Nonlinear Functional Analysis and Applications Vol. 22, No. 1 (2017), pp. 147-169

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2017 Kyungnam University Press

AN N-ORDER ITERATIVE SCHEME FOR A NONLINEAR CARRIER WAVE EQUATION IN THE ANNULAR WITH ROBIN-DIRICHLET CONDITIONS

Le Thi Phuong Ngoc¹, Le Huu Ky Son^{2,4}, Tran Minh Thuyet³ and Nguyen Thanh Long⁴

¹University of Khanh Hoa 01 Nguyen Chanh Str., Nha Trang City, Vietnam e-mail: ngoc1966@gmail.com

²Department of Fundamental Sciences, Ho Chi Minh City University of Food Industry 140 Le Trong Tan Str., Tan Phu Dist., Ho Chi Minh City, Vietnam e-mail: kyson85@gmail.com

³Department of Mathematics, University of Economics of HoChiMinh City 59C Nguyen Dinh Chieu Str., Dist. 3, HoChiMinh City, Vietnam e-mail: tmthuyet@ueh.edu.vn

⁴Department of Mathematics and Computer Science, University of Natural Sciences Vietnam National University Ho Chi Minh City 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam e-mail: longnt2@gmail.com

Abstract. This paper is devoted to the study of a nonlinear Carrier wave equation in the annular associated with Robin-Dirichlet conditions. Using a high order iterative scheme, the existence of a local unique weak solution is proved. Moreover, the sequence established here converges to a unique weak solution at a rate of order N with $N \ge 2$.

1. Introduction

In this paper, we consider the following nonlinear Carrier wave equation in the annular

$$u_{tt} - \mu(\|u(t)\|_0^2)(u_{xx} + \frac{1}{x}u_x) = f(x, t, u), \quad \rho < x < 1, \quad 0 < t < T,$$
 (1.1)

⁰Received April 16, 2016. Revised July 21, 2016.

 $^{^{0}2010}$ Mathematics Subject Classification: 35C20, 35L05, 35L20, 35L70, 35Q80.

 $^{^{0}}$ Keywords: Faedo-Galerkin method, nonlinear wave equation, convergence of order N.

associated with Robin-Dirichlet conditions

$$u(\rho, t) = 0, \ u_x(1, t) + \zeta u(1, t) = 0$$
 (1.2)

and initial conditions

$$u(x,0) = \tilde{u}_0(x), u_t(x,0) = \tilde{u}_1(x),$$
 (1.3)

where μ , f, \tilde{u}_0 , \tilde{u}_1 are given functions and ρ , ζ are given constants with $0 < \rho < 1$. In (1.1), the nonlinear term $\mu(\|u(t)\|_0^2)$ depends on the integral $\|u(t)\|_0^2 = \int_{\rho}^1 x u^2(x,t) dx$.

(1.1) herein is the bidimensional nonlinear wave equation describing nonlinear vibrations of the annular membrane $\Omega_1 = \{(x,y) : \rho^2 < x^2 + y^2 < 1\}$. In the vibration processing, the area of the annular membrane and the tension at various points change in time. The condition on the boundary $\Gamma_1 = \{(x,y) : x^2 + y^2 = 1\}$, that is $u_x(1,t) + \zeta u(1,t) = 0$, describes elastic constraints where ζ the constant has a mechanical signification. And with the boundary conditions on $\Gamma_\rho = \{(x,y) : x^2 + y^2 = \rho^2\}$ requiring $u(\rho,t) = 0$, the annular membrane is fixed.

In [1], Carrier established the equation which models vibrations of an elastic string when changes in tension are not small

$$\rho u_{tt} - \left(1 + \frac{EA}{LT_0} \int_0^L u^2(y, t) dy\right) u_{xx} = 0, \tag{1.5}$$

where u(x,t) is the x-derivative of the deformation, T_0 is the tension in the rest position, E is the Young modulus, A is the cross-section of a string, L is the length of a string and ρ is the density of a material. Clearly, if properties of a material vary with x and t, then there is a hyperbolic equation of the type (Larkin [5])

$$u_{tt} - B\left(x, t, \int_0^1 u^2(y, t) \, dy\right) u_{xx} = 0.$$
 (1.6)

The Kirchhoff-Carrier equations of the form (1.1) received much attention. We refer the reader to, e.g., Cavalcanti et al. [2], Ebihara, Medeiros and Miranda [4], Larkin [5], Medeiros [10], Miranda et al. [11], for many interesting results and further references.

Motivated by results for nonlinear wave equations in [8], [9], where recurrent sequences converge at a rate of order 1 or 2, we will construct a high order iterative scheme to obtain a convergent sequence at a rate of order N to a local weak solution of (1.1)–(1.3). This scheme is established based on a high order method for solving operator equation F(x) = 0, it also has been applied in [12], [13], [17] and some other works. It is well known that, Newton's method and its variants are used to solve nonlinear operator equations, see [14] and references therein. In case $\lim_{n\to\infty} u_n = u$, one speaks of convergence of order

N if $|u_{n+1} - u| \leq C|u_n - u|^N$ for some C > 0 and all large N. In the special cases N = 1 with C < 1 and N = 2 one also speaks of linear and quadratic convergence, respectively, see [3]. Here we shall associate with (1.1) a recurrent sequence $\{u_m\}$ defined by

$$\frac{\partial^2 u_m}{\partial t^2} - \mu(\|u_m(t)\|_0^2) \left(\frac{\partial^2 u_m}{\partial x^2} + \frac{1}{x} \frac{\partial u_m}{\partial x}\right)
= \sum_{i=0}^{N-1} \frac{1}{i!} \frac{\partial^i f}{\partial u^i} (x, t, u_{m-1}) (u_m - u_{m-1})^i,$$
(1.7)

 $\rho < x < 1, 0 < t < T$ with u_m satisfying (1.2), (1.3) and $u_0 \equiv 0$. If $f \in C^N([\rho, 1] \times \mathbb{R}_+ \times \mathbb{R})$, we prove that the sequence $\{u_m\}$ converges at a rate of order N to a local weak solution of (1.1)–(1.3). We note more that, the result obtained here is local (in time T small enough), because T is chosen corresponding to the size of the initial data, see (3.40) in Section 3. In our proofs, the Faedo-Galerkin approximation method associated to a priori estimates, weak convergence, compactness techniques and a known fixed point theorem are used. Our results can be regarded as an extension and improvement of the corresponding results of [8], [9], [16].

2. Preliminaries

Put $\Omega=(\rho,1),\ Q_T=\Omega\times(0,T),\ T>0$. We will omit the definitions of the usual function spaces and denote them by the notations $L^p=L^p(\Omega),\ H^m=H^m\left(\Omega\right)$. The norm in L^2 is denoted by $\|\cdot\|$. We also denote by (\cdot,\cdot) the scalar product in L^2 . We denoted by $\|\cdot\|_X$ the norm of a Banach space X and by X' the dual space of X. We denote $L^p(0,T;X),\ 1\leq p\leq\infty$ the Banach space of real functions $u:(0,T)\to X$ measurable such that $\|u\|_{L^p(0,T;X)}<+\infty$, with

$$||u||_{L^{p}(0,T;X)} = \begin{cases} \left(\int_{0}^{T} ||u(t)||_{X}^{p} dt \right)^{1/p}, & \text{if } 1 \leq p < \infty, \\ ess \sup_{0 < t < T} ||u(t)||_{X}, & \text{if } p = \infty. \end{cases}$$

With $f \in C^k([\rho, 1] \times \mathbb{R}_+ \times \mathbb{R})$, f = f(x, t, y), we put $D_1 f = \frac{\partial f}{\partial x}$, $D_2 f = \frac{\partial f}{\partial t}$, $D_3 f = \frac{\partial f}{\partial y}$ and $D^{\alpha} f = D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3} f$, $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}_+^3$, $|\alpha| = \alpha_1 + \alpha_2 + \alpha_3 = k$, $D^{(0,0,0)} f = f$.

On H^1 , H^2 , we shall use the following norms

$$||v||_{H^1} = (||v||^2 + ||v_x||^2)^{\frac{1}{2}}$$
 (2.1)

and

$$||v||_{H^2} = (||v||^2 + ||v_x||^2 + ||v_{xx}||^2)^{\frac{1}{2}},$$
 (2.2)

respectively.

Note that L^2 , H^1 , H^2 are also the Hilbert spaces with respect to the corresponding scalar products

$$\langle u, v \rangle = \int_{\rho}^{1} x u(x) v(x) dx,$$

$$\langle u, v \rangle + \langle u_{x}, v_{x} \rangle, \ \langle u, v \rangle + \langle u_{x}, v_{x} \rangle + \langle u_{xx}, v_{xx} \rangle,$$
(2.3)

respectively. The norms in L^2 , H^1 and H^2 induced by the corresponding scalar products (2.3) are denoted by $\|\cdot\|_0$, $\|\cdot\|_1$ and $\|\cdot\|_2$, respectively.

We put

$$V = \{ v \in H^1 : v(\rho) = 0 \}. \tag{2.4}$$

Then V is a closed subspace of H^1 and on V two norms $||v||_{H^1}$ and $||v_x||$ are equivalent norms. V_1 is continuously and densely embedded in L^2 . Identifying L^2 with $(L^2)'$ (the dual of L^2), we have $V \hookrightarrow L^2 \hookrightarrow V'$. We remark that the notation $\langle \cdot, \cdot \rangle$ is also used for the pairing between V and V'.

We have the following lemmas.

Lemma 2.1. We have the following inequalities

- (i) $\sqrt{\rho} \|v\| \le \|v\|_0 \le \|v\|$, $\forall v \in L^2$,
- $\text{(ii)} \ \sqrt{\rho} \, \|v\|_{H^1} \leq \|v\|_1 \leq \|v\|_{H^1} \,, \quad \forall \, v \in H^1.$

Proof. From the following inequalities

$$\begin{split} &\rho \int_{\rho}^{1} v^{2}\left(x\right) dx \leq \int_{\rho}^{1} x v^{2}\left(x\right) dx \leq \int_{\rho}^{1} v^{2}\left(x\right) dx, \quad \text{for all } v \in L^{2}, \\ &\rho \int_{\rho}^{1} v_{x}^{2}\left(x\right) dx \leq \int_{\rho}^{1} x v_{x}^{2}\left(x\right) dx \leq \int_{\rho}^{1} v_{x}^{2}\left(x\right) dx, \quad \text{for all } v \in H^{1}, \end{split}$$

the Lemma 2.1 is proved.

Lemma 2.2. The embedding $V \hookrightarrow C^0(\overline{\Omega})$ is compact and for all $v \in V$, we have

- (i) $\|v\|_{C^0(\overline{\Omega})} \leq \sqrt{1-\rho} \|v_x\|$,
- (ii) $||v|| \le \frac{1-\rho}{\sqrt{2}} ||v_x||$,
- (iii) $||v||_0 \leq \frac{1-\rho}{\sqrt{2\rho}} ||v_x||_0$,
- (iv) $||v_x||_0^2 + v^2(1) \ge ||v||_0^2$,
- (v) $|v(1)| \le \sqrt{3} ||v||_1$.

Proof. The embedding $V \hookrightarrow H^1$ is continuous and the embedding $H^1 \hookrightarrow C^0(\overline{\Omega})$ is compact, so the embedding $V \hookrightarrow C^0(\overline{\Omega})$ is compact.

(i) For all $v \in V$ and $x \in [\rho, 1]$,

$$|v(x)| = \left| \int_{\rho}^{x} v_x(y) \, dy \right| \le \int_{\rho}^{1} |v_x(y)| \, dy \le \sqrt{1 - \rho} \, ||v_x|| \,.$$
 (2.5)

(ii) For all $v \in V$ and $x \in [\rho, 1]$,

$$v^{2}(x) = \left| \int_{\rho}^{x} v_{x}(y) \, dy \right|^{2} \le (x - \rho) \int_{\rho}^{x} v_{x}^{2}(y) \, dy \le (x - \rho) \|v_{x}\|^{2}. \tag{2.6}$$

Integrating over x from ρ to 1, we obtain

$$||v||^{2} = \int_{\rho}^{1} v^{2}(x) dx \le \int_{\rho}^{1} (x - \rho) ||v_{x}||^{2} dx = \frac{(1 - \rho)^{2}}{2} ||v_{x}||^{2}.$$
 (2.7)

(iii) For all $v \in V$,

$$||v||_{0} \le ||v|| \le \frac{1-\rho}{\sqrt{2}} ||v_{x}|| \le \frac{1-\rho}{\sqrt{2\rho}} ||v_{x}||_{0}.$$
 (2.8)

(iv) By using integration by part we have, for any $v \in V$,

$$||v||_{0}^{2} = \int_{\rho}^{1} x v^{2}(x) dx = \frac{1}{2} \left[x^{2} v^{2}(x) \right]_{\rho}^{1} - \int_{\rho}^{1} x^{2} v(x) v_{x}(x) dx,$$

$$\frac{1}{2} v^{2}(1) - \int_{\rho}^{1} x^{2} v(x) v_{x}(x) dx$$

$$\leq \frac{1}{2} v^{2}(1) + ||v||_{0} ||v_{x}||_{0} \leq \frac{1}{2} v^{2}(1) + \frac{1}{2} \left(||v||_{0}^{2} + ||v_{x}||_{0}^{2} \right),$$
(2.9)

which implies (iv).

(v) By $||v||_0^2 = \frac{1}{2}v^2(1) - \int_{\rho}^1 x^2 v(x) v_x(x) dx$, we have,

$$v^{2}(1) = 2 \|v\|_{0}^{2} + 2 \int_{\rho}^{1} x^{2} v(x) v_{x}(x) dx$$

$$\leq 2 \|v\|_{0}^{2} + 2 \|v\|_{0} \|v_{x}\|_{0} \leq 2 \|v\|_{0}^{2} + \|v\|_{0}^{2} + \|v_{x}\|_{0}^{2} \leq 3 \|v\|_{1}^{2},$$
(2.10)

it gives (v). The Lemma 2.2 is proved.

Remark 2.3. On L^2 , two norms $v \mapsto \|v\|$ and $v \mapsto \|v\|_0$ are equivalent. So are two norms $v \mapsto \|v\|_{H^1}$ and $v \mapsto \|v\|_1$ on H^1 , and five norms $v \mapsto \|v\|_{H^1}$, $v \mapsto \|v\|_1$, $v \mapsto \|v\|_1$, $v \mapsto \|v_x\|$, $v \mapsto \|v_x\|_0$ and $v \mapsto \sqrt{\|v_x\|_0^2 + v^2(1)}$ on V.

Now, we define the bilinear form

$$a(u,v) = \zeta u(1) v(1) + \int_{\rho}^{1} x u_x(x) v_x(x) dx \text{ for all } u, v \in V_1,$$
 (2.11)

where $\zeta \geq 0$ is a constant. We then have the following lemma.

Lemma 2.4. The symmetric bilinear form $a(\cdot, \cdot)$ defined by (2.11) is continuous on $V \times V$ and coercive on V, i.e.,

- (i) $|a(u,v)| \leq C_1 ||u||_1 ||v||_1$,
- (ii) $a(v,v) \ge C_0 ||v||_1^2$,

for all $u, v \in V$, where $C_0 = \frac{1}{2} \min\{1, \frac{2\rho}{(1-\rho)^2}\}$ and $C_1 = 1 + 3\zeta$.

Proof. (i) By $\sqrt{1-\rho} \|v_x\| \ge \|v\|_{C^0(\overline{\Omega})} \ge |v(1)|$ and $\sqrt{\rho} \|v_x\| \le \|v_x\|_0$ for all $v \in V$, we have

$$|a(u,v)| \le \zeta |u(1)| |v(1)| + \int_{\rho}^{1} |xu_x(x)v_x(x)| dx$$

$$\le 3\zeta ||u||_1 ||v||_1 + ||u_x||_0 ||v_x||_0 \le (3\zeta + 1) ||u||_1 ||v||_1.$$

(ii) By the inequality

$$||v_x||_0^2 \ge \frac{2\rho}{(1-\rho)^2} ||v||_0^2$$

we have

$$a(v,v) = \zeta v^{2}(1) + \int_{\rho}^{1} x v_{x}^{2}(x) dx = \zeta v^{2}(1) + \|v_{x}\|_{0}^{2}$$

$$\geq \|v_{x}\|_{0}^{2} = \frac{1}{2} \|v_{x}\|_{0}^{2} + \frac{1}{2} \|v_{x}\|_{0}^{2}$$

$$\geq \frac{1}{2} \|v_{x}\|_{0}^{2} + \frac{1}{2} \frac{2\rho}{(1-\rho)^{2}} \|v\|_{0}^{2} \geq \frac{1}{2} \min \left\{ 1, \frac{2\rho}{(1-\rho)^{2}} \right\} \|v\|_{1}^{2}.$$

The Lemma 2.4 is proved.

Lemma 2.5. There exists the Hilbert orthonormal base $\{w_j\}$ of the space L^2 consisting of eigenfunctions w_j corresponding to eigenvalues λ_j such that

(i)
$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_j \le \lambda_{j+1} \le \dots$$
, $\lim_{j \to +\infty} \lambda_j = +\infty$,
(ii) $a(w_j, v) = \lambda_j \langle w_j, v \rangle$ for all $v \in V$, $j = 1, 2, \dots$.

Furthermore, the sequence $\{w_j/\sqrt{\lambda_j}\}$ is also the Hilbert orthonormal base of V with respect to the scalar product $a(\cdot,\cdot)$.

On the other hand, we also have w_j satisfying the following boundary value problem

$$\begin{cases}
Aw_j \equiv -\left(w_{jxx} + \frac{1}{x}w_{jx}\right) = -\frac{1}{x}\frac{\partial}{\partial x}\left(xw_{jx}\right) = \lambda_j w_j, & \text{in } \Omega, \\
w_j\left(\rho\right) = w_{jx}(1) + \zeta w_j(1) = 0, & w_j \in C^{\infty}\left([\rho, 1]\right).
\end{cases}$$
(2.13)

Proof. The proof of Lemma 2.5 can be found in [[15], p.87, Theorem 7.7], with $H = L^2$ and $a(\cdot, \cdot)$ as defined by (2.11).

We also note that the operator $A:V\longrightarrow V'$ in (2.13) is uniquely defined by the Lax-Milgram's lemma, *i.e.*,

$$a(u,v) = \langle Au, v \rangle \text{ for all } u, v \in V.$$
 (2.14)

Lemma 2.6. On $V \cap H^2$, three norms

$$v \mapsto ||v||_{H^2}, \ v \mapsto ||v||_2 = \sqrt{||v||_0^2 + ||v_x||_0^2 + ||v_{xx}||_0^2}$$

and

$$v \mapsto \|v\|_{2*} = \sqrt{\|v_x\|_0^2 + \|Av\|_0^2}$$

are equivalent.

Proof. (i) It is easy to see that two norms

$$v \mapsto ||v||_{H^2}, \ v \mapsto ||v||_2 = \sqrt{||v||_0^2 + ||v_x||_0^2 + ||v_x||_0^2}$$

are equivalent on $V \cap H^2$, because of

$$\sqrt{\rho} \|v\|_{H^2} \le \|v\|_2 \le \|v\|_{H^2} \quad \text{for all} \ \ v \in H^2.$$
 (2.15)

(ii) For all $x \in [\rho, 1]$, and $v \in V \cap H^2$, we have

$$|x||Au(x)|^2 = x\frac{1}{r^2} \left[\frac{\partial}{\partial x}(xu_x)\right]^2 = xu_{xx}^2 + 2u_xu_{xx} + \frac{1}{r}u_x^2.$$
 (2.16)

(ii)-(a). We verify $\left\|u\right\|_2 \leq const \ \left\|u\right\|_{2*}.$ It follows from (2.16) that

$$xu_{xx}^{2} \le x |Au(x)|^{2} + 2|u_{x}u_{xx}| + \frac{1}{x}u_{x}^{2}.$$
 (2.17)

Hence

$$\begin{aligned} \|u_{xx}\|_{0}^{2} &\leq \|Au\|_{0}^{2} + \frac{2}{\rho} \|u_{x}\|_{0} \|u_{xx}\|_{0} + \frac{1}{\rho^{2}} \|u_{x}\|_{0}^{2} \\ &\leq \|Au\|_{0}^{2} + \frac{1}{\rho} \left(\frac{2}{\rho} \|u_{x}\|_{0}^{2} + \frac{\rho}{2} \|u_{xx}\|_{0}^{2}\right) + \frac{1}{\rho^{2}} \|u_{x}\|_{0}^{2} \\ &= \|Au\|_{0}^{2} + \frac{2}{\rho^{2}} \|u_{x}\|_{0}^{2} + \frac{1}{2} \|u_{xx}\|_{0}^{2} + \frac{1}{\rho^{2}} \|u_{x}\|_{0}^{2}. \end{aligned}$$

$$(2.18)$$

This implies that

$$||u_{xx}||_{0}^{2} \leq 2 ||Au||_{0}^{2} + \frac{6}{\rho^{2}} ||u_{x}||_{0}^{2} \leq 2 \left(1 + \frac{3}{\rho^{2}}\right) \left(||Au||_{0}^{2} + ||u_{x}||_{0}^{2}\right)$$

$$\leq 2 \left(1 + \frac{3}{\rho^{2}}\right) ||u||_{2*}^{2}.$$

$$(2.19)$$

By $||v||_0 \le \frac{1-\rho}{\sqrt{2\rho}} ||v_x||_0$, for all $v \in V$, we get

$$||u||_{2}^{2} = ||u||_{0}^{2} + ||u_{x}||_{0}^{2} + ||u_{xx}||_{0}^{2}$$

$$\leq \frac{(1-\rho)^{2}}{2\rho} ||u_{x}||_{0}^{2} + ||u_{x}||_{0}^{2} + ||u_{xx}||_{0}^{2}$$

$$= \left(1 + \frac{(1-\rho)^{2}}{2\rho}\right) ||u_{x}||_{0}^{2} + ||u_{xx}||_{0}^{2}$$

$$\leq \left(1 + \frac{(1-\rho)^{2}}{2\rho}\right) ||u||_{2*}^{2} + 2\left(1 + \frac{3}{\rho^{2}}\right) ||u||_{2*}^{2}$$

$$= \left(\frac{(1-\rho)^{2}}{2\rho} + 3 + \frac{6}{\rho^{2}}\right) ||u||_{2*}^{2}.$$
(2.20)

(ii)-(b). We verify $\|u\|_{2*} \leq const \ \|u\|_2 \,.$

It follows from (2.16) that

$$x |Au(x)|^2 = x \frac{1}{x^2} \left[\frac{\partial}{\partial x} (xu_x) \right]^2 = xu_{xx}^2 + 2u_x u_{xx} + \frac{1}{x} u_x^2.$$
 (2.21)

Hence

$$x |Au(x)|^2 \le xu_{xx}^2 + 2|u_xu_{xx}| + \frac{1}{x}u_x^2.$$
 (2.22)

Thus

$$||Au||_{0}^{2} \leq ||u_{xx}||_{0}^{2} + \frac{2}{\rho} ||u_{x}||_{0} ||u_{xx}||_{0} + \frac{1}{\rho^{2}} ||u_{x}||_{0}^{2}$$

$$\leq ||u_{xx}||_{0}^{2} + \frac{1}{\rho} \left(||u_{x}||_{0}^{2} + ||u_{xx}||_{0}^{2} \right) + \frac{1}{\rho^{2}} ||u_{x}||_{0}^{2}$$

$$= \left(1 + \frac{1}{\rho} \right) \left[||u_{xx}||_{0}^{2} + \frac{1}{\rho} ||u_{x}||_{0}^{2} \right]$$

$$\leq \left(1 + \frac{1}{\rho} \right) \frac{1}{\rho} \left[||u_{xx}||_{0}^{2} + ||u_{x}||_{0}^{2} \right] \leq \left(1 + \frac{1}{\rho} \right) \frac{1}{\rho} ||u||_{2}^{2}.$$

$$(2.23)$$

This implies

$$||u||_{2*}^{2} = ||u_{x}||_{0}^{2} + ||Au||_{0}^{2}$$

$$\leq ||u||_{2}^{2} + \left(1 + \frac{1}{\rho}\right) \frac{1}{\rho} ||u||_{2}^{2} = \left(1 + \frac{1}{\rho} + \frac{1}{\rho^{2}}\right) ||u||_{2}^{2}.$$
(2.24)

The Lemma 2.6 is proved.

3. A HIGH ORDER ITERATIVE SCHEME

First, we say that u is a weak solution of (1.1)–(1.3) if

$$u \in L^{\infty}(0, T; V \cap H^2), \ u_t \in L^{\infty}(0, T; V), \ u_{tt} \in L^{\infty}(0, T; L^2)$$
 (3.1)

and u satisfies the following variational equation

$$\langle u_{tt}(t), v \rangle + \mu \left(\|u(t)\|_0^2 \right) a(u(t), v) = \langle f(x, t, u), v \rangle, \qquad (3.2)$$

for all $v \in V$ and a.e., $t \in (0,T)$, together with the initial conditions

$$u(0) = \tilde{u}_0, \quad u_t(0) = \tilde{u}_1,$$
 (3.3)

where $a(\cdot, \cdot)$ is the symmetric bilinear form on V defined by (2.11).

Now, we make the following assumptions.

- (H_1) $\tilde{u}_0 \in V \cap H^2$, $\tilde{u}_1 \in V$;
- (H_2) $\mu \in C^1(\mathbb{R}_+)$, and there exist constants p > 1, $\mu_* > 0$, $\mu_1 > 0$, $\mu_2 > 0$ such that
 - (i) $0 < \mu_* \le \mu(z) \le \mu_1(1+z^p)$, for all $z \ge 0$,
 - (ii) $|\mu'(z)| \le \mu_2(1+z^{p-1})$, for all $z \ge 0$;
- (H_3) $f \in C^0([\rho,1] \times \mathbb{R}_+ \times \mathbb{R})$ such that $f(\rho,t,0) = 0, \ \forall \ t \geq 0$ and

 - (i) $D_3^i f \in C^0([\rho, 1] \times \mathbb{R}_+ \times \mathbb{R}), \quad 1 \le i \le N,$ (ii) $D_1 D_3^i f \in C^0([\rho, 1] \times \mathbb{R}_+ \times \mathbb{R}), \quad 0 \le i \le N 1.$

Fix $T^* > 0$. For each M > 0 given, we set the constants $\tilde{K}_M(\mu)$, $\bar{K}_M(f)$ as follows

$$\begin{cases} \tilde{K}_{M}\left(\mu\right) = \sup_{0 \leq z \leq M^{2}} \left(\mu(z) + |\mu'(z)|\right), \\ \bar{K}_{M}(f) = \sum_{i=0}^{N} \left\|D_{3}^{i}f\right\|_{C^{0}(A_{*}(M))} + \sum_{i=1}^{N-1} \left\|D_{1}D_{3}^{i}f\right\|_{C^{0}(A_{*}(M))}, \\ \left\|f\right\|_{C^{0}(A_{*}(M))} = \sup\{|f(x,t,y)| : (x,t,y) \in A_{*}\left(M\right)\}, \end{cases}$$
 where $A_{*}\left(M\right) = \left\{(x,t,y) \in [\rho,1] \times [0,T^{*}] \times \mathbb{R} : |y| \leq \sqrt{\frac{1-\rho}{\rho}}M\right\}.$ For each $M > 0$ and $T \in (0,T^{*}]$, we put

M>0 and $T\in(0,T^*]$, we put

$$W(M,T) = \{ u \in L^{\infty} (0,T; V \cap H^{2}) : u_{t} \in L^{\infty} (0,T; V), u_{tt} \in L^{2} (Q_{T}), \\ \|u\|_{L^{\infty}(0,T;V \cap H^{2})} \leq M, \|u_{t}\|_{L^{\infty}(0,T;V)} \leq M, \|u_{tt}\|_{L^{2}(Q_{T})} \leq M \}, \\ W_{1}(M,T) = \{ u \in W(M,T) : u_{tt} \in L^{\infty} (0,T;L^{2}) \}.$$

Now, we establish the following recurrent sequence $\{u_m\}$. The first term is chosen as $u_0 \equiv 0$, suppose that

$$u_{m-1} \in W_1(M,T),$$
 (3.4)

we associate (3.2) with the following problem.

Find $u_m \in W_1(M,T)$ $(m \ge 1)$ satisfying the linear variational problem

$$\begin{cases}
\langle \ddot{u}_{m}(t), v \rangle + \bar{\mu}_{m}(t) \, a(u_{m}(t), v) = \langle \bar{F}_{m}(t), v \rangle, \, \forall \, v \in V, \\
u_{m}(0) = \tilde{u}_{0}, \, \dot{u}_{m}(0) = \tilde{u}_{1},
\end{cases}$$
(3.5)

where

$$\bar{\mu}_m(t) = \mu \left(\|u_m(t)\|_0^2 \right),
\bar{F}_m(x,t) = \sum_{i=0}^{N-1} \frac{1}{i!} D_3^i f(x,t,u_{m-1}) (u_m - u_{m-1})^i.$$
(3.6)

Then we have the following theorem.

Theorem 3.1. Let (H_1) - (H_3) hold. Then there exist a constant M>0 depending on \tilde{u}_0 , \tilde{u}_1 , μ , ζ , ρ and T > 0 depending on \tilde{u}_0 , \tilde{u}_1 , μ , f, ζ , ρ such that, for $u_0 \equiv 0$, there exists a recurrent sequence $\{u_m\} \subset W_1(M,T)$ defined by (3.5) and (3.6).

Proof. Step 1. Approximating solutions. Consider the basis $\{w_i\}$ for V as in Lemma 2.5. Put

$$u_m^{(k)}(t) = \sum_{j=1}^k c_{mj}^{(k)}(t)w_j, \tag{3.7}$$

where the coefficients $c_{mj}^{(k)}$ satisfy the system of nonlinear differential equations

$$\begin{cases}
\left\langle \ddot{u}_{m}^{(k)}(t), w_{j} \right\rangle + \mu_{m}^{(k)}(t) \, a(u_{m}^{(k)}(t), w_{j}) = \left\langle F_{m}^{(k)}(t), w_{j} \right\rangle, \ j = 1, \cdots, k, \\
u_{m}^{(k)}(0) = u_{0k}, \ \dot{u}_{m}^{(k)}(0) = u_{1k},
\end{cases} (3.8)$$

in which

$$\begin{cases}
 u_{0k} = \sum_{j=1}^{k} \alpha_j^{(k)} w_j \longrightarrow \tilde{u}_0 & \text{strongly } V \cap H^2, \\
 u_{1k} = \sum_{j=1}^{k} \beta_j^{(k)} w_j \longrightarrow \tilde{u}_1 & \text{strongly } V,
\end{cases}$$
(3.9)

and

$$\begin{cases}
\mu_m^{(k)}(t) = \mu \left(\left\| u_m^{(k)}(t) \right\|_0^2 \right), \\
F_m^{(k)}(x,t) = \sum_{i=0}^{N-1} \frac{1}{i!} D_3^i f(x,t,u_{m-1}) (u_m^{(k)} - u_{m-1})^i \\
= \sum_{j=0}^{N-1} A_j(x,t,u_{m-1}) (u_m^{(k)})^j,
\end{cases}$$
(3.10)

with

$$A_j(x,t,u_{m-1}) = \sum_{i=j}^{N-1} \frac{(-1)^{i-j}}{j!(i-j)!} D_3^i f(x,t,u_{m-1}) u_{m-1}^{i-j}.$$
 (3.11)

The system (3.8), (3.9) can be written in the form

$$\begin{cases}
\ddot{c}_{mj}^{(k)}(t) + \lambda_j \mu_m^{(k)}(t) c_{mj}^{(k)}(t) = F_{mj}^{(k)}(t), & 1 \le j \le k, \\
c_{mj}^{(k)}(0) = \alpha_j^{(k)}, & \dot{c}_{mj}^{(k)}(0) = \beta_j^{(k)},
\end{cases}$$
(3.12)

where

$$F_{mj}^{(k)}(t) = \left\langle F_m^{(k)}(t), w_j \right\rangle, \ 1 \le j \le k.$$
 (3.13)

It is obviously that the system (3.13) is equivalent to the system of intergal equations

$$c_{mj}^{(k)}(t) = \alpha_j^{(k)} + \beta_j^{(k)} t - \lambda_j \int_0^t d\tau \int_0^\tau \mu_m^{(k)}(s) c_{mj}^{(k)}(s) ds + \int_0^t d\tau \int_0^\tau F_{mj}^{(k)}(s) ds, \quad 1 \le j \le k.$$
(3.14)

Note that by (3.4), it is not difficult to prove that the system (3.14) has a unique solution $c_{mj}^{(k)}(t)$, $1 \leq j \leq k$ on interval $[0, T_m^{(k)}] \subset [0, T]$, so let us omit the details.

The following estimates allow one to take $T_m^{(k)} = T$ independent of m and k.

Step 2. A priori estimates. We put

$$S_m^{(k)}(t) = X_m^{(k)}(t) + Y_m^{(k)}(t) + \int_0^t \left\| \ddot{u}_m^{(k)}(s) \right\|_0^2 ds, \tag{3.15}$$

where

$$\begin{cases}
X_m^{(k)}(t) = \left\| \dot{u}_m^{(k)}(t) \right\|_0^2 + \mu_m^{(k)}(t) \, a(u_m^{(k)}(t), u_m^{(k)}(t)), \\
Y_m^{(k)}(t) = a \left(\dot{u}_m^{(k)}(t), \dot{u}_m^{(k)}(t) \right) + \mu_m^{(k)}(t) \left\| A u_m^{(k)}(t) \right\|_0^2.
\end{cases} (3.16)$$

Then, it follows from (3.8), (3.15), (3.16), that

$$S_{m}^{(k)}(t) = S_{m}^{(k)}(0) + \int_{0}^{t} \dot{\mu}_{m}^{(k)}(s) \left[a \left(u_{m}^{(k)}(s), u_{m}^{(k)}(s) \right) + \left\| A u_{m}^{(k)}(s) \right\|_{0}^{2} \right] ds$$

$$+ \int_{0}^{t} \left\| \ddot{u}_{m}^{(k)}(s) \right\|_{0}^{2} ds + 2 \int_{0}^{t} \left\langle F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right\rangle ds$$

$$+ 2 \int_{0}^{t} a \left(F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right) ds$$

$$\equiv S_{m}^{(k)}(0) + \sum_{j=1}^{4} I_{j}.$$

$$(3.17)$$

We shall estimate the terms I_j on the right-hand side of (3.17) as follows. First term I_1 . By the following inequalities

$$\|v\|_{0} \leq \frac{1-\rho}{\sqrt{2\rho}} \|v_{x}\|_{0} \leq \frac{1-\rho}{\sqrt{2\rho}} \sqrt{a(v,v)} \quad \text{for all } v \in V,$$

$$S_{m}^{(k)}(t) \geq \mu_{m}(t) \left[a(u_{m}^{(k)}(t), u_{m}^{(k)}(t)) + \left\| Au_{m}^{(k)}(t) \right\|_{0}^{2} \right]$$

$$\geq \mu_{*} \left[a(u_{m}^{(k)}(t), u_{m}^{(k)}(t)) + \left\| Au_{m}^{(k)}(t) \right\|_{0}^{2} \right],$$

$$\left\| u_{m}^{(k)}(t) \right\|_{0} \leq \frac{1-\rho}{\sqrt{2\rho}} \left\| u_{mx}^{(k)}(t) \right\|_{0} \leq \frac{1-\rho}{\sqrt{2\rho}} \sqrt{a(u_{m}^{(k)}(t), u_{m}^{(k)}(t))}$$

$$\leq \frac{1-\rho}{\sqrt{2\rho\mu_{*}}} \sqrt{S_{m}^{(k)}(t)}$$
(3.18)

and

$$\begin{aligned} \left| \dot{\mu}_{m}^{(k)}(t) \right| &= 2 \left| \mu' \left(\left\| u_{m}^{(k)}(t) \right\|_{0}^{2} \right) \left\langle u_{m}^{(k)}(t), \dot{u}_{m}^{(k)}(t) \right\rangle \right| \\ &\leq 2\mu_{2} \left(1 + \left\| u_{m}^{(k)}(t) \right\|_{0}^{2p-2} \right) \left\| u_{m}^{(k)}(t) \right\|_{0} \left\| \dot{u}_{m}^{(k)}(t) \right\|_{0} \\ &\leq 2\mu_{2} \left[1 + \left(\frac{1-\rho}{\sqrt{2\rho\mu_{*}}} \sqrt{S_{m}^{(k)}(t)} \right)^{2p-2} \right] \frac{1-\rho}{\sqrt{2\rho\mu_{*}}} \sqrt{S_{m}^{(k)}(t)} \sqrt{S_{m}^{(k)}(t)} \\ &= 2\mu_{2} \frac{1-\rho}{\sqrt{2\rho\mu_{*}}} \left[1 + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p-1} \left(S_{m}^{(k)}(t) \right)^{p-1} \right] S_{m}^{(k)}(t), \end{aligned}$$
(3.19)

we have

$$I_{1} = \int_{0}^{t} \dot{\mu}_{m}^{(k)}(s) \left[a \left(u_{m}^{(k)}(s), u_{m}^{(k)}(s) \right) + \left\| A u_{m}^{(k)}(s) \right\|_{0}^{2} \right] ds$$

$$\leq 2\mu_{2} \frac{1-\rho}{\sqrt{2\rho\mu_{*}^{3}}} \int_{0}^{t} \left[1 + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p-1} \left(S_{m}^{(k)}(s) \right)^{p-1} \right] \left(S_{m}^{(k)}(s) \right)^{2} ds$$

$$\leq 2\mu_{2} \frac{1-\rho}{\sqrt{2\rho\mu_{*}^{3}}} \int_{0}^{t} \left[\left(S_{m}^{(k)}(s) \right)^{2} + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p-1} \left(S_{m}^{(k)}(s) \right)^{p+1} \right] ds$$

$$\leq 2\mu_{2} \frac{1-\rho}{\sqrt{2\rho\mu_{*}^{3}}} \left[1 + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p-1} \right] \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{1}} \right] ds$$

$$= \tilde{\beta}_{1} \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{1}} \right] ds,$$

$$(3.20)$$

where

$$N_1 = \max\{p+1, N-1\}, \quad \tilde{\beta}_1 = 2\mu_2 \frac{1-\rho}{\sqrt{2\rho\mu_*^3}} \left[1 + \left(\frac{(1-\rho)^2}{2\rho\mu_*}\right)^{p-1} \right]. \quad (3.21)$$

Second term I_2 . $(3.8)_1$ can be rewritten as follows

$$\left\langle \ddot{u}_{m}^{(k)}(t), w_{j} \right\rangle + \mu_{m}^{(k)}(t) \left\langle A u_{m}^{(k)}(t), w_{j} \right\rangle = \left\langle F_{m}^{(k)}(t), w_{j} \right\rangle, \ j = 1, \dots, k.$$
 (3.22)

Hence, it follows after replacing w_i with $\ddot{u}_m^{(k)}(t)$, we obtain that

$$\begin{aligned} & \left\| \ddot{u}_{m}^{(k)}(t) \right\|_{0}^{2} \\ &= -\mu_{m}^{(k)}(t) \left\langle Au_{m}^{(k)}(t), \ddot{u}_{m}^{(k)}(t) \right\rangle + \left\langle F_{m}^{(k)}(t), \ddot{u}_{m}^{(k)}(t) \right\rangle \\ &\leq \left[\mu_{m}^{(k)}(t) \left\| Au_{m}^{(k)}(t) \right\|_{0}^{1} + \left\| F_{m}^{(k)}(t) \right\|_{0}^{1} \right] \left\| \ddot{u}_{m}^{(k)}(s) \right\|_{0}^{2} \\ &\leq \left[\mu_{m}^{(k)}(t) \left\| Au_{m}^{(k)}(t) \right\|_{0}^{1} + \left\| F_{m}^{(k)}(t) \right\|_{0}^{2} \right] \\ &\leq 2 \left(\mu_{m}^{(k)}(t) \right)^{2} \left\| Au_{m}^{(k)}(t) \right\|_{0}^{2} + 2 \left\| F_{m}^{(k)}(t) \right\|_{0}^{2} \\ &\leq 2\mu_{1} \left(1 + \left\| u_{m}^{(k)}(t) \right\|_{0}^{2p} \right) S_{m}^{(k)}(t) + 2 \left\| F_{m}^{(k)}(t) \right\|_{0}^{2} \\ &\leq 2\mu_{1} \left[1 + \left(\frac{1-\rho}{\sqrt{2\rho\mu_{*}}} \sqrt{S_{m}^{(k)}(t)} \right)^{2p} \right] S_{m}^{(k)}(t) + 2 \frac{(1-\rho)^{2}}{2\rho} \left\| F_{mx}^{(k)}(t) \right\|_{0}^{2} \\ &\leq 2\mu_{1} \left[S_{m}^{(k)}(t) + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p} \left(S_{m}^{(k)}(t) \right)^{p+1} \right] + \frac{(1-\rho)^{2}}{\rho} \left\| F_{mx}^{(k)}(t) \right\|_{0}^{2} \\ &\leq 2\mu_{1} \left[1 + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p} \right] \left[1 + \left(S_{m}^{(k)}(t) \right)^{N_{1}} \right] + \frac{(1-\rho)^{2}}{\rho} \left\| F_{mx}^{(k)}(t) \right\|_{0}^{2} . \end{aligned}$$

Integrating in t to get

$$I_{2} = \int_{0}^{t} \left\| \ddot{u}_{m}^{(k)}(s) \right\|_{0}^{2} ds$$

$$\leq 2\mu_{1} \left[1 + \left(\frac{(1-\rho)^{2}}{2\rho\mu_{*}} \right)^{p} \right] \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{1}} \right] ds$$

$$+ \frac{(1-\rho)^{2}}{\rho} \int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} ds$$

$$= \tilde{\beta}_{2} \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N_{1}} \right] ds + \frac{(1-\rho)^{2}}{\rho} \int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} ds,$$

$$(3.24)$$

where

$$\tilde{\beta}_2 = 2\mu_1 \left[1 + \left(\frac{(1-\rho)^2}{2\rho\mu_*} \right)^p \right].$$
 (3.25)

Third integral I_3 .

$$I_{3} = 2 \int_{0}^{t} \left\langle F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right\rangle ds$$

$$\leq \int_{0}^{t} S_{m}^{(k)}(s) ds + \frac{(1-\rho)^{2}}{2\rho} \int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} ds.$$
(3.26)

Fourth term I_4 .

$$I_{4} = 2 \int_{0}^{t} a \left(F_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right) ds$$

$$\leq 2 \int_{0}^{t} \sqrt{a \left(\dot{u}_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right)} \sqrt{a \left(F_{m}^{(k)}(s), F_{m}^{(k)}(s) \right)} ds$$

$$\leq \int_{0}^{t} a \left(\dot{u}_{m}^{(k)}(s), \dot{u}_{m}^{(k)}(s) \right) ds + \int_{0}^{t} a \left(F_{m}^{(k)}(s), F_{m}^{(k)}(s) \right) ds$$

$$\leq \int_{0}^{t} S_{m}^{(k)}(s) ds + C_{1} \int_{0}^{t} \left\| F_{m}^{(k)}(s) \right\|_{1}^{2} ds$$

$$\leq \int_{0}^{t} S_{m}^{(k)}(s) ds + C_{1} \int_{0}^{t} \left\| \left\| F_{m}^{(k)}(s) \right\|_{0}^{2} + \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} \right] ds$$

$$\leq \int_{0}^{t} S_{m}^{(k)}(s) ds + C_{1} \left(1 + \frac{(1-\rho)^{2}}{2\rho} \right) \int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} ds.$$

$$(3.27)$$

Therefore, we deduce from (3.17), (3.20), (3.24), (2.24), (3.27) that

$$S_{m}^{(k)}(t) \leq S_{m}^{(k)}(0) + \left(\tilde{\beta}_{1} + \tilde{\beta}_{2}\right) \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s)\right)^{N_{1}}\right] ds + 2 \int_{0}^{t} S_{m}^{(k)}(s) ds + \left[\frac{3(1-\rho)^{2}}{2\rho} + C_{1}\left(1 + \frac{(1-\rho)^{2}}{2\rho}\right)\right] \int_{0}^{t} \left\|F_{mx}^{(k)}(s)\right\|_{0}^{2} ds.$$

$$(3.28)$$

The following property of $F_{mx}^{(k)}(t)$ is useful to continue estimates

$$\left\| F_{mx}^{(k)}(t) \right\|_{0} \le \bar{c}_{M} \left[1 + \left(\sqrt{S_{m}^{(k)}(t)} \right)^{N-1} \right],$$
 (3.29)

where $\bar{c}_M = \sum_{i=0}^{N-1} \tilde{c}_i$,

$$\tilde{c}_{i} = \begin{cases}
\bar{K}_{M}(f) \left[\sqrt{\frac{1-\rho^{2}}{2}} + M + \sum_{i=1}^{N-1} \frac{2^{i-1}}{i!} \gamma_{i}^{*}(M, \rho) M^{i} \right], & i = 0, \\
\bar{K}_{M}(f) \frac{2^{i-1}}{i!} \frac{\gamma_{i}^{*}(M, \rho)}{\sqrt{\mu_{i}^{i}}}, & i = 1, 2, \cdots, N-1, \\
\gamma_{i}^{*}(M, \rho) = \left[\left(\sqrt{\frac{1-\rho^{2}}{2}} + M \right) \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i} + i \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i-1} \right], \\
1 < i < N-1.
\end{cases} (3.30)$$

Indeed, by

$$F_{mx}^{(k)}(x,t) = D_1 f(x,t,u_{m-1}) + D_3 f(x,t,u_{m-1}) \nabla u_{m-1}$$

$$+ \sum_{i=1}^{N-1} \left[\frac{1}{i!} D_1 D_3^i f(x,t,u_{m-1}) + \frac{1}{i!} D_3^{i+1} f(x,t,u_{m-1}) \nabla u_{m-1} \right] (u_m^{(k)} - u_{m-1})^i$$

$$+ \sum_{i=1}^{N-1} \frac{1}{i!} D_3^i f(x,t,u_{m-1}) i (u_m^{(k)} - u_{m-1})^{i-1} (\nabla u_m^{(k)} - \nabla u_{m-1}),$$
(3.31)

using inequalities

$$(a+b)^p \le 2^{p-1}(a^p + b^p), \ \forall \ a, b > 0, \ p \ge 1,$$

and

$$s^{i} \le 1 + s^{q}, \ \forall \ s \ge 0, \ \forall \ i, q, \ 0 \le i \le q,$$
 (3.32)

we get

$$\begin{split} & \left| F_{mx}^{(k)}(x,t) \right| \\ & \leq \left| D_1 f(x,t,u_{m-1}) + D_3 f(x,t,u_{m-1}) \nabla u_{m-1} \right| \\ & + \sum_{i=1}^{N-1} \left| \left[\frac{1}{i!} D_1 D_3^i f(x,t,u_{m-1}) + \frac{1}{i!} D_3^{i+1} f(x,t,u_{m-1}) \nabla u_{m-1} \right] \left(u_m^{(k)} - u_{m-1} \right)^i \right| \\ & + \sum_{i=1}^{N-1} \left| \frac{1}{i!} D_3^i f(x,t,u_{m-1}) i (u_m^{(k)} - u_{m-1})^{i-1} (\nabla u_m^{(k)} - \nabla u_{m-1}) \right| \\ & \leq \bar{K}_M(f) \left(1 + |\nabla u_{m-1}| \right) + \bar{K}_M(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(1 + |\nabla u_{m-1}| \right) \left| u_m^{(k)} - u_{m-1} \right|^i \\ & + \bar{K}_M(f) \sum_{i=1}^{N-1} \frac{i}{i!} \left| (u_m^{(k)} - u_{m-1})^{i-1} (\nabla u_m^{(k)} - \nabla u_{m-1}) \right| \\ & \leq \bar{K}_M(f) \left(1 + |\nabla u_{m-1}| \right) \\ & + \bar{K}_M(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(1 + |\nabla u_{m-1}| \right) \left(\sqrt{\frac{1-\rho}{\rho}} \left(\left\| u_{mx}^{(k)}(t) \right\|_0 + \left\| \nabla u_{m-1}(t) \right\|_0 \right) \right)^i \\ & + \bar{K}_M(f) \sum_{i=1}^{N-1} \frac{i}{i!} \left| \nabla u_m^{(k)} - \nabla u_{m-1} \right| \left(\sqrt{\frac{1-\rho}{\rho}} \left(\left\| u_{mx}^{(k)}(t) \right\|_0 + \left\| \nabla u_{m-1}(t) \right\|_0 \right) \right)^{i-1} \\ & \leq \bar{K}_M(f) \left(1 + |\nabla u_{m-1}| \right) \end{split}$$

$$+\bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} (1+|\nabla u_{m-1}|) \left(\sqrt{\frac{1-\rho}{\rho}}\right)^{i} \left(\left\|u_{mx}^{(k)}(t)\right\|_{0} + \left\|\nabla u_{m-1}(t)\right\|_{0}\right)^{i} + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{i}{i!} \left|\nabla u_{m}^{(k)} - \nabla u_{m-1}\right| \left(\sqrt{\frac{1-\rho}{\rho}}\right)^{i-1} \times \left(\left\|u_{mx}^{(k)}(t)\right\|_{0} + \left\|\nabla u_{m-1}(t)\right\|_{0}\right)^{i-1}.$$

$$(3.33)$$

Hence

$$\begin{split} & \left\| F_{mx}^{(k)}(t) \right\|_{0} \\ & \leq \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + \|\nabla u_{m-1}\|_{0} \right) \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho^{2}}{2}} + \|\nabla u_{m-1}\|_{0} \right) \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i} \left(\left\| u_{mx}^{(k)}(t) \right\|_{0} + \|\nabla u_{m-1}(t)\|_{0} \right)^{i} \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left\| u_{mx}^{(k)}(t) - \nabla u_{m-1}(t) \right\|_{0} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i-1} \left(\left\| u_{mx}^{(k)}(t) \right\|_{0} + \|\nabla u_{m-1}(t)\|_{0} \right)^{i-1} \\ & \leq \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + M \right) \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i-1} \left(\left\| u_{mx}^{(k)}(t) \right\|_{0} + M \right)^{i} \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{i}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i-1} \left(\left\| u_{mx}^{(k)}(t) \right\|_{0} + M \right)^{i} \\ & = \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + M \right) + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \gamma_{i}^{*}(M,\rho) \left(\left\| u_{mx}^{(k)}(t) \right\|_{0} + M \right)^{i} \\ & \leq \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + M \right) + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \gamma_{i}^{*}(M,\rho) 2^{i-1} \left(\left\| u_{mx}^{(k)}(t) \right\|_{0}^{i} + M^{i} \right) \\ & \leq \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + M \right) + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{2^{i-1}}{i!} \gamma_{i}^{*}(M,\rho) \left[\left(\sqrt{\frac{S_{m}^{(k)}(t)}{\mu_{*}}} \right)^{i} + M^{i} \right] \\ & = \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho^{2}}{2}} + M + \sum_{i=1}^{N-1} \frac{2^{i-1}}{i!} \gamma_{i}^{*}(M,\rho) M^{i} \right] \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{2^{i-1}}{i!} \frac{\gamma_{i}^{*}(M,\rho)}{\sqrt{\mu_{*}^{*}}} \left(\sqrt{S_{m}^{(k)}(t)} \right)^{i} \end{split}$$

$$= \sum_{i=0}^{N-1} \tilde{c}_i \left(\sqrt{S_m^{(k)}(t)} \right)^i \le \sum_{i=0}^{N-1} \tilde{c}_i \left[1 + \left(\sqrt{S_m^{(k)}(t)} \right)^{N-1} \right]$$

$$= \bar{c}_M \left[1 + \left(\sqrt{S_m^{(k)}(t)} \right)^{N-1} \right],$$
(3.34)

where $\gamma_i^*(M, \rho)$, $1 \le i \le N - 1$, \tilde{c}_j , $0 \le j \le N - 1$, \bar{c}_M are defined by (3.30).

Now, we can estimate the intergal $\int_0^t \left\| F_{mx}^{(k)}(s) \right\|_0^2 ds$. Using the property of $F_{mx}^{(k)}(t)$ as in (3.29), we obtain

$$\int_{0}^{t} \left\| F_{mx}^{(k)}(s) \right\|_{0}^{2} ds \leq \bar{c}_{M}^{2} \int_{0}^{t} \left[1 + \left(\sqrt{S_{m}^{(k)}(s)} \right)^{N-1} \right]^{2} ds
\leq 2\bar{c}_{M}^{2} \int_{0}^{t} \left[1 + \left(S_{m}^{(k)}(s) \right)^{N-1} \right] ds
\leq 4\bar{c}_{M}^{2} \left[T + \int_{0}^{t} \left(S_{m}^{(k)}(s) \right)^{N_{1}} ds \right],$$
(3.35)

since $N_1 = \max\{2, p+1, N-1\} \ge N-1$. Combining (3.28) and (3.35), it gives

$$S_m^{(k)}(t) \le S_m^{(k)}(0) + TC_1(M) + C_1(M) \int_0^t \left(S_m^{(k)}(s)\right)^{N_1} ds,$$
 (3.36)

in which

$$C_1(M) = 2 + \tilde{\beta}_1 + \tilde{\beta}_2 + 4\bar{c}_M^2 \left[\frac{3(1-\rho)^2}{2\rho} + C_1 \left(1 + \frac{(1-\rho)^2}{2\rho} \right) \right]. \tag{3.37}$$

By means of the convergences (2.5), there exists a constant M > 0 independent of k and m such that, for all $m, k \in \mathbb{N}$,

$$S_{m}^{(k)}(0) = \|u_{1k}\|_{0}^{2} + a(u_{1k}, u_{1k}) + \mu(\|u_{0k}\|_{0}^{2}) \left[a(u_{0k}, u_{0k}) + \|Au_{0k}\|_{0}^{2}\right]$$

$$\leq \frac{M^{2}}{4}.$$
(3.38)

Finally, it follows from (3.36), (3.38) that

$$S_m^{(k)}(t) \le \frac{M^2}{4} + TC_1(M) + C_1(M) \int_0^t \left(S_m^{(k)}(s)\right)^{N_1} ds,$$
 (3.39)

for $0 \le t \le T_m^{(k)} \le T$.

Then by solving a nonlinear Volterra integral inequality (3.39) (based on the methods in [7]), the following lemma is proved.

Lemma 3.2. There exists a constant T > 0 independent of k and m such that $S_m^{(k)}(t) < M^2$, $\forall t \in [0, T]$, for all k and $m \in \mathbb{N}$. (3.40)

By Lemma 3.2, we can take constant $T_m^{(k)} = T$ for all m and k. Therefore, we have

$$u_m^{(k)} \in W(M,T)$$
, for all m and $k \in \mathbb{N}$. (3.41)

Step 3. Convergence. Thanks to (3.41), there exists a subsequence $\{u_m^{(k_j)}\}$ of $\{u_m^{(k)}\}$ such that

$$\begin{cases}
 u_m^{(k)} \to u_m & \text{in } L^{\infty}(0, T; V \cap H^2) \text{ weakly*}, \\
 \dot{u}_m^{(k)} \to u_m' & \text{in } L^{\infty}(0, T; V) \text{ weakly*}, \\
 \ddot{u}_m^{(k)} \to u_m'' & \text{in } L^2(Q_T) \text{ weakly}, \\
 u_m \in W(M, T).
\end{cases} (3.42)$$

By the compactness lemma of Lions ([6], p.57) and applying the theorem's Fischer-Riesz, from (3.42), one has a subsequence of $\{u_m^{(k)}\}$, denoted by the same symbol satisfying

$$\begin{cases} u_m^{(k)} \to u_m & \text{strongly in} \quad L^2(0,T;V) \text{ and a.e. in } Q_T, \\ \dot{u}_m^{(k)} \to u_m' & \text{strongly in} \quad L^2(Q_T) & \text{and a.e. in } Q_T. \end{cases}$$
(3.43)

On the other hand, using the inequality

$$|a^{j} - b^{j}| \le jM_{1}^{j-1} |a - b|, \ \forall \ a, b \in [-M_{1}, M_{1}], \ \forall \ M_{1} > 0, \ \forall \ j \in \mathbb{N},$$
 (3.44)

we deduce from
$$(3.41)$$
 and $(3.42)_4$, that

$$\left| (u_m^{(k)})^j - (u_m)^j \right| \le j \left(\sqrt{\frac{1-\rho}{\rho}} M \right)^{j-1} \left| u_m^{(k)} - u_m \right|, \ j = \overline{1, N-1}.$$
 (3.45)

Thus

$$\left\| (u_m^{(k)})^j - (u_m)^j \right\|_{L^2(Q_T)}$$

$$\leq j \left(\sqrt{\frac{1-\rho}{\rho}} M \right)^{j-1} \left\| u_m^{(k)} - u_m \right\|_{L^2(Q_T)}, \quad j = \overline{1, N-1}.$$
(3.46)

Therefore, (3.43) and (3.46) give

$$(u_m^{(k)})^j \to (u_m)^j$$
 strongly in $L^2(Q_T)$. (3.47)

We note that

$$\begin{aligned}
& \left\| F_m^{(k)} - \bar{F}_m \right\|_{L^2(Q_T)} \\
& \leq \sum_{j=0}^{N-1} \left\| A_j(\cdot, \cdot, u_{m-1}) \right\|_{L^{\infty}(Q_T)} \left\| (u_m^{(k)})^j - (u_m)^j \right\|_{L^2(Q_T)},
\end{aligned} (3.48)$$

so (3.43) leads to

$$F_m^{(k)} \to \bar{F}_m$$
 strongly in $L^2(Q_T)$. (3.49)

On the other hand, we have

$$\left| \mu_m^{(k)}(t) - \bar{\mu}_m(t) \right| = \left| \mu \left(\left\| u_m^{(k)}(t) \right\|_0^2 \right) - \mu \left(\left\| u_m(t) \right\|_0^2 \right) \right|$$

$$\leq 2M \tilde{K}_M(\mu) \left\| u_m^{(k)}(t) - u_m(t) \right\|_0.$$
(3.50)

Hence, from (3.43) and (3.50), we obtain

$$\mu_m^{(k)} \to \bar{\mu}_m \text{ strongly in } L^2(0,T).$$
 (3.51)

Passing to limit in (3.8), (3.9), we have u_m satisfying (3.5), (3.6) in $L^2(0,T)$. On the other hand, it follows from (3.5)₁ and (3.42)₄ that

$$u_m'' = -\bar{\mu}_m(t) A u_m + \bar{F}_m \in L^{\infty}(0, T; L^2). \tag{3.52}$$

Therefore, $u_m \in W_1(M,T)$ and Theorem 3.1 is proved.

Next, in order to obtain the main result in this section, we put

$$W_1(T) = \{ v \in L^{\infty}(0, T; V) : v' \in L^{\infty}(0, T; L^2) \},$$

then $W_1(T)$ is a Banach space with respect to the norm

$$||v||_{W_1(T)} = ||v||_{L^{\infty}(0,T;V)} + ||v'||_{L^{\infty}(0,T;L^2)}.$$

Theorem 3.3. Let (H_1) - (H_3) hold. Then, there exist constants M > 0 and T > 0 such that

- (i) (1.1)-(1.3) has a unique weak solution $u \in W_1(M,T)$.
- (ii) The recurrent sequence $\{u_m\}$, defined by (3.5) and (3.6), converges at a rate of order N to the solution u strongly in the space $W_1(T)$ in the sense

$$||u_m - u||_{W_1(T)} \le C ||u_{m-1} - u||_{W_1(T)}^N,$$
 (3.53)

for all $m \ge 1$, where C is a suitable constant. On the other hand, the estimate is fulfilled

$$||u_m - u||_{W_1(T)} \le C_T \beta_T^{N^m}, \quad \text{for all } m \in \mathbb{N}, \tag{3.54}$$

in which C_T and $0 < \beta_T < 1$ are the constants depending only on T.

Proof. Existence. We can prove that $\{u_m\}$ is a Cauchy sequence in $W_1(T)$. Indeed, let $w_m = u_{m+1} - u_m$. Then w_m satisfies the variational problem

$$\begin{cases}
\langle w_{m}''(t), v \rangle + \bar{\mu}_{m+1}(t) \, a(w_{m}(t), v) + [\bar{\mu}_{m+1}(t) - \bar{\mu}_{m}(t)] \, \langle Au_{m}(t), v \rangle \\
= \langle \bar{F}_{m+1}(t) - \bar{F}_{m}(t), v \rangle, \quad \forall \ v \in V, \\
w_{m}(0) = w_{m}'(0) = 0.
\end{cases}$$
(3.55)

Taking $v = w'_m$ in $(3.55)_1$, after integrating in t, we get

$$Z_{m}(t) = \int_{0}^{t} \bar{\mu}'_{m+1}(s) \, a(w_{m}(s), w_{m}(s)) ds$$

$$-2 \int_{0}^{t} \left[\bar{\mu}_{m+1}(s) - \bar{\mu}_{m}(s) \right] \langle Au_{m}(s), w'_{m}(s) \rangle ds$$

$$+2 \int_{0}^{t} \langle \bar{F}_{m+1}(s) - \bar{F}_{m}(s), w'_{m}(s) \rangle ds$$

$$\equiv J_{1} + J_{2} + J_{3},$$
(3.56)

where

$$Z_{m}(t) = \|w'_{m}(t)\|_{0}^{2} + \bar{\mu}_{m+1}(t) a(w_{m}(t), w_{m}(t))$$

$$\geq \|w'_{m}(t)\|_{0}^{2} + \mu_{*}a(w_{m}(t), w_{m}(t))$$

$$\geq \|w'_{m}(t)\|_{0}^{2} + \mu_{*}C_{0} \|w_{m}(t)\|_{1}^{2}$$

$$\geq 2\sqrt{\mu_{*}C_{0}} \|w'_{m}(t)\|_{0} \|w_{m}(t)\|_{1},$$

$$(3.57)$$

and all integrals on the right – hand side of (3.56) are estimated as follows.

Estimating J_1 . It follows from $(3.42)_4$ that

$$|\bar{\mu}'_{m}(t)| = 2 \left| \mu' \left(\|u_{m}(t)\|_{0}^{2} \right) \right| |\langle u_{m}(t), u'_{m}(t) \rangle|$$

$$\leq 2\tilde{K}_{M}(\mu) \|u_{m}(t)\|_{0} \|u'_{m}(t)\|_{0}$$

$$\leq 2\tilde{K}_{M}(\mu) \|u_{m}(t)\|_{1} \|u'_{m}(t)\|_{0} \leq 2M^{2}\tilde{K}_{M}(\mu),$$

$$(3.58)$$

this implies that

$$J_{1} = \int_{0}^{t} \bar{\mu}'_{m+1}(s) \, a(w_{m}(s), w_{m}(s)) ds \le \frac{2}{\mu_{*}} M^{2} \tilde{K}_{M}(\mu) \int_{0}^{t} Z_{m}(s) ds.$$
 (3.59)

Estimating J_2 .

$$|\bar{\mu}_{m+1}(t) - \bar{\mu}_{m}(t)| = \left| \mu \left(\|u_{m+1}(t)\|_{0}^{2} \right) - \mu \left(\|u_{m}(t)\|_{0}^{2} \right) \right|$$

$$\leq \tilde{K}_{M}(\mu) \left| \|u_{m+1}(t)\|_{0}^{2} - \|u_{m}(t)\|_{0}^{2} \right|$$

$$\leq 2M\tilde{K}_{M}(\mu) \|w_{m}(t)\|_{0}.$$
(3.60)

Thus

$$J_{2} = -2 \int_{0}^{t} \left[\bar{\mu}_{m+1}(s) - \bar{\mu}_{m}(s) \right] \langle Au_{m}(s), w'_{m}(s) \rangle ds$$

$$\leq 4M \tilde{K}_{M}(\mu) \int_{0}^{t} \|w_{m}(s)\|_{0} \|Au_{m}(s)\|_{0} \|w'_{m}(s)\|_{0} ds$$

$$\leq \frac{4}{\mu_{*}} M^{2} \tilde{K}_{M}(\mu) \int_{0}^{t} \|w_{m}(s)\|_{1} \|w'_{m}(s)\|_{0} ds$$

$$\leq \frac{4}{\mu_{*}} M^{2} \tilde{K}_{M}(\mu) \int_{0}^{t} \frac{Z_{m}(s)}{2\sqrt{\mu_{*}C_{0}}} ds = \frac{2}{\sqrt{\mu_{*}^{3}C_{0}}} M^{2} \tilde{K}_{M}(\mu) \int_{0}^{t} Z_{m}(s) ds.$$

$$(3.61)$$

Estimating J_3 . Using Taylor's expansion of the function

$$f(x, t, u_m) = f(x, t, u_{m-1} + w_{m-1})$$

around the point u_{m-1} up to order N, we obtain

$$f(x,t,u_m) - f(x,t,u_{m-1})$$

$$= \sum_{i=1}^{N-1} \frac{1}{i!} D_3^i f(x,t,u_{m-1}) w_{m-1}^i + \frac{1}{N!} D_3^N f(x,t,\tilde{\lambda}_m) w_{m-1}^N,$$
(3.62)

where $\tilde{\lambda}_m = \tilde{\lambda}_m(x,t) = u_{m-1} + \theta_1 (u_m - u_{m-1}), 0 < \theta_1 < 1$. Hence, it follows from (3.6) and (3.62) that

$$\bar{F}_{m+1}(x,t) - \bar{F}_m(x,t)
= \sum_{i=1}^{N-1} \frac{1}{i!} D_3^i f(x,t,u_m) w_m^i + \frac{1}{N!} D_3^N f(x,t,\tilde{\lambda}_m) w_{m-1}^N.$$
(3.63)

It implies that

$$\begin{split} & \left| \bar{F}_{m+1}(x,t) - \bar{F}_{m}(x,t) \right| \\ & \leq \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left| w_{m}^{i} \right| + \frac{1}{N!} \bar{K}_{M}(f) \left| w_{m-1}^{N} \right| \\ & \leq \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \left\| w_{mx}(t) \right\|_{0} \right)^{i} \\ & + \frac{1}{N!} \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho}{\rho}} \left\| w_{m-1}, x(t) \right\|_{0} \right)^{N} \\ & = \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i} \left\| w_{mx}(t) \right\|_{0}^{i-1} \left\| w_{mx}(t) \right\|_{0} \\ & + \frac{1}{N!} \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{N} \left\| w_{m-1} \right\|_{W_{1}(T)}^{N} \\ & \leq \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i} M^{i-1} \frac{1}{\sqrt{\mu_{*}}} \sqrt{Z_{m}(t)} \\ & + \frac{1}{N!} \bar{K}_{M}(f) \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{N} \left\| w_{m-1} \right\|_{W_{1}(T)}^{N}. \end{split}$$

Hence

$$\begin{split} & \|\bar{F}_{m+1}(t) - \bar{F}_{m}(t)\|_{0} \\ & \leq \sqrt{\frac{1 - \rho^{2}}{2}} \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1 - \rho}{\rho}}\right)^{i} M^{i-1} \frac{1}{\sqrt{\mu_{*}}} \sqrt{Z_{m}(t)} \\ & + \sqrt{\frac{1 - \rho^{2}}{2}} \frac{1}{N!} \bar{K}_{M}(f) \left(\sqrt{\frac{1 - \rho}{\rho}}\right)^{N} \|w_{m-1}\|_{W_{1}(T)}^{N} \\ & = \zeta_{T}^{(1)} \sqrt{Z_{m}(t)} + \zeta_{T}^{(2)} \|w_{m-1}\|_{W_{1}(T)}^{N}, \end{split}$$
(3.65)

where

$$\zeta_T^{(1)} = \frac{1}{\sqrt{\mu_*}} \bar{K}_M(f) \sqrt{\frac{1-\rho^2}{2}} \sum_{i=1}^{N-1} \frac{1}{i!} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^i M^{i-1},
\zeta_T^{(2)} = \frac{1}{N!} \bar{K}_M(f) \sqrt{\frac{1-\rho^2}{2}} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^N.$$
(3.66)

It leads to

$$J_{3} = 2 \int_{0}^{t} \langle \bar{F}_{m+1}(s) - \bar{F}_{m}(s), w'_{m}(s) \rangle ds$$

$$\leq 2 \int_{0}^{t} ||\bar{F}_{m+1}(s) - \bar{F}_{m}(s)||_{0} ||w'_{m}(s)||_{0} ds$$

$$\leq 2 \int_{0}^{t} \left(\zeta_{T}^{(1)} \sqrt{Z_{m}(s)} + \zeta_{T}^{(2)} ||w_{m-1}||_{W_{1}(T)}^{N} \right) \sqrt{Z_{m}(s)} ds$$

$$\leq 2 \left(\zeta_{T}^{(1)} + \zeta_{T}^{(2)} \right) \int_{0}^{t} Z_{m}(s) ds + \frac{1}{2} T \zeta_{T}^{(2)} ||w_{m-1}||_{W_{1}(T)}^{2N}.$$

$$(3.67)$$

Then we deduce from (3.56), (3.59), (3.61) and (3.67) that

$$Z_{m}(t) \leq \frac{1}{2} T \zeta_{T}^{(2)} \| w_{m-1} \|_{W_{1}(T)}^{2N} + 2 \left[\frac{1}{\mu_{*}} \left(1 + \frac{1}{\sqrt{\mu_{*}C_{0}}} \right) M^{2} \tilde{K}_{M}(\mu) + \zeta_{T}^{(1)} + \zeta_{T}^{(2)} \right] \int_{0}^{t} Z_{m}(s) ds.$$

$$(3.68)$$

By using Gronwall's lemma, (3.68) yields

$$\|w_m\|_{W_1(T)} \le \mu_T \|w_{m-1}\|_{W_1(T)}^N,$$
 (3.69)

where

$$\mu_{T} = \left(1 + \frac{1}{\sqrt{\mu_{*}C_{0}}}\right) \sqrt{\frac{1}{2}T\zeta_{T}^{(2)}} \exp\left[T\left(\frac{1}{\mu_{*}}\left(1 + \frac{1}{\sqrt{\mu_{*}C_{0}}}\right)M^{2}\tilde{K}_{M}\left(\mu\right) + \zeta_{T}^{(1)} + \zeta_{T}^{(2)}\right)\right].$$

Then, it follows from (3.69) that, for all m and p,

$$||u_m - u_{m+p}||_{W_1(T)} \le (1 - \beta_T)^{-1} (\mu_T)^{\frac{-1}{N-1}} \beta_T^{N^m}.$$
 (3.70)

Choosing T small enough such that $\beta_T = M\mu_T^{\frac{1}{N-1}} < 1$. It follows that $\{u_m\}$ is a Cauchy sequence in $W_1(T)$. Then there exists $u \in W_1(T)$ such that

$$u_m \longrightarrow u$$
 strongly in $W_1(T)$. (3.71)

Note that $u_m \in W_1(M,T)$, then there exists a subsequence $\{u_{m_j}\}$ of $\{u_m\}$ such that

$$\begin{cases} u_{m_j} \to u & \text{in } L^{\infty}(0, T; V \cap H^2) \text{ weakly*}, \\ u'_{m_j} \to u' & \text{in } L^{\infty}(0, T; V) \text{ weakly*}, \\ u''_{m_j} \to u'' & \text{in } L^2(Q_T) \text{ weakly}, \\ u \in W(M, T). \end{cases}$$
(3.72)

We have

$$\begin{split} & \| \bar{F}_{m}(\cdot,t) - f(\cdot,t,u(t)) \|_{0} \\ & \leq \| f(\cdot,t,u_{m-1}) - f(\cdot,t,u(t)) \|_{0} \\ & + \left\| \sum_{i=1}^{N-1} \frac{1}{i!} \frac{\partial^{i} f}{\partial u^{i}}(x,t,u_{m-1}) (u_{m} - u_{m-1})^{i} \right\|_{0} \\ & \leq \bar{K}_{M}(f) \| u_{m-1} - u \|_{W_{1}(T)} \\ & + \bar{K}_{M}(f) \sum_{i=1}^{N-1} \frac{1}{i!} \sqrt{\frac{1-\rho^{2}}{2}} \left(\sqrt{\frac{1-\rho}{\rho}} \right)^{i} \| u_{m} - u_{m-1} \|_{W_{1}(T)}^{i} \,. \end{split}$$

$$(3.73)$$

Hence, it implies from (3.71) and (3.73) that

$$\bar{F}_m \to f(\cdot, t, u(t))$$
 strongly in $L^{\infty}(0, T; L^2)$. (3.74)

Furthermore, we have

$$\left| \bar{\mu}_{m}(t) - \mu \left(\|u(t)\|_{0}^{2} \right) \right| \leq 2M \tilde{K}_{M}(\mu) \|u_{m}(t) - u(t)\|_{0}$$

$$\leq 2M \tilde{K}_{M}(\mu) \|u_{m} - u\|_{W_{1}(T)}.$$
(3.75)

Hence, from (3.71) and (3.75), we obtain

$$\bar{\mu}_m(t) \to \mu\left(\|u(t)\|_0^2\right) \text{ strongly in } L^\infty(0,T).$$
 (3.76)

Finally, passing to limit in (3.5), (3.6) as $m = m_j \to \infty$, there exists $u \in W(M,T)$ satisfying the equation

$$\langle u''(t), v \rangle + \mu \left(\|u(t)\|_0^2 \right) a(u(t), v) = \langle f(\cdot, t, u(t)), v \rangle, \qquad (3.77)$$

for all $v \in V$ and the initial conditions

$$u(0) = \tilde{u}_0, \ u'(0) = \tilde{u}_1.$$
 (3.78)

Uniqueness. Applying a similar argument used in the proof of Theorem 3.1, $u \in W_1(M,T)$ is a unique local weak solution of (1.1)–(1.3).

Passing to the limit in (3.70) as $p \to +\infty$ for fixed m, we get (3.54). Also with a similar argument, (3.53) follows. Theorem 3.3 is proved completely. \square

Remark 3.4. In order to construct a N-order iterative scheme, we need the condition (H_3) . Then, we get a convergent sequence at a rate of order N to a local unique weak solution of the problem and the existence follows. This condition of f can be relaxed if we only consider the existence of solutions, see [8], [16].

Acknowledgments: The authors wish to express their sincere thanks to the referees for the suggestions and valuable comments.

References

- G.F. Carrier, On the nonlinear vibrations problem of elastic string, Quart. J. Appl. Math., 3 (1945), 157–165.
- [2] M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6(6) (2001), 701–730.
- [3] K. Deimling, Nonlinear Functional Analysis, Springer, NewYork, 1985.
- [4] Y. Ebihara, L.A. Medeiros and M.M. Miranda, Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear Anal., 10 (1986), 27–40.
- [5] N.A. Larkin, Global regular solutions for the nonhomogeneous Carrier equation, Mathematical Problems in Engineering, 8 (2002), 15–31.
- [6] J.L. Lions, Quelques méthodes de ré solution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969.
- [7] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol.1. Academic Press, NewYork, 1969.
- [8] N.T. Long, A.P.N. Dinh and T.N. Diem, Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator, J. Math. Anal. Appl., 267(1) (2002), 116–134.
- [9] N.T. Long and L.T.P. Ngoc, On a nonlinear Kirchhoff-Carrier wave equation in the unit membrane: The quadratic convergence and asymptotic expansion of solutions, Demonstratio Math., 40(2) (2007), 365–392.
- [10] L.A. Mederios, On some nonlinear perturbation of Kirchhoff-Carrier operator, Comp. Appl. Math., 13 (1994), 225–233.
- [11] M Milla Miranda and L. P San Gil Jutuca, Existence and boundary stabilization of solutions for the Kirchhoff equation, Comm. Partial Differential Equations, 24(9-10) (1999), 1759–1800.
- [12] L.T.P. Ngoc, L.X. Truong and N.T. Long, An N-order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions, Acta Mathematica Vietnamica, 35(2) (2010), 207–227.
- [13] L.T.P. Ngoc, L.X. Truong and N.T. Long, High-order iterative methods for a nonlinear Kirchhoff wave equation, Demonstratio Math., 43(3) (2010), 605–634.
- [14] P.K. Parida and D.K. Gupta, Recurrence relations for a Newton-like method in Banach spaces, J. Comput. Appl. Math., 206 (2007), 873–887.
- [15] R.E. Showater, Hilbert space methods for partial differential equations, Electronic J. Differential Equations, Monograph 01, 1994.
- [16] N.A. Triet, L.T.P. Ngoc and N.T. Long, A mixed Dirichlet-Robin problem for a nonlinear Kirchhoff-Carrier wave equation, Nonlinear Anal. RWA., 13(2) (2012), 817–839.
- [17] L.X. Truong, L.T.P. Ngoc and N.T. Long, The N-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed inhomogeneous conditions, Applied Math. Comp., 215(5) (2009), 1908–1925.