ [0, 1],
subject to the boundary conditions (1.2). We then know that H(t, s) is non-
negative on [0, 1]× [0, 1], and is expressed by

H(t, s) =
∫ 1

0
H1(t, v)H2(v, s)dv,

where Hi(t, s)(i = 1, 2) is the Green’s function for the following boundary
value problem 




y′′(t) = 0, 0 < t < 1,
aiy(0)− biy

′(0) = 0,
ciy(1) + diy

′(1) = 0, i = 1, 2 ;
that is

Hi(t, s) =
{ 1

∆i
(bi + ais) (di + ci(1− t)) , if 0 ≤ s ≤ t ≤ 1,

1
∆i

(bi + ait) (di + ci(1− s)) , if 0 ≤ t ≤ s ≤ 1,

for i = 1, 2. By some simple calculations, we get

H(t, s) =





1
6∆1∆2

(b2 + a2s)
(
∆1 (c2t− 3 (c2 + d2)) t2 + ∆(a1t + b1)

)
−∆2 (c1(1− t) + d1) (a1s + 3b1)s2, if 0 ≤ s ≤ t ≤ 1,

1
6∆1∆2

(b1 + a1t)
(
∆2 (c1s− 3 (c1 + d1)) s2 + ∆(a2s + b2)

)
−∆1 (c2(1− s) + d2) (a2t + 3b2)t2, if 0 ≤ t ≤ s ≤ 1,

where ∆ = 2c1c2 + 3c1d2 + 3c2d1 + 6d1d2.
For convenience, we list the following assumptions:

(A) a(t) ∈ C((0, 1), [0, +∞)), and 0 <
∫ 1
0 Hi(s, s)a(s)ds < +∞, for i = 1, 2;

F (t, y) ∈ C([0, 1]× [0,+∞), [0, +∞).

Remark 2.1. By (A), there exist a, b ∈ (0, 1) with a < b such that

0 <

b∫

a

Hi(s, s)a(s)ds < +∞, i = 1, 2.
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In the rest of the paper, a, b will be taken in this way. It is rather straight
forward that

0 ≤ Hi(t, s) ≤ Hi(s, s)

≤ 1
∆i

(ai + bi)(ci + di) < +∞, for i = 1, 2, t, s ∈ [0, 1];
(2.1)

0 < τiHi(s, s) ≤ Hi(t, s), for t ∈ [a, b] ⊂ (0, 1), s ∈ (0, 1), i = 1, 2; (2.2)

where

0 < τi = min
{

di + ci(1− b)
di + ci

,
bi + aai

bi + ai

}
< 1, for i = 1, 2. (2.3)

Remark 2.2. From Remark 2.1 and (2.1) together with (2.2), we know that

0 < min
t∈[a,b]

∫ b

a
Hi(t, s)a(s)ds < +∞, for i = 1, 2,

0 < min
t∈[a,b]

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds < +∞.

Similarly,

0 < max
t∈[0,1]

∫ 1

0
Hi(t, s)a(s)ds < +∞, for i = 1, 2,

0 < max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)dv

]
ds < +∞.

Let

Q =
(

max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)dv

]
ds

)−1

. (2.4)

q =
(

min
t∈[a,b]

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds

)−1

. (2.5)

Note that Q and q are constants and 0 < Q ≤ q ≤ +∞.
By a positive solution of boundary value problem (1.1)− (1.2), we mean a

function y(t) ∈ C([0, 1], R+) ∩ C(4)((0, 1), R+) satisfying the problem (1.1) −
(1.2), and with y(t) nonnegative and not identically zero on [0, 1].

Now, we denote E = C[0, 1] with norm ‖y‖ = max
0≤t≤1

|y(t)|, y(t) ∈ C[0, 1].

Then E is a Banach space. Let

K =
{

y | y ∈ C+[0, 1], min
t∈[a,b]

y(t) ≥ τ‖y‖
}

, (2.6)
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where C+[0, 1] = {y ∈ C[0, 1] | y ≥ 0}, 0 < τ = τ1τ2 < 1. Then, we know
that K is a positive cone and K ⊂ C+[0, 1] ⊂ E. Now we define an operator
B : C+[0, 1] → C+[0, 1] by

(By)(t) = λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

= λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds.

(2.7)

It is well known that y is a positive solution of the problem (1.1)− (1.2) if and
only if y is a fixed point of operator B in C[0, 1].

Lemma 2.1. Assume that (A) holds. Then B : K → K is a completely
continuous operator.

Proof. Let G = max {H1(t, v) | t, v ∈ [0, 1]}. Suppose that yn → y0 (n →
∞), yn, y0 ∈ C+[0, 1]. Then there exists a constant d > 0, such that ‖yn‖ <
d < +∞, for n = 1, 2, · · · . Since F (t, y) is continuous on [0, 1] × [0, d], it is
uniformly continuous. Therefore, for any ε > 0, there exists δ > 0 such that
| y′ − y′′ |< δ, for y′, y′′ ∈ [0, d], implies that

| F (t, y′)− F (t, y′′) |< ε

(
λG

∫ 1

0
H2(s, s)a(s)ds

)−1

.

Since yn → y0, there exists a natural number N such that ‖yn − y0‖ < δ for
any n > N . Thus, for any n > N and t ∈ [0, 1], we have

| F (t, yn(t))− F (t, y0(t)) |< ε

(
λG

∫ 1

0
H2(s, s)a(s)ds

)−1

,

which implies that

‖Byn(t)−By0(t)‖

≤ λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s) | F (s, yn(s))− F (s, y0(s)) | dv

]
ds

< λGε

(
λG

∫ 1

0
H2(s, s)a(s)ds

)−1 (∫ 1

0
H2(s, s)a(s)ds

)
= ε

for all t ∈ [0, 1] and n > N , and therefore ‖Byn − By0‖ < ε for all n > N .
Thus B is continuous.

Now, we suppose that T ⊂ C+[0, 1] is a bounded set, then there exists a
constant l > 0 such that ‖y‖ ≤ l, for all y ∈ T .

Let L = max{λF (t, y) | 0 ≤ t ≤ 1, 0 ≤ y ≤ l}, ξ =
∫ 1
0 H2(s, s)a(s)ds. Then

B(T ) is a uniformly bounded subset of C+[0, 1], because we have ‖By‖ ≤ LξG
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for y ∈ T . Since H1(t, v) is uniformly continuous on [0, 1]×[0, 1], for any ε > 0,
there exists δ > 0 such that

| H1(t1, v)−H1(t2, v) |< ε(Lξ)−1

for any t1, t2 ∈ [0, 1] with |t1− t2| < δ and v ∈ [0, 1]. Then, for any y ∈ T , and
t1, t2 ∈ [0, 1], with |t1 − t2| < δ, we have

‖(By)(t1)− (By)(t2)‖

≤ λ

∫ 1

0

[∫ 1

0
| H1(t1, v)−H1(t2, v) | H2(v, s)a(s)F (s, y(s))dv

]
ds

< ε(Lξ)−1L

∫ 1

0
H2(s, s)a(s)ds

= εξ−1ξ

= ε.

Thus B(T ) is a equicontinuous subset of E. It follows from Arzela-Ascoli The-
orem that B(T ) is relatively compact. Therefore, the operator B is completely
continuous. This completes the proof of Lemma 2.1. ¤

Lemma 2.2. BK ⊂ K.

Proof. For all y ∈ C+[0, 1], t ∈ [0, 1],

(By)(t) = λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

= λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≤ λ

∫ 1

0

[∫ 1

0
H1(v, v)H2(s, s)a(s)F (s, y(s))dv

]
ds.

Thus ‖By‖ ≤ λ
∫ 1
0

[∫ 1
0 H1(v, v)H2(s, s)a(s)F (s, y(s))dv

]
ds.

On the other hand, we know that

min
t∈[a,b]

(By)(t) = min
t∈[a,b]

λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≥ τ1τ2λ

∫ 1

0

[∫ 1

0
H1(v, v)H2(s, s)a(s)F (s, y(s))dv

]
ds

= τλ

∫ 1

0

[∫ 1

0
H1(v, v)H2(s, s)a(s)F (s, y(s))dv

]
ds.

which implies that min
t∈[a,b]

(By)(t) ≥ τ‖By‖, thus By ∈ K. So BK ⊂ K. ¤
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Lemma 2.3. [3] Let E be a Banach space and let K(⊂ E) be a cone. Assume
that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let B :
K(Ω2\Ω1) −→ K be a continuous and compact operator such that either

(a) ‖By‖ ≤ ‖y‖, y ∈ K ∩ ∂Ω1, and ‖By‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω2, or
(b) ‖By‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω1, and ‖By‖ ≤ ‖y‖, y ∈ K ∩ ∂Ω2.

Then B has a fixed point in K ∩ (Ω2\Ω1).

3. The Main Results

In this section, we give our main results.

Theorem 3.1. Suppose that (A) holds. In addition, assume that

(A1)





0 ≤ F 0 = lim sup
y→0+

max
t∈[0,1]

F (t, y)
y

< Q, (I)

0 < q < F∞ = lim inf
y→+∞ min

t∈[a,b]

F (t, y)
y

≤ +∞. (II)

Then the problem (1.1)− (1.2) has at least one positive solution in K for any

λ ∈
(

q

τF∞
,

Q

F 0

)
, (3.1)

where Q and q are defined as (2.4) and (2.5).

Proof. Let λ satisfy (3.1) and ε > 0 be a number such that F∞ − ε > 0 on
[0, 1] and

q

τ(F∞ − ε)
≤ λ ≤ Q

F 0 + ε
. (3.2)

From (A1)(I), there exists r > 0 such that

F (t, y) ≤ (F 0 + ε)y ≤ (F 0 + ε)r, (3.3)

for any 0 < y ≤ r and t ∈ [0, 1]. Let Ω1 = {y ∈ E | ‖y‖ < r}. For any
y ∈ K ∩ ∂Ω1, it follows from (3.3) and (2.4) that,

‖By‖ = max
t∈[0,1]

λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

= λ max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≤ λ(F 0 + ε)r max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)dv

]
ds

≤ r = ‖y‖.
Thus, ‖By‖ ≤ ‖y‖, for y ∈ K ∩ ∂Ω1.
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Again by virtue of (A1)(II), there exists r0 > r > 0 such that

F (t, y) ≥ (F∞ − ε)y, for y ≥ r0, 0 ≤ t ≤ 1. (3.4)

Let R > max{2r, r0τ
−1} and Ω2 = {y ∈ E | ‖y‖ < R}. Then

min
t∈[a,b]

y(t) ≥ τ‖y‖ ≥ r0

for any y ∈ K ∩ ∂Ω2. Thus, from (2.5) and (2.6) together with (3.4), for any
a ≤ t ≤ b, y ∈ K ∩ ∂Ω2, we have

(By)(t) = λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

= λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≥ λ

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≥ λ(F∞ − ε)
∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)y(s)dv

]
ds

≥ λ(F∞ − ε)τ‖y‖
∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds

≥ λ(F∞ − ε)τ‖y‖ min
t∈[a,b]

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds

≥ ‖y‖.

Therefore ‖By‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2.
From Lemma 2.3, B has a fixed point y∗ in K ∩ (Ω2\Ω1). Then y∗ is a

positive solution of the problem (1.1)− (1.2). This completes the proof. ¤

Remark 3.1. From Theorem 3.1, we can see that F (t, y) need not be super-
linear or sublinear. So our conclusions extend and improve the corresponding
results in [1, 4, 5, 10]. In fact, the conclusion of Theorem 3.1 still holds if one
of the following conditions hold:

(i) If F∞ = +∞, F 0 > 0, then for each λ ∈
(
0, Q

F 0

)
;

(ii) If F∞ = +∞, F 0 = 0, then for each λ ∈ (0, +∞);
(iii) If F∞ > q > 0, F 0 = 0, then for each λ ∈

(
q

τF∞ ,+∞
)
.

Theorem 3.1 yields the following corollary.
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Corollary 3.1. Suppose that (A) holds. In addition, assume that F 0 ∈
[0, +∞), F∞ ∈ (0, +∞). Then for any λ ∈

(
q

τF∞ , Q
F 0

)
⊂ (0, +∞), the problem

(1.1)− (1.2) has nonnegative solutions.

Theorem 3.2. Suppose that (A) holds. In addition, assume that

(A2)





0 ≤ F∞ = lim sup
y→+∞

max
t∈[0,1]

F (t, y)
y

< Q, (I)

0 < q < F0 = lim inf
y→0+

min
t∈[a,b]

F (t, y)
y

≤ +∞. (II)

Then the problem (1.1)− (1.2) has at least one positive solution for any

λ ∈
(

q

τF0
,

Q

F∞

)
, (3.5)

where Q and q are defined as in (2.4) and (2.5).

Proof. Let λ satisfy (3.5) and ε > 0 be chosen such that F0 − ε > 0, t ∈ [0, 1],
and

q

τ(F0 − ε)
≤ λ ≤ Q

F∞ + ε
. (3.6)

By virtue of (A2)(II), there exists r > 0 such that F (t, y) ≥ (F0 − ε)y, for
0 < y < r, a ≤ t ≤ b. Let Ω1 = {y ∈ E | ‖y‖ < r}. Then

0 < τ‖y‖ < min
t∈[a,b]

y(t) ≤ max
t∈[a,b]

y(t) ≤ ‖y‖ = r.

Therefore, by making use of (2.6) and (3.6), for any y ∈ K∩∂Ω1 and a ≤ t ≤ b,
we obtain

(By)(t) = λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

= λ

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≥ λ

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≥ λ(F0 − ε)
∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)y(s)dv

]
ds

≥ λ(F0 − ε)τ‖y‖
∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds

≥ λ(F0 − ε)τ‖y‖ min
t∈[a,b]

∫ 1

0

[∫ b

a
H1(t, v)H2(v, s)a(s)dv

]
ds ≥ ‖y‖.
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Thus ‖By‖ ≥ ‖y‖, for y ∈ K ∩ ∂Ω1.

Let k(t, y) = sup
x∈[0,y]

F (t, x). Then F (t, y) ≤ k(t, y) and k is increasing for

y ∈ [0, +∞). By virtue of (A2)(I), there exist R0 > 0 such that

F (t, y) ≤ (F∞ + ε)y,

for y ≥ R0, 0 ≤ t ≤ 1. Then

F (t, y) ≤ M0 + (F∞ + ε)y

for y ≥ 0, 0 ≤ t ≤ 1, where M0 = max{F (t, y) | (t, y) ∈ [0, 1]× [0, R0]}. Thus

lim sup
y→+∞

max
t∈[0,1]

k(t, y)
y

≤ F∞.

Consequently, by the fact that F (t, y) ≤ k(t, y), we have

lim sup
y→+∞

max
t∈[0,1]

k(t, y)
y

= F∞.

Let R > 2r such that k(t, y) ≤ (F∞ + ε)y, for y ≥ R, 0 ≤ t ≤ 1. Now let
Ω2 = {y ∈ E | ‖y‖ < R}. Then for any y ∈ K ∩ ∂Ω2, and 0 ≤ t ≤ 1, we have

(By)(t) = λ

∫ 1

0
H(t, s)a(s)F (s, y(s))ds

≤ λ max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)F (s, y(s))dv

]
ds

≤ λ max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)k(s, y(s))dv

]
ds

≤ λ max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)k(s,R)dv

]
ds

≤ λ(F∞ + ε)R max
t∈[0,1]

∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)dv

]
ds

≤ R = ‖y‖.
Thus ‖By‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2. By virtue of Lemma 2.3, we know that
B has a fixed point y∗ in K ∩ (Ω2\Ω1), and so y∗ is a positive solution of the
problem (1.1)− (1.2). This completes the proof. ¤

Remark 3.2. From the proof of Theorem 3.2, we can see the same conclusion
of Theorem 3.2 remains valid if one of the following conditions holds:

(i) If F∞ < Q, F0 = +∞, then for each λ ∈
(
0, Q

F∞

)
;

(ii) If F∞ = 0, F0 = +∞, then for each λ ∈ (0, +∞);
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(iii) If F∞ = 0, F0 > q > 0, then for each λ ∈
(

q
τF0

, +∞
)
.

The following corollary is obtained from Theorem 3.2.
Corollary 3.2. Suppose that (A) holds. In addition, assume that F∞ ∈
[0, +∞), F0 ∈ (0, +∞). Then for any λ ∈

(
q

τF0
, Q

F∞

)
⊂ (0,+∞), the problem

(1.1)− (1.2) has nonnegative solution.

Remark 3.3. Theorem 3.1 and Theorem 3.2 extend, contain and improve
the main results in [1, 2, 4, 6, 10] from the following aspects:

(i) We allow a(t) to be singular at t = 0 and/or 1. Also, a(t) is permitted
to be vanished at some subinterval of [0, 1].

(ii) The boundary conditions in our problem is more general than that of
in [1, 2, 10].

(iii) F need not to be superlinear or sublinear. Note that if F is superlinear
( i.e. F 0 = 0, F∞ = +∞) or sublinear ( i.e. F0 = +∞, F∞ = 0), then for each
λ ∈ (0,+∞), the problem (1.1)− (1.2) has at least one positive solution. And
our results still hold for the non-singular cases as in [1, 7, 10].

4. Examples

In this section, we present some examples to illustrate the validity of our
main results.

Example 4.1. Consider the following singular boundary value problem




y(4)(t)− λ
1√

1− t

(
0.001(1− t)y2 + 11879

y3

1 + y

+ 0.009 | sin y2 |
) 1

2 = 0, 0 < t < 1,

y(0) = y(1) = y′′(0) = y′′(1) = 0.

(4.1)

Then the problem (4.1) has at least one positive solution.
It is obviously that a(t) = 1√

1−t
is singular at t = 1. The problem (4.1)

describes the bending of an elastic beam both of whose ends simply supported
at 0 and 1. Because of the singularity and the form of the problem (4.1), it
seems to be difficult that the problem is solved by making use of the results
obtained by [1, 2, 4, 5, 7, 10] as well as their extension. Now we study the
problem (4.1) by making use of Theorem 3.1 ( where ai = ci = 1, bi = di = 0).

Let a(t) = 1√
1−t

,

F (t, y) = λ

[
0.001(1− t)y2 + 11879

y3

1 + y
+ 0.009 | sin y2 |

] 1
2

, 0 < t < 1.
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It is easy to see that the condition (A) holds.
Now the Green’s function H1(t, v) and H2(t, s) are same, that is

H2(t, s) =

{
t(1− s), if 0 ≤ t ≤ s ≤ 1,

s(1− t), if 0 ≤ s ≤ t ≤ 1.

By taking subinterval [a, b] = [14 , 3
4 ], then we have

lim sup
y→0+

max
t∈[0,1]

F (t, y)
y

= 0.1λ, (4.2)

lim inf
y→+∞ min

t∈[ 1
4
, 3
4
]

F (t, y)
y

=
√

11879.00025λ. (4.3)

Now we compute Q and q in Theorem 3.1. Since

ϕ(t) =
∫ 1

0

[∫ 1

0
H1(t, v)H2(v, s)a(s)dv

]
ds

=
∫ 1

0
H1(t, v)

[∫ v

0
s(1− v)

ds√
1− s

+
∫ 1

v
(1− s)v

ds√
1− s

]
dv

=
4
3

∫ 1

0
H1(t, v)

(
1−√1− v

)
(1− v)dv

=
4
3

(∫ t

0
v(1− t)(1− v)(1−√1− v)dv

+
∫ 1

t
t(1− v)2(1−√1− v)dv

)

=
2

315
(1− t)

(
24

(−1 +
√

1− t
)

+
(
70− 48

√
1− t

)
t

+
(−35 + 24

√
1− t

)
t2

)

≤ 2
315

(1− t)
(
70t− 11t2

)
.

So

ϕ(t) ≤ 2
315

(1− t)(70t− 11t2),
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then

max
t∈[0,1]

ϕ(t) ≤ 2
315

(
max
t∈[0,1]

(1− t)
(
70t− 11t2

))

=
2

315

(
1− 81−√4251

33

)(
70

(
81−√4251

)

33
− 11

(
81−√4251

)2

332

)

=
4

(−83592 + 1417
√

4251
)

343035
,

and thus

Q =
(

max
t∈[0,1]

ϕ(t)
)−1

≥ 343035
4

(−83592 + 1417
√

4251
) . (4.4)

On the other hand,

φ(t) =
∫ 1

0

[∫ 3
4

1
4

H1(t, v)H2(v, s)a(s)dv

]
ds

=
∫ 1

0
H1(t, v)

[∫ v

1
4

s(1− v)
ds√
1− s

+
∫ 3

4

v
(1− s)v

ds√
1− s

]
dv

=
1
12

∫ 1

0
H1(t, v)

(
9
√

3− 16
√

1− v +
(
16
√

1− v − 1− 9
√

3
)

v
)

dv

=
1
12

∫ t

0
v(1− t)

(
9
√

3− 16
√

1− v +
(
16
√

1− v − 1− 9
√

3
)

v
)

dv

+
1
12

∫ 1

t
t(1− v)

(
9
√

3− 16
√

1− v +
(
16
√

1− v − 1− 9
√

3
)

v
)

dv

=
1

2520
(1− t)

(
384

(−1 +
√

1− t
)

+
(
−35 + 630

√
3− 768

√
1− t

)
t

+
(
−35− 315

√
3 + 384

√
1− t

)
t2

)
.

It is easy to verify that

min
t∈[ 1

4
, 3
4
]
φ(t) = min

{
φ(

1
4
), φ(

3
4
)
}

= φ(
3
4
)

=
1

2520

(
1− 3

4

) (
384

(
−1 +

1
2

)
+

(
−35 + 630

√
3− 768× 1

2

)
× 3

4

+
(
−35− 315

√
3 + 384× 1

2

)
× 9

16

)

=
−743 + 525

√
3

17920
.
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Thus

q =

(
min

t∈[ 1
4
, 3
4
]
φ(t)

)−1

=
17920

−743 + 525
√

3
. (4.5)

It follows from (A1) in Theorem 3.1 and (4.2)− (4.5) that the problem (4.1)
has at least one positive solution if

0.1λ < 9.74978,
√

11879.00025λ >
17920

−743 + 525
√

3
,

that is
17920(−743 + 525
√

3
)√

11879.00025
< λ <

9.74978
0.1

.

Note that
17920(−743 + 525
√

3
)√

11879.00025
≈ 0.988522,

9.74978
0.1

≈ 97.4978.

Then we obtain that the approximate subinterval about λ is (0.98853, 97.4978).
In particular, we can see that the problem (4.1) has at least one positive
solution, for λ = 1.

Example 4.2. Now we consider the following singular boundary value
problem





y(4)(t)− λ

t(1− t)

(
109y2 | sin y cos y2 | + y4

1 + y

+ 109(1− t)ty2| sin y|
) 1

3 = 0, 0 < t < 1,

y(0) = y(1) = y′(0) = y′(1) = 0.

(4.6)

Then the problem (4.6) has at least one positive solution.
It is obviously that a(t) = 1

t(1−t) is singular at t = 1 and t = 0. The
boundary value problem (4.6) describes the deflection of an elastic beam rigidly
fixed at both ends. Because of the singularity and the form of the problem
(4.6), it seems to be difficult that the problem is solved by using the results
obtained by [1, 4, 7, 10] as well as their extension. Now we study the problem
(4.6) by making use of Theorem 3.2.

Let a(t) = 1
t(1−t) ,

F (t, y) = λ
(
109y2 | sin y cos y2 | + y4

1 + y
+ 109(1− t)ty3

) 1
3
, 0 < t < 1.

It is easy to see that the condition (A) holds.
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Now the Green’s function of homogeneous linear problem y(4)(t) = 0, 0 ≤
t ≤ 1, y(0) = y(1) = y′(0) = y′(1) = 0, that is

H(t, s) =





1
6
t2(1− s)2[(s− t) + 2(1− t)s], if 0 ≤ t ≤ s ≤ 1,

1
6
s2(1− t)2[(t− s) + 2(1− s)t], if 0 ≤ s ≤ t ≤ 1.

By taking subinterval [a, b] = [14 , 3
4 ], then we have

lim sup
y→0+

max
t∈[0,1]

F (t, y)
y

= 103 3

√
5
4
λ, (4.7)

lim inf
y→+∞ min

t∈[ 1
8
, 7
8
]

F (t, y)
y

= λ. (4.8)

Now we compute Q and q in Theorem 3.2. Since

ϕ1(t) =
∫ 1

0
H(t, s)a(s)ds

=
∫ t

0

1
6
s2(1− t)2[(t− s) + 2(1− s)t]

1
s(1− s)

ds

+
∫ 1

t

1
6
t2(1− s)2[(s− t) + 2(1− t)s]

1
s(1− s)

ds

≤ 1
6
(1− t)2

∫ t

0
s2((1− s) + 2(1− s))

1
s(1− s)

ds

+
1
2
t2

∫ 1

t
(1− s)2(s + 2s)

1
s(1− s)

ds

=
1
2
(1− t)2

∫ t

0
sds +

1
2
t2

∫ 1

t
3(1− s)ds

=
1
2
(1− t)2t2 +

3
4
(1− t)2t2 =

5
4
(1− t)2t2.

So

max
t∈[0,1]

ϕ1(t) ≤ 5
4

max
t∈[0,1]

[(1− t)2t2] =
5
4
× 1

16
=

5
64

,

and thus

Q =
(

max
t∈[0,1]

ϕ1(t)
)−1

≥ 12.8. (4.9)
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On the other hand,

φ1(t) =
∫ 1

0
H(t, s)a(s)ds

=
∫ t

0

1
6
s2(1− t)2[(t− s) + 2(1− s)t]

1
s(1− s)

ds

+
∫ 1

t

1
6
t2(1− s)2[(s− t) + 2(1− t)s]

1
s(1− s)

ds

=
1
6
(1− t)2[t3 − t2

2
+ t + (1− t) ln(1− t)]

+
1
6
t2[

1
2
(1− t)2(3− 2t) + t(1− t) + t ln t].

It is easy to verify that

min
t∈[ 1

8
, 7
8
]
φ1(t) = φ1(

7
8
) = φ1(

1
8
) = 0.002643

Thus

q =

(
min

t∈[ 1
8
, 7
8
]
φ1(t)

)−1

= 378.358. (4.10)

It follows from (A1) in Theorem 3.1 and (4.7) − (4.10) that the problem
(4.6) has at least one positive solution if

λ < 12.8, 103 3

√
5
4
λ > 378.358,

that is
0.351236 < λ < 11.8825.

Then we obtain that the approximate subinterval about λ is (0.351236, 12.8).
In particular, we can see that the problem (4.6) has at least one positive
solution, for λ = 1.
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