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Abstract. If p(z) =
∑n

i=1 aiz
i is a polynomial of degree n, then from the theorem of

Maximum modulus max|z|=1 |p(Rz)| ≤ Rn max|z|=1 |p(z)|. Dewan and Hans [Anal. Theory

and Appl., 26 (2010), 1–6] obtained the bound of polynomial
∣∣p(Rz) + β

(
R+1
2

)n
p(z)

∣∣, for

some β with |β| ≤ 1 and R ≥ 1, in more general form of principle of maximum modulus

of polynomial. The aim of this paper is to generalized the bound of above polynomial and

some related inequalities by extending them to the class of polynomial having restricted

zeros except s−fold zeros at the origin, where 0 ≤ s < n.

1. Introduction

Let p(z) =
∑n

ν=0 aνz
ν be a polynomial of degree n and denoted as Pn.

According to well known result on the derivative of polynomial

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)
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Inequality (1.1) known as Bernstein’s Inequality [6] and a simple deduction
from Maximum modulus principle [6]

max
|z|=R>1

|p(z)| ≤ Rn max
|z|=1

|p(z)|. (1.2)

The inequalities (1.1) and (1.2) are best possible and equality holds for the
polynomial having all its zeros at the origin.

It was shown by Ankeny and Rivlin [1] that if p ∈ Pn and p(z) 6= 0 in
|z| < 1, then

max
|z|=R>1

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)|. (1.3)

Aziz and Dawood [3] obtained a refinement of inequality (1.3) by considering
m = min|z|=1 |p(z)| and show that, if p ∈ Pn and p(z) 6= 0 in |z| < 1, then
R ≥ 1

max
|z|=R

|p(z)| ≤
(
Rn + 1

2

)
max
|z|=1

|p(z)| −
(
Rn − 1

2

)
min
|z|=1
|p(z)|. (1.4)

The inequality (1.3) and (1.4) are best possible and equality holds for p(z) =
αzn + β with |α| = |β| = 1.

Inequality (1.3) was generalized by Jain [5], who proved that if p(z) is
polynomial of degree n and p(z) 6= 0 in |z| < 1, then for any |β| ≤ 1, R ≥ 1
and |z| = 1∣∣∣∣p(Rz) + β

(
Rn + 1

2

)
p(z)

∣∣∣∣
≤ 1

2

{∣∣∣∣Rn + β

(
Rn + 1

2

)∣∣∣∣+

∣∣∣∣1 + β

(
Rn + 1

2

)∣∣∣∣}max
|z|=1

|p(z)|. (1.5)

As a generalization of inequality (1.4) and a refinement of inequality (1.5),
Dewan and Hans [4] proved that for p(z) 6= 0 in |z| < 1 and for any |β| ≤ 1∣∣∣∣p(Rz) + β

(
Rn + 1

2

)
p(z)

∣∣∣∣
≤ 1

2

[{∣∣∣∣Rn + β

(
Rn + 1

2

)∣∣∣∣+

∣∣∣∣1 + β

(
Rn + 1

2

)∣∣∣∣}max
|z|=1

|p(z)|

−
{∣∣∣∣Rn + β

(
Rn + 1

2

)∣∣∣∣− ∣∣∣∣1 + β

(
Rn + 1

2

)∣∣∣∣}min
|z|=1
|p(z)|

]
, (1.6)

for |z| = 1 and R ≥ 1. The result is best possible and equality holds for
p(z) = αzn + β with |α| = |β|.



Inequality describing the growth of polynomials 89

Aziz and Dawood [3] obtained following result concerning the minimum
modulus of polynomial p(z) analogous to (1.2) on |z| = 1 by applying a re-
striction on p ∈ Pn. Basically, they proved that if p ∈ Pn and having all its
zeros in |z| ≤ 1, then

min
|z|=R≥1

|p(z)| ≥ Rn min
|z|=1
|p(z)|. (1.7)

Dewan and Hans [4] generalized above inequality (1.7) due to Aziz and Dawood
[3] and proved that if p ∈ Pn and having all its zeros in |z| ≤ 1, then for any
|β| ≤ 1, R ≥ 1 and |z| = 1∣∣∣∣p(Rz) + β

(
Rn + 1

2

)
p(z)

∣∣∣∣ ≥ ∣∣∣∣Rn + β

(
Rn + 1

2

)∣∣∣∣min
|z|=1
|p(z)|. (1.8)

The inequality (1.7) and (1.8) are best possible and equality holds for p(z) =
aeiαzn, a > 0.

In this paper, we obtained an extension of inequality (1.6) and (1.8) for the
class of polynomial p(z) of degree n, defined as

p(z) = zs

{
n−s∑
ν=0

aνz
ν

}
, 0 ≤ s < n

with s number of zeros at origin and we denote it as P sn. By taking s = 0, we
get p ∈ Pn, i.e., p(z) =

∑n
ν=0 aνz

ν and some other generalizations.

2. Lemmas

For the proof of results, we require following Lemmas. The following first
lemma is due to Aziz [2].

Lemma 2.1. If p ∈ Pn and p(z) 6= 0, |z| < k, k ≥ 1, then for 0 ≤ r ≤ 1,

max
|z|=r
|p(z)| ≥

(
r + k

1 + k

)n
max
|z|=1

|p(z)|. (2.1)

Lemma 2.2. If p ∈ P sn and having n − s zeros in |z| ≤ k, k ≤ 1, then for
R ≥ 1

max
|z|=R

|p(z)| ≥ Rs
(
R+ k

1 + k

)n−s
max
|z|=1

|p(z)|. (2.2)

Proof. Let p(z) = zs
{∑n−s

ν=0 aνz
ν
}
, 0 ≤ s < n is a nth degree polynomial and

having all its zeros in |z| ≤ k, k ≤ 1 with an s−fold zeros at origin 0 ≤ s < n.
Define

q(z) = znp(1/z).
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Clearly q(z) is of degree n−s with q(0) 6= 0 and having no zeros in |z| < (1/k),
then from Lemma 2.1 for 0 ≤ r ≤ 1

max
|z|=r
|q(z)| ≥

(
r + 1/k

1 + 1/k

)n−s
max
|z|=1

|q(z)|. (2.3)

Equivalently

rn max
|z|=1/r

|p(z)| ≥
(
r + 1/k

1 + 1/k

)n−s
max
|z|=1

|q(z)|. (2.4)

By taking 1/r = R, we have

max
|z|=R

|p(z)| ≥ Rs
(
R+ k

1 + k

)n−s
max
|z|=1

|p(z)|,

where R ≥ 1. This prove Lemma. �

Lemma 2.3. Let f ∈ P sn and having n − s zeros |z| ≤ k, k ≤ 1 and p(z)
is a polynomial of degree no exceeding that f(z) with s−fold zeros at origin
0 ≤ s < n. If |p(z)| ≤ |f(z)| for |z| = k, then for any β with |β| ≤ 1 and for
|z| = 1∣∣∣∣∣f(Rz) + βRs

(
R+ k

1 + k

)n−s
f(z)

∣∣∣∣∣ ≥
∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ , (2.5)

where R ≥ 1.

Proof. Since |p(z)| ≤ |f(z)| for |z| = k, therefore from Rouche’s Theorem
f(z) + αp(z) has all its zeros in |z| ≤ k, k ≤ 1 with s−fold zeros at origin,
for some α with |α| < 1. Applying Lemma 2.2 for f(z) + αp(z), we have for
|z| = 1 and R ≥ 1

|f(Rz) + αp(Rz)| ≥ Rs
(
R+ k

1 + k

)n−s
|f(z) + αp(z)|. (2.6)

For any β with |β| ≤ 1, we get for |z| = 1,

{f(Rz) + αp(Rz)}+ βRs
(
R+ k

1 + k

)n−s
{f(z) + αp(z)} 6= 0,

i.e.,

S(z) =

{
f(Rz) + βRs

(
R+ k

1 + k

)n−s
f(z)

}

+α

{
p(Rz) + βRs

(
R+ k

1 + k

)n−s
p(z)

}
6= 0 (2.7)
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on |z| = k. For appropriate choice of the argument of α, we have for |z| = 1,∣∣∣∣∣f(Rz) + βRs
(
R+ k

1 + k

)n−s
f(z)

∣∣∣∣∣ ≥
∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ . (2.8)

If the above inequality (2.8) is not true for some, then there exist a point
z = z0 with |z0| = 1 such that for R ≥ 1∣∣∣∣∣f(Rz0)+βRs

(
R+ k

1 + k

)n−s
f(z0)

∣∣∣∣∣ <
∣∣∣∣∣p(Rz0)+βRs

(
R+ k

1 + k

)n−s
p(z0)

∣∣∣∣∣ . (2.9)

By taking α as

α = −
f(Rz0) + βRs

(
R+k
1+k

)n−s
f(z0)

p(Rz0) + βRs
(
R+k
1+k

)n−s
p(z0)

. (2.10)

Therefore, from inequality (2.9), |α| < 1. With this choice of α, we have
S(z0) = 0 for |z0| = 1 from (2.7). But this contradict (2.7), i.e., S(z) 6= 0 for
all |z| = 1. On taking |α| → 1 in inequality (2.8), we have for |z| = 1∣∣∣∣∣f(Rz)+βRs

(
R+ k

1 + k

)n−s
f(z)

∣∣∣∣∣ ≥
∣∣∣∣∣p(Rz)+βRs

(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ . (2.11)

Which complete the proof of Lemma. �

If we take f(z) = (z/k)nM,M = max|z|=k |p(z)|, then following result has
been obtained.

Lemma 2.4. If p ∈ P sn, then for any β with |β| ≤ 1 and |z| = 1∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ ≤ k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣M, (2.12)

where R ≥ 1 and M = max|z|=k |p(z)|.

Lemma 2.5. If p ∈ P sn, then for any β with |β| ≤ 1 and |z| = 1∣∣∣∣∣p(Rz)+βRs
(
R+k

1+k

)n−s
p(z)

∣∣∣∣∣+

∣∣∣∣∣q(Rz)+βRs
(
R+k

1+k

)n−s
q(z)

∣∣∣∣∣
≤

{
k−n

∣∣∣∣∣Rn+βRs
(
R+k

1+k

)n−s∣∣∣∣∣+k−s
∣∣∣∣∣Rs+βRs

(
R+k

1+k

)n−s∣∣∣∣∣
}
M, (2.13)

where q(z) = (z/k)n+sp(k2/z) and M = max|z|=k |p(z)|.
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Proof. Let p ∈ P sn. For α with |α| > 1, it follows from Rouches Theorem that
the polynomial S(z) = p(z)− α(z/k)sM does not vanish in |z| < k, then the
polynomial

T (z) = (z/k)n+sS(k2/z) = (z/k)n+sp(k2/z)− α(z/k)nM

= q(z)− α(z/k)nM

of degree n and has all its zeros in |z| ≤ k except s−fold zeros at origin, for
|z| = 1, |S(z)| = T (z). Therefore, using Lemma 2.2, for T (z)∣∣∣∣∣S(Rz)+βRs

(
R+k

1+k

)n−s
S(z)

∣∣∣∣∣ ≤
∣∣∣∣∣T (Rz)+βRs

(
R+k

1+k

)n−s
T (z)

∣∣∣∣∣ (2.14)

for any β with |β| ≤ 1 and |z| = 1. This implies that for |z| = 1,∣∣∣∣∣(p(Rz)− αRszsM) + βRs
(
R+ k

1 + k

)n−s
(p(z)− α(z/k)sM)

∣∣∣∣∣
≤

∣∣∣∣∣(q(Rz)− αRn(z/k)nM) + βRs
(
R+ k

1 + k

)n−s
(q(z)− α(z/k)nM)

∣∣∣∣∣ ,
i.e., for |z| = 1 and R ≥ 1∣∣∣∣∣p(Rz)+βRs

(
R+k

1+k

)n−s

p(z)

∣∣∣∣∣−|α|k−s

∣∣∣∣∣Rs+βRs

(
R+k

1+k

)n−s
∣∣∣∣∣M

≤

∣∣∣∣∣
{
q(Rz)+βRs

(
R+k

1+k

)n−s
}
−αk−n

{
Rn+βRs

(
R+k

1+k

)n−s
}
znM

∣∣∣∣∣ . (2.15)

Since |p(z)| = |q(z)| for |z| = k, thereforeM = max|z|=k |p(z)| = max|z|=k |q(z)|
and q(z) has s−fold zeros at origin. Now, applying Lemma 2.4 for q(z), we
have for |z| = k and R ≥ 1∣∣∣∣∣q(Rz) + βRs

(
R+ k

1 + k

)n−s
q(z)

∣∣∣∣∣ ≤ k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣max
|z|=k

|q(z)|,

i.e., for |α| > 1∣∣∣∣∣q(Rz) + βRs
(
R+ k

1 + k

)n−s
q(z)

∣∣∣∣∣ ≤ |α|k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣M.

Therefore inequality (2.15) implies that∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s

p(z)

∣∣∣∣∣− |α|k−s

∣∣∣∣∣Rs + βRs

(
R+ k

1 + k

)n−s
∣∣∣∣∣M

≤ |α|k−n

∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s
∣∣∣∣∣M −

∣∣∣∣∣q(Rz) + βRs

(
R+ k

1 + k

)n−s
∣∣∣∣∣ . (2.16)
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By making |α| → 1, the Lemma follows. �

We have following subsequent result by taking β = 0 in Lemma 2.5 and
Lemma 2.4 respectively.

Corollary 2.6. If p ∈ P sn, then for R ≥ 1 and |z| = 1

|p(Rz)|+ |q(Rz)| ≤
(
Rn

kn
+
Rs

ks

)
max
|z|=k

|p(z)|, (2.17)

where q(z) = (z/k)n+sp(k2/z) and k ≤ 1.

Corollary 2.7. If p ∈ Pn, then for R ≥ 1 and k ≤ 1

kn max
|z|=1

|p(Rz)| ≤ Rn max
|z|=k

|p(z)|. (2.18)

3. Main results

Theorem 3.1. If p ∈ P sn and having n− s zeros in |z| ≤ k, k ≤ 1 and R ≥ 1,
then for β with |β| ≤ 1 and |z| = 1∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ ≥ k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣m, (3.1)

where m = min|z|=k |p(z)|. The result is best possible and equality holds for

p(z) = α (z/k)n , α ≥ 0.

Proof. Let p ∈ P sn, having n−s zeros in |z| ≤ k, k ≤ 1 and m = min|z|=k |p(z)|.
If p(z) has a zeros on |z| = k, then result is obvious. So, we suppose all the
zeros of p(z) in |z| < k with s−fold zeros at origin, 0 ≤ s < n, i.e., m > 0.
Therefore, it follows from Rouche’s Theorem, for any α with |α| < 1, the
polynomial p(z) − α(z/k)nm of degree n has all its zeros in |z| ≤ k with
s−fold zeros at origin. Applying Lemma 2.2, for p(z) − α(z/k)nm, we have
for R ≥ 1 and |z| = k

|p(Rz)− αRn(z/k)nm| ≥ Rs
(
R+ k

1 + k

)n−s
|p(z)− α(z/k)nm|. (3.2)

Therefore, for any β with |β| ≤ 1, it is obvious that

(p(Rz)− αRn(z/k)nm) + βRs
(
R+ k

1 + k

)n−s
(p(z)− α(z/k)nm) 6= 0
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on |z| = k, i.e.,{
p(Rz)+βRs

(
R+k

1+k

)n−s

p(z)

}
−α

{
Rn+βRs

(
R+k

1+k

)n−s
}

(z/k)nm 6= 0. (3.3)

As |α| < 1, we have for |β| < 1 and R ≥ 1∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ > k−n

∣∣∣∣∣Rn + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣m, (3.4)

for |z| = 1. For |β| = 1, the result follow by continuity of zeros. This completes
the proof of Theorem. �

Remark 3.2. We have an inequality due to Zireh, Khojastehnejhad and Mu-
sawi [7] by putting s = 0 in inequality (3.1) and if we take k = 1 and s = 0 in
Theorem 3.1, inequality (3.1) reduces to inequality (1.8).

As for k = 1, we also have following extension of inequality (1.8) due to
Dewan and Hans [4] on the class of p(z) = zs

{∑n−s
ν=0 aνz

ν
}
, 0 ≤ s < n with

an s−fold zeros at origin.

Corollary 3.3. If p ∈ P sn and having n − s zeros in |z| ≤ 1, then for β with
|β| ≤ 1, R ≥ 1 and |z| = 1∣∣∣∣∣p(Rz) + βRs

(
R+ 1

2

)n−s
p(z)

∣∣∣∣∣ ≥
∣∣∣∣∣Rn + βRs

(
R+ 1

2

)n−s∣∣∣∣∣m, (3.5)

where m = min|z|=1 |p(z)|. The result is best possible and equality holds for
p(z) = αzn, α ≥ 0.

From Lemma 2.2 and with suitable choice of β, we get for |z| = 1 and R ≥ 1∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ = |p(Rz)| − |β|Rs
(
R+ k

1 + k

)n−s
|p(z)|. (3.6)

Combining above inequality (3.6) with inequality (3.1), we obtained for
|z| = 1 and m = min|z|=k |p(z)|,

|p(Rz)| − |β|Rs
(
R+ k

1 + k

)n−s
|p(z)|

=

∣∣∣∣∣p(Rz)|+ βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣ ≥ k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣m
≥ k−n

{
Rn − |β|Rs

(
R+ k

1 + k

)n−s}
m (3.7)
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and by making β → 1, we deduced the following result.

Corollary 3.4. If p ∈ P sn and having n− s zeros in |z| ≤ k, k ≤ 1, then for β
with |β| ≤ 1 and R ≥ 1

max
|z|=R

|p(z)| ≥ Rs
(
R+ k

1 + k

)n−s
M + k−n

{
Rn −Rs

(
R+ k

1 + k

)n−s}
m, (3.8)

where M = max|z|=1 |p(z)| and m = min|z|=k |p(z)|. The equality in above

holds for p(z) = α (z/k)n , α ≥ 0.

We next prove following extension of inequality (1.6) by using above Theo-
rem 3.1.

Theorem 3.5. If p ∈ P sn and having n− s zeros in |z| ≥ k, k ≤ 1, then for β
with |β| ≤ 1 and R ≥ 1∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣
≤ 1

2

[{
k−n

∣∣∣∣∣Rn + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣+ k−s

∣∣∣∣∣Rs + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣
}
M

−

{
k−n

∣∣∣∣∣Rn+βRs
(
R+k

1+k

)n−s∣∣∣∣∣−k−s
∣∣∣∣∣Rs+βRs

(
R+k

1+k

)n−s∣∣∣∣∣
}
m

]
, (3.9)

for |z| = 1, where M = max|z|=k |p(z)| and m = min|z|=k |p(z)|. The result is

sharp and equality holds for p(z) = (z/k)n + (z/k)s , 0 ≤ s < n.

Proof. Since p ∈ P sn and having n − s zeros in |z| ≥ k, therefore if m =
min|z|=k |p(z)|, then m ≤ |p(z)| for |z| < k. So, for λ with |λ| < 1, it follows
from Rouche’s Theorem that the polynomial F (z) = p(z)− λ(z/k)sm has no
zeros in |z| < k except s−fold zeros at origin, 0 ≤ s < n. Define

G(z) = (z/k)n+sF (k2/z) = (z/k)n+sp(k2/z)− λ(z/k)nm

= q(z)− λ(z/k)nm

such as |F (z)| = G(z) for |z| = 1. It is clear that all the zeros of G(z) lies in
|z| ≤ k with s−fold zeros at origin, therefore from Lemma 2.3 , we have for
|β| ≤ 1, R ≥ 1 and |z| = 1∣∣∣∣∣F (Rz)+βRs

(
R+k

1+k

)n−s
F (z)

∣∣∣∣∣ ≤
∣∣∣∣∣G(Rz)+βRs

(
R+k

1+k

)n−s
G(z)

∣∣∣∣∣ , (3.10)
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which implies that,∣∣∣∣∣
{
p(Rz) + βRs

(
R+ k

1 + k

)n−s

p(z)

}
− λ

{
Rs + βRs

(
R+ k

1 + k

)n−s
}

(z/k)sm

∣∣∣∣∣
≤

∣∣∣∣∣
{
q(Rz)+βRs

(
R+k

1+k

)n−s

q(z)

}
−λ

{
Rn+βRs

(
R+k

1+k

)n−s
}

(z/k)nm

∣∣∣∣∣ , (3.11)

i.e., for |z| = 1,∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s

p(z)

∣∣∣∣∣− |λ|k−s

∣∣∣∣∣Rs + βRs

(
R+ k

1 + k

)n−s
∣∣∣∣∣m

≤

∣∣∣∣∣
{
q(Rz)+βRs

(
R+k

1+k

)n−s

q(z)

}
−λ

{
Rn+βRs

(
R+k

1+k

)n−s
}
znm

∣∣∣∣∣ . (3.12)

Since all the zeros of q(z) lies in |z| ≤ k, from Theorem 3.1, therefore we have,
for |β| ≤ 1 and |z| = 1∣∣∣∣∣q(Rz) + βRs

(
R+ k

1 + k

)n−s
q(z)

∣∣∣∣∣ ≥ k−n
∣∣∣∣∣Rn + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣m,
where R ≥ 1 and m = min|z|=k |p(z)|.

Now, by suitable choice of argument of λ, we have from inequality (3.12)
for |z| = 1∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s

p(z)

∣∣∣∣∣− |λ|k−s

∣∣∣∣∣Rs + βRs

(
R+ k

1 + k

)n−s
∣∣∣∣∣m

≤

∣∣∣∣∣q(Rz)+βRs

(
R+k

1+k

)n−s

q(z)

∣∣∣∣∣−|λ|k−n

∣∣∣∣Rn+βRs

(
R+k

1+k

)
n−s

∣∣∣∣m. (3.13)

and taking |λ| → 1∣∣∣∣∣p(Rz) + βRs

(
R+ k

1 + k

)n−s

p(z)

∣∣∣∣∣
≤

∣∣∣∣∣q(Rz) + βRs

(
R+ k

1 + k

)n−s

q(z)

∣∣∣∣∣
−
{
k−n

∣∣∣∣Rn+βRs

(
R+k

1+k

)
n−s

∣∣∣∣−k−s

∣∣∣∣Rs+βRs

(
R+k

1+k

)
n−s

∣∣∣∣}m. (3.14)
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Equivalently,

2

∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣
≤

∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣+

∣∣∣∣∣q(Rz) + βRs
(
R+ k

1 + k

)n−s
q(z)

∣∣∣∣∣
−

{
k−n

∣∣∣∣∣Rn + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣− k−s
∣∣∣∣∣Rs + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣
}
m.

(3.15)

Using Lemma 2.5 in last inequality, we get for |β| ≤ 1 and |z| = 1

2

∣∣∣∣∣p(Rz) + βRs
(
R+ k

1 + k

)n−s
p(z)

∣∣∣∣∣
≤

{
k−n

∣∣∣∣∣Rn + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣+ k−s

∣∣∣∣∣Rs + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣
}
M

−

{
k−n

∣∣∣∣∣Rn + βRs
(
R+ k

1 + k

)n−s∣∣∣∣∣− k−s
∣∣∣∣∣Rs + βRs

(
R+ k

1 + k

)n−s∣∣∣∣∣
}
m,

(3.16)

which follows the inequality (3.9). �

We obtained another generalization of inequality (1.6) by taking k = 1 in
above Theorem 3.5, which is as follows.

Corollary 3.6. If p ∈ P sn and having n − s zeros in |z| ≥ 1, then for β with
|β| ≤ 1 and R ≥ 1∣∣∣∣∣p(Rz) + βRs

(
R+ 1

2

)n−s
p(z)

∣∣∣∣∣
≤ 1

2

[{∣∣∣∣∣Rn + βRs
(
R+ 1

2

)n−s∣∣∣∣∣+

∣∣∣∣∣Rs + βRs
(
R+ 1

2

)n−s∣∣∣∣∣
}
M

−

{∣∣∣∣∣Rn + βRs
(
R+ 1

2

)n−s∣∣∣∣∣−
∣∣∣∣∣Rs + βRs

(
R+ k

2

)n−s∣∣∣∣∣
}
m

]
,

(3.17)

for |z| = 1, where M = max|z|=k |p(z)| and m = min|z|=1 |p(z)|. The result is

sharp and equality holds for p(z) = p(z) = (z/k)n + (z/k)s , 0 ≤ s < n.
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Remark 3.7. By taking s = 0 in inequality (3.9), we get an inequality due
to Zireh, Khojastehnejhad and Musawi [7] and on putting s = 0 in Corollary
3.6, we have inequality (1.6) due to Dewan and Hans [4].

If we take β = 0 in above Theorem 3.5, we have following generalization of
inequality (1.4) due to Aziz and Dawood [3].

Corollary 3.8. If p ∈ P sn and having n − s zeros in |z| < k, k ≤ 1, then for
R ≥ 1

max
|z|=1

|p(Rz)| ≤ 1

2

[(
Rn

kn
+
Rs

ks

)
M −

(
Rn

kn
− Rs

ks

)
m

]
, (3.18)

where M = max|z|=1 |p(z)| and m = min|z|=k |p(z)|. Equality in above holds
for p(z) = zs + zn, 0 ≤ s ≤ n.
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