Nonlinear Functional Analysis and Applications

Vol. 22, No. 1 (2017), pp. 121-135 -
ISSN: 1229-1595(print), 2466-0973(online) Pe /y/.' V4
http://nfaa.kyungnam.ac.kr/journal-nfaa KUPFSsS

Copyright © 2017 Kyungnam University Press

NOTE ON A VOLTERRA-FREDHOLM TYPE
INTEGRODIFFERENTIAL EQUATION
IN TWO VARIABLES

Huynh Thi Hoang Dung!? and Le Thi Phuong Ngoc?

1Depar‘cmen‘c of Mathematics, University of Architecture of Ho Chi Minh City
196 Pasteur Str., Dist. 3, Ho Chi Minh City, Vietnam
2Depa]rtment of Mathematics and Computer Science, University of Natural Sciences
Vietnam National University Ho Chi Minh City

227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam
e-mail: dunghth1980@Qgmail.com

3University of Khanh Hoa
01 Nguyen Chanh Str., Nha Trang City, Vietnam
e-mail: ngoc1966kh@gmail.com

Abstract. In this note, we prove the existence and the compactness of the set of solutions
for a Volterra-Fredholm type integrodifferential equation in two variables. The main tool is
the fixed point theorem of Krasnosel’skii together with a necessary and sufficient condition
for subsets to be relatively compact in an appropriate Banach space. An illustrative example

is given.

1. INTRODUCTION

In this paper, we consider the following Volterra-Fredholm type integrodif-
ferential equation in two variables

u(@,y) = g(z,y) + [y J§ H(w,y,s,t,u(s,t), Dru(s,t))dsdt
+ fOl fOl K(l" Y, S, t, u(sv t), Dlu(S, t))det7

where (2,y) € Q=[0,1] x[0,1]]and g: Q - R; H : AxR? 5 R; K : Q x Q x
R? — R are given functions with A = {(z,y,5,t) € A xQ:0<s <z <1,

(1.1)
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0 <t <y<1}. Denote by Diju = %, the partial derivative of a function
u(z,y) defined on €2, with respect to the first variable.

Nonlinear integral and integrodifferential equations of various types appear
in the mathematical description of the applications in other fields of science,
such as economics, mechanics and physics, see Corduneanu ([3], Ch.6) and the
references given therein. Solving such equations and studing the existence,
uniqueness and some basic properties of solutions have been extensively inter-
ested by many authors. In general, the main results have been obtained via
the fundamental methods in which the fixed point theorems are often applied.

In [8], Lungu and Rus established some results relative to existence, unique-
ness, integral inequalities and data dependence for solutions of the following
functional Volterra-Fredholm integral equation in two variables with deviating
argument in a Banach space by Picard operators technique

u(:c, y) = g(a:, Y, h(u)(x7 y))
T [y )
—I—/O /0 K (x,y,s,t,u(s,t))dsdt, (x,y)ec R%.

In [12], based on the applications of the well known Banach fixed point
theorem coupled with Bielecki type norm and a certain integral inequality with
explicit estimate, B. G. Pachpatte proved uniqueness and other properties of
solutions of the following Fredholm type integrodifferential equation

x(t) =g(t) + ff f(t,s,z(s),2'(s), - , 2" Y(s))ds, t € [a,b], (1.3)

where z, g, f are real valued functions and n > 2 is an integer. With the same
methods, B. G. Pachpatte studied the existence, uniqueness and some basic
properties of solutions of the Fredholm type integral equation in two variables
as follows, see [13],

(1.2)

a b
u(x,y):f($,y)+/0 /0g(m,y,s,t,u(s,t),Dlu(s,t),Dgu(s,t))dtds (1.4)

and those of certain Volterra integral and integrodifferential equations in two
variables, see [14].

In [1], Aghajani et al. proved some results on the existence, uniqueness
and estimation of solutions of the following Fredholm type integro-differential
equations in two variables

b pd
u(a:,y):f(a;,y)—i-/ / g (x,y,s,t,u(s,t), Diu(s,t), Dou(s,t)) dtds, (1.5)

by using Perov’s fixed point theorem, where f, g are given real valued func-
tions, w is the unknown function to be found and D;u(z1,z2) = %(:Ul,xg),
fori=1, 2.
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In [7], Lauran established sufficient conditions for the existence of solutions
of the integral equation of Volterra type by using the concepts of nonexpansive
operators, contraction principles and the Schaefer’s fixed point theorem.

In [9]-[11], using tools of functional analysis and a fixed point theorem of
Krasnosel’skii type, solvability and asymptotically stable of nonlinear func-
tional integral equations in one variable or two variables, or N variables have
been investigated.

Recently in [4], the authors have proved the existence of a solution in the
function space X1 = {u € C(;R) : Dyu € C(;R)} for the following nonlin-
ear integral equation of type Fredholm in two dimensional of the form

u(z,y) = g(x,y) + fol fol K(z,y,s,t,u(s,t), Dyu(s,t))dsdt, (1.6)

where (z,y) € Q=[0,1] x[0,1] and g: @ — R; K : Q x Q x R? — R are given
functions. On the other hand, the uniqueness of a solution or the compactness
of set of solutions have been also deduced. The main tool is the Banach fixed
point theorem or Schauder fixed point theorem together with the definitions of
suitable Banach spaces and appropriate conditions for subsets to be relatively
compact in these spaces.

Continuing the above mentioned works, because of mathematical context,
we show that the fixed point theorem of Krasnosel’skii can be applied in order
to obtain the existence result and the compactness of the set of solutions
for (1.1). This is also a development based on the paper [4]. Our paper is
organized as follows. Section 2 is devoted to the presentation of preliminaries,
it consists of the definition of Banach space (X1, ||| y,)

X1 ={ueC(ER): Djuec C(,;R)},
lullx, = sup (Ju(z,y)[+[Diu(z,y)]), v € X (1.7)
(z,y)€Q
and a necessary and sufficient condition for relatively compactness of subsets
in this space. The existence of solutions for (1.1) will be presented in section
3. On the other hand, the compactness of the solutions set is also proved.
Finally, we give an illustrated example.

2. PRELIMINARIES

Put Q = [0,1] x [0, 1], we denote A = {(x,y,5,t) €A xQ:0<s<x <1,
0 <t<y<1}. Denote by Diju = %, the partial derivative of a function
u(z,y) defined on  with respect to the first variable. By X = C(Q;R), we
denote the space of all continuous functions from €2 into R equipped with the
standard norm:

lulx = sup fu(z,p)], ueX.
T eyen (2.1)
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Put

X1i={ue X=C(%:R): Diue X}. (2.2)
It is clear that C1(€;R) C X; C X and that they do not coincide. We have
the following lemmas, see [4].

Lemma 2.1. X; is a Banach space with the norm defined by
lullx, = llullx +[[Drullx, we X (2.3)

Lemma 2.2. Let FF C Xq. Then F is relatively compact in X1 if and only if
the following conditions are satisfied

(i) IM >0: lully, <M, VueF;
(i)
Ve > 0,30 > 0:V(z,y),(Z,9) € Qlz—Z|+|ly—gy| <o

— Slelgﬂu(x“y) - U(«i’7§)| + |D1u(;1;7y) — D1U(£,§)|) <e. (24)

For convenient, we recall the following theorem that will be used in Section
3. It is well known that, two main results of fixed point theory are Schauder’s
and Banach’s theorems (also called contraction mapping principle), Krasnosel-
skii combined them into the following result.

Theorem 2.3. ([2], [5]) Let M be a nonempty bounded closed convex subset
of a Banach space (X, ||-||). Suppose that U : M — X is a contraction and
C: M — X is a completely continuous operator such that U(x) + C(y) € M,
Va,y € M. Then U+ C has a fized point in M.

3. THE EXISTENCE AND COMPACTNESS OF THE SOLUTIONS SET

In order to obtain the main result, in this section, we make the following
assumptions.

(Al) ge Xy

(A2) H € C(AxR?%R), %—IZ € C(A xR?% R) such that there exist nonegative
functions hg, hy : A — R with the following properties:
(i) |H(z,y, s, t,u,v) — H(x,y,s,t,u,v)|
< ho(z,y, 5,t) [lu —u| + [v =],
(ii) ‘%—f(ﬂ:,y,s,t,u,v) — %—g(x,y,s,t,a, 17)‘
< hl(l‘, Y, S?t) Hu - Z_L| + |U - Q_}H )
for all (x,y,s,t) € A, u,v,u,0 € R;
(A3) K € C(2xQxR%R) such that 25 € C(Qx QxR% R) and there exist
nonegative functions kg, k1 : 2 x Q — R with the following properties:
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(i) K (z,y,s,t,u,0)] < ko(z,y,s,t) (1L+ |ul + [v]),

H) ‘%(az,y,s,t,u,vﬂ < kl(m,y,s,t) (1 + ’U‘ + ‘U’)7
for all (z,y,s,t) € QA x Q, u,v €R;
(A4) p1+ P2 < 1, where

)
1= sup / ho(z,y, z,t)dt

(z,y)EN

+ sup / / (ho(z,y,s,t) + hi(z,y,s,t)) dsdt,
z,y)€Q

B2 = sup / / ko(z,y,s,t)dsdt
(z,y)eN

+ sup //klfny,st)dsdt
(z,y)eQ

Theorem 3.1. Let the functions g, H, K in (1.1) satisfy the assumptions
(A1)-(A4). Then the equation (1.1) has a solution in Xi. Furthermore, the set
of solutions of this equation is compact in Xi.

Proof. We rewrite (1.1) as follows

u(z,y) = (Au)(z,y), (z,y) €, (3.1)
where
(Au)(z, :U):(UU)(%:U) +(Cu)(z,y),
(Uu)( y)=g(z,y) —&—fol Jy H(z,y, s, t,u(s,t), Diu(s, t))dsdt, (3.2)
(Cu)( :fo fo (x,y, s, t,u(s,t), Diu(s,t))dsdt, (z,y) € Q, u € X;.

A simple verification shows that Uu, Cu € X1, V u € Xy. For M > 0,
considering a closed ball in X; as follows

By = {ue Xy : |ully, <M}. (3.3)

We can show that there exists M > 0 such that
(i) Uu+ Cv € Byy, for every u, v € By,

and the operators U, C satisfies the conditions as below,
(ii) U : By — X is a contraction map,

(iii) C': By — X is continuous,

(iv) F = C(Byy) is relatively compact in Xj.
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We verify (i). Indeed, for every u € Byy, for all (z,y) € Q, we have

[(Uu)(z,y)|

< llgllx +fo Sy |H @,y 5.t u(s,t), Diu(s, 1)) dsdt

< Hg”X—i-fO Jo | H (2, y,s,t,u(s, t), Dyu(s,t)) — H(x,y,s,t,0,0)| dsdt
+ 5 JYIH (2, y,5,t,0 O)]dsdt

< lgllx + J§ S5 ho(z,y, 5,t) (1 + [u(s, )| + | Dru(s, t)]) dsdt
+ 5 SO H (%, y, 5,t,0,0)| dsdt

<llgllx + Jo J3 Po(,y,5,1) (1+ [|ull x, ) dsdt
+ Jo Jo |H (2, y,5,,0,0)| dsdt,

SO

(W), v)] )
<lglix +@+M) sup [ [ ho(z,y,s,t)dsdt
(z.y)€Q (3.4)

+ sup [y JJ |H(x,y,5,,0,0)| dsdt,
(z,y)eQ

it gives

1Uully < llgllx + 1+ M) sup [§[§ ho(@,y, s,t)dsdt

(2,y)€Q (35)
+ sup [y JY|H(x,y,5,t,0,0)| dsdt. :

(z,y)eR
On the other hand, we get

Dl(UU)(%y)
= Dyg(x,y) + foy H(z,y,z,t,u(x,t), Diu(x,t))dt
+ Y (2, y, s, t,u(s, ), Diu(s, t))dsdt
= Dig( :B,y )+ o [H (2, y, 2.t u(z, t), Dyu(e, t)—H(z,y,2,t,0,0)] dt (3.6)
+ [{ H(x y,m t,0,0)dt
+Jo )y [ (x,y,s,t,u(s,t), Dyu(s,t)) — (a: Y, s,t,0,0)] dsdt

+ Iy Dy%};] (x,y,s,t,0,0)dsdt.

Therefore
| D1(Au)(z, y)|
<||Dig|l x + foy |H(x,y, x,t,u(x,t), Diu(x,t)) — H(x,y,x,t,0,0)|dt
+ JJ 1 H (2 y,x t,0,0)|dt
+ Jy fO (x,y,s,t,u(s,t), Diu(s,t)) — (x v, s,t,0,0) ’dsdt
+ [y ST |9 my,stOO‘dsdt
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<|IDigllx + J§ ho(z,y, 2,t) (1 + |u(z,t)] + |Dru(z, t)]) dt
—l—foy|H(:z:,y,x,t,0,0)|dt
+fgc fé/ h1 (x,y,s,t) (1 + |u(s,t)| + [Diu(s,t)]) dsdt
+f0f0 :cy,stOO!dsdt

< ||Dygllx + (1-|—M Uo ho(z,y,x,t) dt—i—fox foy hi(z,y, s, t)dsdt] (3.7)
+ [V H (2, y,2,¢,0,0)| dt + [; [0 |22 (2,y,5,t,0,0)| dsdt

< ||D1gllx+(1+M) sup UO ho( x,y,x,t dt—i—fo fo hi( x,y,s,t)dsdt]

(z,y)EN
+ sup [[Y1H(z,y,2,4,0,0)dt + [ [ |22 (2,y,5,t,0,0)| dsdt] .
(z,y)eR
This yields
[D1(Uu)| x i
< | Digll x+(1+M) sup [[{ ho(x,y,a:,t)dt+fo I ha(,y, s, t)dsdt]
(z.9)€Q (3.8)
+ sup [fJ [H(z,y,2,t,0,0)dt + [ [ |92 (2, y,5,t,0,0)| dsdt] .
(z,y)€Q
It follows that
1Uull, < llgllx, + @i+ (1+ M) B, (3.9)
where
a1 = sup fox foy |H(z,y,s,t,0,0)| dsdt
(z,y)€Q
+sup [fJ|H(z,y,2,6,0,0) dt+ [ [ |9 (2,y, 5,t,0,0)| dsdt]
- (z,y)€Q (3.10)
B1 = sup fo fo ho(z,y, s,t)dsdt '
(z,y)€Q
+ sup [y ho(z,y,z, t)dt + [y [ ha(2,y, s, t)dsdt] .
(z,y)eQ

On the other hand, for every v € By, for all (z,y) € 0, we obtain

(C0)(z,y)] < Jy fo 1K (2,9, 5,t,0(s,t), Div(s, t))] dsdt
< fol fol ko(z,y,s,t) (1 + |v(s,t)| + |Div(s, t)|) dsdt

< Jo Jo ol yos,t) (1+ |vlly, ) dsat (3.1)
< (1+ M) sup fol fol ko(z,y, s, t)dsdt.
(z,y)eR
Therefore
ICullx < (14 M) sup [ [y o kolw,y, s, t)dsdt| . (3.12)

(z,y)EN
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Similarly,
|D1(Cv)(z,y)| < fo fo (2,9, s, t,u(s, t), Dyu(s,t))| dsdt
< (1+ M) sup fo fO ky(z,y,s,t)dsdt, (3.13)
z,Y)€E
hence
11
IDi(Co)llx < (1 +M) sup [o fy ki(x,y,s,t)dsdt. (3.14)

z,Y)EQN
This yields
1Cvl x,
<(1+M) l sup fo fo ko(z,y, s,t)dsdt + sup fo fo ki(z,y,s,t)dsdt| (3.15)
(z,y)€Q (z,y)€Q
< (1+M)pBo.
It follows from (3.9) and (3.15) that
10+ Cvllx, <|[Uullx, +[IC]|, <lgllx, +@1+1+M) (B1 + B2) . (3.16)

Choosing M > |lglly, + a1+ (1+ M) (Bi+ B2) , de., M > —Hz—r

Then Uu + Cv € Byy, for all u,v € Byy.
We verify (ii). It is obviously that U : By — X1 is a contraction map, if we
show that -
[Uu— Ul y, <Billu—1aly,, Yu, a€ By. (3.17)

For every u, u € By, for all (z,y) € €, using (A2,i), (3.2) gives

[(Uu)(z,y) — (Uu)(z,y)|

< Jo Jo | H(z,y,s,t,u(s,t), Diu(s,t)) — H(x,y,s,t, (s, t), Dra(s, t))| dsdt

< fox foy ho(x,y, s,t) [|u(s,t) — a(s,t)| + |Diu(s,t) — Dyu(s,t)|] dsdt

< (( sup fgg fé’ ho(z,y, s,t)dsdt) lu—allx, -

z,y)EN

Thus

||UU - Ua”X < ( sup f0$ foy ho(ﬂfa?JvSat)det) ||u—a||X1 : (318)

(z,y)€Q
Similarly, by
Dl(UU)(xvy) - Dl(Uﬂ)(xay)
= [ [H(z,y, z,t,u(x,t),Diu(z, t)) —H(z,y, z, t,u(z, t),Di1u(x, t))] dt
—i—f fo[ (z,y,s,t,u(s,t), Diu(s,t))

t), D1
—8—(33 y, s, t,a(s,t), Diu(s, t))] dsdt,

(3.19)
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using (A2,ii), we get
D1 (U, ) — Di(U) ()|
< [J |1 H(z, y,x tyu(z,t),Diu(x,t))—H(x,y, z, t,u(z, t),Diu(x, t))| dt
+f([)1f0 (z,y,8,t,u(s,t), Diu(s,t))
(x y,s t,u(s,t), Dia(s,t)) ‘dsdt
< ¥ ho (z,y,z,t) [[u(z, t) — @z, t)| + |Diu(z, t) — Dia(z,t)|] dt (3.20)
+ Jo J3 ha(z,y,s.t) [|u(s, t)—u(s, t)|+|Diu(s, t) — Dyu(s, t)|] dsdt
S ho(m,y, @, t)dt + [ [ hi(z,y, s, t)dsdt] |u — | x,

( su)pQ [fé/ ho(x,y, z,t)dt + fom fé’ hi(z,y, s,t)dsdt] ||lu — 11||X1 .
T,y)€E
Then
IDy(Uw) - Dy
< sup on ho(x,y, z,t)dt + [ fdy hl(x,y,s,t)dsdt] Ju—aly, - (3.21)

(z,y)e
This yields

<
<

[Uu—Ually, < B llu—dll, (3.22)
where
Br= sup [y J§ ho(z,y, s, t)dsdt
(res v (3.23)
+ sup [f) ho(x,y,z, )dt + [3° 3 ha(e,y, s,t)dsdt] . -
(z,y)eQ

We verify (iii). Let {um} C B, [|um —ullx, — 0 as m — oo, we have to
prove that

|Cup, — Cul|y — 0 and [|D1(Cup,) — D1(Cu)||y =0 as m — oco. (3.24)
Note that

[(Cuim) (@, 9) = (Cu)w, )| < fy Jy 1 (9,5, um(5,1), Ditim(s,1) 3 95
—K(z,y,s,t,u(s,t), Dyu(s,t))|dsdt.

Let give € > 0. Since the function K is uniformly continuous on 2 x Q x
[—M, M| x [—M, M], there exists § > 0 such that
V(x,y,s,t) € AxQ, Yu,v,u,0€[-M,M],

7 ; o (3.26)
\u—u\ + ”U _U‘ <d= ’K($7y787t7uav) _K(mayv‘g?tauav)‘ <e.
By [|um — ul|y — 0 and ||Diuy, — Dyul|y — 0, there is mg € N such that
VmeN, m>mg = ||um —ulx + || Dium — Diul|x < 6. (3.27)
It follows that for all m € N,

mz>my — |K(xay787t,um(3at)7Dlum S, ))
|

t
—K(z,y,s,t,u(s,t), Diu(s,t))| < e (3.28)
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for all (z,y,s,t) € Q x Q, so
|(Cum)(z,y) — (Cu)(z,y)| <e, V(x,y) € QxQ, ¥Ym>my, (3.29)

it means that
|Cum — Cullx <&, Vm >my, (3.30)

i.e., ||Cty — Cul|y — 0 as m — co. By the same way, we get
1D1(Cum) — D1(Cu)llx — 0
as m — oo.

We verify (iv). We use Lemma 2.2. The condition (2.2)(i) holds because of
F = C(Bys) C By It remains to show (2.2)(ii). We have

(Cu)(z,y) — (Cu)(Z,9)
= Jo Sy K (2,, 5,1, u(s,t), Dyu(s, 1)) (3.31)
—K(Z,9,s,t,u(s,t), Diu(s, t))] dsdt,

for all (z,v), (z,7) € Q, u € By.
Let € > 0. By the fact that K is uniformly continuous on Q x Q x [—M, M| x
[—M, M], there exists 6; > 0 such that V(z,v), (z,7) € Q,

|z — 2|+ |y —y| <&

3.32
:>|K(:E,y,s,t,ﬂ,l7)—K(:E,gj,s,t,ﬂ,z_}ﬂ<%, ( )

for all (s,1,a,) € © x [~M, M]. Then, for all (z,y), (z,5) €
|l —Z| + |y — gl < 0 = |K(z,y,s,t,u(s,t), Diu(s,t)) (333)

—K(z,9,s,t,u(s,t), Diu(s,t))| < 5,
for all (s,t,u) € Q x By, so, V(z,y), (Z,y) € Q, if |z —Z| + |y — y| < d1 then

1 r1
S fo fo |K(l‘,y,S,t,’LL(S,t),Dl’M(S,t)) (334)
—K(.T,’Ij,S,t,U(S,t),Dlu(S,t))‘ dsdt
<5, VYuécBy.

It is similar to %—I;, we also have, there exists dy > 0 such that for all (z,y),

(@,9) €,

|z — 2|+ [y —y| <o
= |D1(Cu)(z,y) — D1(Cu)(z,9)| < 5, Yu€ By.

Consequently, by choosing § = min{d1, d2}, we obtain that V(z,y), (Z,7) € £,
|z —2|+[y—yl<d
= [(Cu)(z,y)— (Cu)(Z,9)|+|D1(Cu)(z,y) — D1 (Cu)(z,9)| <e,

for all u € Bys. Lemma 2.2 implies that FF = C(Byy) is relatively compact
in X;. Applying the fixed point theorem of Krasnosel’skii (Theorem 2.3),

(3.35)

(3.36)
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the existence is proved. Furthermore, based on the structure of the set of all
fixed points of the operator U + C, we will obtain the structure of the set of
solutions. For the details of such structure, it can be found in, for example,
Deimling ([5], p.212) or Krasnosel’skii and Zabreiko ([6], p.315). Here, we will
consider the set X of solutions defined as follows

Y={ueBy:u=Uu+Cul={ue By:u=(-U)"1Cu},

we show that it is compact in X;.

From the compactness of the operator C' : By; — Bj; and the continuity
of (I —=U)"t: By — By and ¥ = (I — U)~1C(X), we only prove that ¥ is
closed. Let {un} C ¥ and |luy —ully, — 0. The continuity of (I — U)~'C
leads to

Hu — (I - U)*lCuHX1
<l —umllx, + [Jum — (I =U)"'Cul|
= [lu —umlx, + H(I —~U) 'Cup, — (I — U)*lc’uHX1 — 0,

sou= (I —U)"'Cu € X. Theorem 3.1 is proved. O

Let us illustrate the result obtained here by means of an example.

Example 3.2. Consider (1.1), with the functions g, H, K as follows

H(z,y,s, t,u,v) = h(z,y) [45”t”sin<%)+s"*t”cos(%)} )
K(x7 y’ 87t7 u’ U) = h(x) y)K1(87 t7 u’ U)’ (3'37)

2oL o+1 T
glw,y) = uo(w,y) — (FEH + 2 ) (o y),

where
o40 |u| U 2/3
K1(57t7u7v):‘9 t ug (8,t) W’
" BT 3.38
s [Dluo(s,t) t ’Dlu@(s’t)‘ ' ( )

U()(fl?,y) =e" +am ‘y - a"YQ ) h(l’,y) = x’?l ‘y - d’:yz )
and o, v, @, 2, 71, &, Y2, 1 are positive constants satisfying

0<a<l, 0<yn<1<y,
0<a<l, 0<A <1<,

e[ (ks + o85) + (14 7) (e + i) 070

x max{a”, (1 —a)”} < 1.

(3.39)

Note that ug(z,y) = €® + 27 |y — a|", Dyug(z,y) = €* + 12" Ly — al??,
so ug € X and ug(z,y) > 1, Dyug(z,y) > 1.
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We can prove that (A1) — (A4) hold. It is clear to see that (A1) holds, since
ug, h € Xq.
(A2) holds, by the following. First, H € C(A x R%;R). On the other hand,

0. 0 0 040 &}
£ € X and % = 8—Z(aj,y) [43 17 sin (ﬁét)) + 577 cos (#}’M)ﬂ , hence
0 .
91 € C(A x R%R).
Next, it is obviously that
|H(.%', Y, S, t: u, U) - H(xa Y, S, ta U, T))‘
< h(z,y) [43"#’ =il 4 gypy 2mlv—7l }

2ug(st) Druo(s,t) (3.40)
<27h(z,y) (s7t7 + s77) [Jlu — u| + |v — D]
= ho(@,y, 8, 1) [lu — a| + [v = 9],
where
ho(z,y,s,t) = 2wh(x,y) (s7t7 4+ s7t7). (3.41)
Similarly
‘%—z(:c,y,s,t,u,v) — %—f(m,y,s,t,ﬁ,@)‘ (3.42)
< ha(@,y,s,t) [lu —al + v — ], '
in which
hi(x,y,s,t) =271 |%(3}, y)‘ (s7t7 + s7t7). (3.43)

Assumption (A3) also holds, by the following. First, K € C(QxQxR%R).
On the other hand, g—;‘ e X, %—f = %(x,y)Kl(s,t,u,v), SO %—Ix( € C(Qx
Q) x R%;R). Next, applying the inequality

r<1l+2z% Vzx>0, Vg>1, (3.44)
we have
2|y 2|v]
T Ry Vs R
< 2(s7t7 + M) [1 + |u] + |v]] .
It follows that
|K($,y,s,t, U’v)| = h(a:,y) |K1(57t7u’ U)| (3 46)
< ko(z,y,s,t) [1 + |u| + [v]], '
with
ko(z,y,s,t) = 2h(x,y) (s7t7 + s7t7). (3.47)
Similarly
|G (2, y, 8,8, u,0) | < K,y s,8) (L4 [ul + o] (3.48)
in which

kl ([L‘, Y, S, t) =2 |%(IL’, y)’ (Sata + S’Yt’Y) : (34'9)
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And (A4) holds, by the following. We have

Iy J3 (ho( y,s t) + hi(x,y, s, t)) dsdt
=2 (h(z,y) + | L(z,y)|) Jo J& (s7t7 + s7¢7) dsdt

cr+1 o+1 ~v+1,v+1
=27 ( L ),

(1+0)2 + (1+7)?2 > (h(.f y + ‘aw x y)
fé,l ho(x,y,a:,t)dt
— 27rh(x, y) foy (q;ffto + x’YtV) dt = 27 (z?’_’::l + 96“*1@_1:;1> h(x,y), (3‘50)
fol fol ko(z,y,s,t)dsdt

1l ouo

=2h(z,y) [y [y (s7t7 + s7t7) dsdt = 2 (ﬁ + ﬁ) h(z,y),
fol fol ki (z, y,s,f)cisdt
=2[3 @) o Jo (30t0+37ﬂ)d3dt:2(ﬁ+ﬁ> (@, y)] -

Now, we need the following lemma, it is not difficult to prove, so we omit.

Lemma 3.3. Let positive constants o, 1,72 satisfy 0 < a < 1,0 <1 <1<
v1. Then

0<aM|y—a|”? <max{a?, (1 —«a)”}, V(z,y)€Q,

3.51
0<am !y —a|? <max{a”,(1—-a)”?}, V(z,y) e (3:51)
Now, using Lemma 3.3, we get
0 < h(z,y) =2 |y — a|” < max{a™, (1 -a)"}; (3.52)
0< %(z,y) ="ty — 6 < 5 max{a®, (1-a)7}, '
for all (z,y) € 2. Thus
Jo J& (ho(z,y,5,t) + ha(z,y, s,t)) dsdt
< 2r ((W + ) (U ) max{a®, (1 - a)7),
Jo ho(z,y, x,t)dt = 2xh(z,y) [ (x7t7 + 27t7) dt
< 2 (1%0 + ﬁ) max{a"2, (1 — &)},
11 3.53
Iy Jo Fo(w,y, 5. 0)dsdt =2 (kg + gz ) Ao, y) (3:53)

<2 <(1+U)2 + (IH)Q) max{a”, (1 — &)™},

Jo Jo kg, s, t)dsdt = 2 ((1+a)2 + T ) ACHN]
<2 (e + o) Trmax{, (1- @)
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It follows that

/81 = Ssup foy hO(l‘a Y, x, t)dt + sup foﬂf f(? (hO(l‘a Y, S, t)+hl (CL‘, Y, s, t)) dsdt
(z,y)eQ (z,y)€Q

<om[( s + o) + (b + ) (4 30)] max(a™, (1= @),
Bo = sup fol fol ko(x,y, s, t)dsdt + sup fol fol ki(x,y, s, t)dsdt

(z,y)€Q (z,9)€EN
<2 (e + e ) (1 ) max{a™, (1 - @)},
Therefore
B1+ B2

1
1 1 1 1 ~
<2m |:(1+0' + l+’y> +~(1 + ;) <(1+o‘)2 + (1+’y)2> (1 +'71)]
x max{a’?, (1 —a)”} < 1.

We conclude Theorem 3.1 holds in this case. Furthermore, it is not difficult
to verify that ug € X is exactly a solution of (1.1).
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