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Abstract. This paper is devoted to the study of a nonlinear Carrier wave equation in the
annular associated with Robin-Dirichlet conditions. Using a high order iterative scheme, the
existence of a local unique weak solution is proved. Moreover, the sequence established here

converges to a unique weak solution at a rate of order N with N > 2.

1. INTRODUCTION

In this paper, we consider the following nonlinear Carrier wave equation in
the annular

uge — p(([u@®)l) (ter + Lue) = flz,tu), p<z<l, 0<t<T, (L1)
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associated with Robin-Dirichlet conditions

u(p,t) =0, ug(l,t) + Cu(l,t) =0 (1.2)
and initial conditions

u(x,0) = tg(x), u(x,0) = 1 (), (1.3)

where p, f, Ug, 1 are given functions and p, ¢ are given constants with 0 < p
< 1.In (1.1), the nonlinear term ,u(Hu(t)Hg) depends on the integral Hu(t)Hg =
fpl ru? (z,t) dx.

(1.1) herein is the bidimensional nonlinear wave equation describing nonlin-
ear vibrations of the annular membrane Q1 = {(z,y) : p> < 22 +y?> < 1}. In
the vibration processing, the area of the annular membrane and the tension at
various points change in time. The condition on the boundary I'; = {(z,y) :
22 +1y? = 1}, that is u,(1,t) + Cu(1,t) = 0, describes elastic constraints where
¢ the constant has a mechanical signification. And with the boundary con-
ditions on T', = {(z,y) : 2® + y* = p?} requiring u(p,t) = 0, the annular
membrane is fixed.

In [1], Carrier established the equation which models vibrations of an elastic
string when changes in tension are not small

L
put — (1 + % 0 U2(yat)dy> Uzy = 0, (1'5)
where u(z,t) is the xz-derivative of the deformation, Tp is the tension in the
rest position, F is the Young modulus, A is the cross-section of a string, L is
the length of a string and p is the density of a material. Clearly, if properties

of a material vary with x and ¢, then there is a hyperbolic equation of the type
(Larkin [5])

wie = B (2.8, Jy u? (5,8) dy ) e = 0. (L6)

The Kirchhoff-Carrier equations of the form (1.1) received much attention.
We refer the reader to, e.g., Cavalcanti et al. [2], Ebihara, Medeiros and
Miranda [4], Larkin [5], Medeiros [10], Miranda et al. [11], for many interesting
results and further references.

Motivated by results for nonlinear wave equations in [8], [9], where recurrent
sequences converge at a rate of order 1 or 2, we will construct a high order
iterative scheme to obtain a convergent sequence at a rate of order N to a local
weak solution of (1.1)—(1.3). This scheme is established based on a high order
method for solving operator equation F(z) = 0, it also has been applied in
[12], [13], [17] and some other works. It is well known that, Newton’s method
and its variants are used to solve nonlinear operator equations, see [14] and

references therein. In case lim wu, = u, one speaks of convergence of order
n—oo
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N if |up1 —ul < Cluy —ul? for some C > 0 and all large N. In the special
cases N = 1 with C < 1 and N = 2 one also speaks of linear and quadratic
convergence, respectively, see [3]. Here we shall associate with (1.1) a recurrent
sequence {u,,} defined by

0?u,, u,, 1 0u,
T~ (ol (o + 252

1.7
T (1.7)

= Zz 0 ’L' ou z t7um71)(um - Umfl)a

p <z < 1,0 <t < T with u,, satisfying (1.2), (1.3) and uy = 0. If
f € CN([p,1] x Ry x R), we prove that the sequence {u,,} converges at a
rate of order N to a local weak solution of (1.1)—(1.3). We note more that,
the result obtained here is local (in time 7" small enough), because T is chosen
corresponding to the size of the initial data, see (3.40) in Section 3. In our
proofs, the Faedo-Galerkin approximation method associated to a priori es-
timates, weak convergence, compactness techniques and a known fixed point
theorem are used. Our results can be regarded as an extension and improve-
ment of the corresponding results of [8], [9], [16].

2. PRELIMINARIES

Put Q = (p,1), Qr = 2 x (0,T), T > 0. We will omit the definitions of
the usual function spaces and denote them by the notations LP = LP(Q),
H™ = H™ (). The norm in L? is denoted by ||-|| . We also denote by (-, -) the
scalar product in L?. We denoted by ||-|| y the norm of a Banach space X and by
X' the dual space of X. We denote LP(0,T; X ), 1 < p < oo the Banach space
of real functions u : (0,T) — X measurable such that [ul|p.7.x) < +00,
with

1/p
(s u®)Fede) ™, it 1 <p < oo,

lll oo,y = esssup||u(t)]|x, if p=oco.
0<t<T

With f € Ck([pv 1] X R+ X R)? f = f($7tay) we put le - az’ D2f = at’
Dsf = 9L and Dof = D' D32D§* f, o = (o, 0, 03) € 72, |of = on + o +
a3 fry k, D(Ozovo)f — f.
On H', H?, we shall use the following norms
1
ol = (ol + loal*) (2.1)
and )
2 2 2\2
ol = (1o + loall® + oeal”) (2.2)

respectively.
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Note that L2, H', H? are also the Hilbert spaces with respect to the corre-
sponding scalar products

1
(u,v) :/ zu (z)v (x) dz,
p

(U, v) + (Ug, vg), (U, V) + (Ug, Vz) + (U, Vaz),

(2.3)

respectively. The norms in L2, H' and H? induced by the corresponding
scalar products (2.3) are denoted by ||-||,, |||l; and ||-||5 , respectively.

We put

V={veH :1v(p)=0}. (2.4)

Then V is a closed subspace of H' and on V two norms ||[v|| ;1 and v, are
equivalent norms. V; is continuously and densely embedded in L?. Identifying
L? with (LQ)/ (the dual of L?), we have V <+ L? < V'. We remark that the
notation (-,-) is also used for the pairing between V and V.

We have the following lemmas.

Lemma 2.1. We have the following inequalities
@) velvll < vl < lloll, Ve L? 1
(i) vollvllg < vl < llvllgr, YoeH.
Proof. From the following inequalities

pf x)dr < f zv? x < fpl () dz, forallve L2
pf dx<f T2 Sf (r)dz, forallve H,
the Lemma 2.1 is proved. O

Lemma 2.2. The embedding V — C° (ﬁ) is compact and for all v € V, we
have

@) ollgo@y = V1= pllvall,

.. 1—
(i) floll < 2 llvzll

(iv) flvallo +v* (1) > [Jvllg
v) o] < V3]l -

Proof. The embedding V' — H Lis continuous and the embedding H by
CcO (Q) is compact, so the embedding V — C° (Q) is compact.

(i) For all v € V and z € [p, 1],

0 (2)] = /:My)dy'g / oe Wy < VI=pllosll.  (25)

)
)
(iii) [Jvllo < 2 lvzllo,
)
)
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(ii) For all v € V and = € [p, 1],

/:vxw)dy?

Integrating over x from p to 1, we obtain

1 1 Y
o = [ @ar< [ @-plular= 5w @
P P

v? (z) =

<@-p) [ R E-plul. @0
p

(iii) For all v € V,

[ollg < [lv]l <

! H H < ! H H
v v .
\/§ o= vV 2/7 who
(iv) By using integration by part we have, for any v V,

1 1 1
ol = ) (@) do = § [0 ()]~ ) a0 o) o)
0% (1) — IR 2%v (z) v () do (2.9)
< 302 (1) + ol el < 202 (1) + & (1013 + feel)
which implies (iv).
(v) By |v]|2 = 0% (1) — fpl 2?v () vy () do, we have,
2 1
v? (1) = 2|vllp +2 [, 2?0 (z) ve (z) dz , , . (2.10)
2 2 :
< 2|jollg + 2vllg [lvzll < 21[vllg + 0]l + llvzllg < 3 lvll7
it gives (v). The Lemma 2.2 is proved. O

Remark 2.3. On L2, two norms v — ||[v|| and v — ||v||, are equivalent. So are
two norms v — ||[v]| ;1 and v — |jv||; on H', and five norms v — |[v|| g1, v

Iolly s v = ozl v Joslly and v = 4/ |lvellg + 02 (1) on V-

Now, we define the bilinear form
1
a(u,v) =Cu(l)v(1) +/ Uy () vy (z) dz for all u, v € Vi, (2.11)
p

where ¢ > 0 is a constant. We then have the following lemma.

Lemma 2.4. The symmetric bilinear form a (-,-) defined by (2.11) is contin-
uous on 'V x V' and coercive on V, i.e.,

(i) la (u,v)| < Cyully (o],

(i) a(v,v) > Co o7,
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for all u, v € V, where Cy = %min{l, (137’;)2} and C1 =1+ 3C.

Proof. (i) By V1 =pllvall = [[v]lcoy = [v(1)] and \/plvz]| < [Jozlly for all
v € V, we have

1
la (u,v)] < Clu(1)] v (1)] +/ |zug (2) vg (2)| do
p
< 3¢ Jully lvlly + lluzllo [lozllo < (3¢ + 1) flully flvll; -

(ii) By the inequality
2p

(1-p)?

2 2
[vzllg = [o]lo

we have

1
a(v,v>::<v2(1>+-/f 202 () dz = Co? (1) + [|ug |2
o

1 1
2 2 2
> flvalld = 5 loalld + 5 e
1 2, 1 2p 21 . 2p 2
> Lo+ 2 ol > min {1, ol
2 2(1-p)° 2 (1-p)?
The Lemma 2.4 is proved. Il

Lemma 2.5. There exists the Hilbert orthonormal base {w;} of the space L*
consisting of eigenfunctions w; corresponding to eigenvalues \; such that
(i) 0< A <A< <A< Ajr <+, lim Ay = oo,
Jtoo (2.12)
(i) a(wj,v) = Aj(wj,v) forallveV, j=1,2,---.

Furthermore, the sequence {w;/\/\;} is also the Hilbert orthonormal base of
V' with respect to the scalar product a (-,-).

On the other hand, we also have w; satisfying the following boundary value
problem

{ Awj = — (wjm + %wjm) = —%a% (zwjg) = Ajwj, in £, (2.13)
wj (p) = wjz(1) + Cw;(1) =0, w; € C=([p,1]). '

Proof. The proof of Lemma 2.5 can be found in [[15], p.87, Theorem 7.7], with
H = L? and a(-,-) as defined by (2.11). O

We also note that the operator A : V. — V’/ in (2.13) is uniquely defined
by the Lax-Milgram’s lemma, i.e.,

a(u,v) = (Au,v) for all u,v e V. (2.14)
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Lemma 2.6. On V N H?2, three norms

2 2 2
v [ollges v [olly = /1012 + oall? + a2
and
_ 2 A 2
0 [0l = 1/ lual2 + | Av]2

are equivalent.

Proof. (i) It is easy to see that two norms

2 2 2
v ol gz, v ol = \/IlvHo + vzl + llvaello
are equivalent on V N H?2, because of

VA lole < olly < ol e for all v e H2.
(ii) For all z € [p,1], and v € V N H?, we have
2
x |Au (9L‘)|2 = :1:%2 [6% (xuw)] = xufm + 2Uuptpy + %uz

T

(ii)-(a). We verify ||ully < const |Jul,, -
It follows from (2.16) that

zu, < x|Au (2)]* 4 2 Jugtizs| + L2,

Hence
2 2 2
a2 < [l Aul + 2 lluglly s llg + 2 s
2 2, P 2 2
< Al + 2 (2 ually + & Nutaally) + 2 el

2 2 2 2
= 14wl + 2 a3 + 5 azal3 + 2 lluall3-
This implies that
2 2 2 2 2
lhtas I3 < 2114wl + & lhualf < 2 (1+ 3) (14ulf + lluzF)
<2(1+ %) lul3,
By |jvl, < %g vzl , for all v € V, we get

2 2 2 2
lullz = llullo + lluello + lluelly

1—p)? 2 2 2
< L2 g2 + g 3 + [ltasI2
2
= (1+ 9525 a2 + sl
1—p)2 2 9
1+ U525 ) 3, + 2 (1 + & ) llull3

1—p)? 2
= (9525 +3+ %) lull..

IN

(ii)-(b). We verify ||ul,, < const ||ull, .

153

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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It follows from (2.16) that
2
z |Au ($)|2 = :L“m% [6% (:L“uz)] = 2ul, + 2Uptpy + %ui (2.21)
Hence
z|Au (2)|? < zud, + 2 [ugtizs| + L2, (2.22)
Thus

2 2 2
[Aullg < [luaelg + % [zl [[taelo + p% luz [

2 2 2 2
< Nuzally + 2 (ol + luoally) + 2 el
1 2 1 9 (2.23)
= (14 1) [l + 5 el
2 2 2
< (1 2) 3 [luwall? + lualF] < (14 3) Ll
This implies
2 2 2
lull3, = lluzl? + | Aul? 224
2 2 2 .
< Jull3+ (1+3) Lully = (14 5+ & ) lul3.
The Lemma 2.6 is proved. O

3. A HIGH ORDER ITERATIVE SCHEME
First, we say that u is a weak solution of (1.1)—(1.3) if
u € L>®(0,T;V N H?), ug € L®(0,T;V), uy € L>®(0,T; L*)} (3.1)

and u satisfies the following variational equation

(uar(8),0) + (@) ) alu(®), v) = (f (@.t,u),v). (3.2)
for all v € V and a.e., t € (0,T), together with the initial conditions
’LL(O) = o, ut(o) = u1, (33)

where a(,-) is the symmetric bilinear form on V' defined by (2.11).

Now, we make the following assumptions.
(Hl) Uy € VﬁHz, u; €V,
(H3) p e CH(Ry), and there exist constants p > 1, ps > 0, g > 0, g >0
such that
(1) 0 < pwe < pu(2) < pr(1+2P), forall z >0,
(ii) |1/ (2)| < pa(l + 2P71), for all z > 0;
(H3) f e C%Jp,1] x Ry x R) such that f(p,t,0) =0, V¢ >0 and
(i) Dif € C%([p,1] x Ry xR), 1<i<N,
(i) D1DLf € CO[p,1] x R4 xR), 0<i< N —1.
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Fix T* > 0. For each M > 0 given, we set the constants Kys (1), K (f)
as follows

Ky (p) = S (1(z) + ' (2)])

Eu(f)=XN, HDscho AL (M) +Z HDlD?)cho M)

| I loga,any = suptlf (2,8, 9)| = (2, 8,) € A

where A, (M) = {(w ty) € p, 1] x [0, T x R: |y| < FM} For each

M >0and T € (0,7%], we put
W (M,T)={ue L>®(0,T;VNH?) :u € L*(0,T;V), uy € L* (Qr),
< M},

[wll oo 0, vnm2y < M, ([uell oo o,y < M el 204
Wi (M, T) = {ue W (M,T) : uy € L (0,T; L%}

Now, we establish the following recurrent sequence {u,,}. The first term is
chosen as ug = 0, suppose that

Um—1 € Wl(M, T), (3.4)

we associate (3.2) with the following problem.

Find u,, € W1 (M,T') (m > 1) satisfying the linear variational problem

{<um() V) + fim (1) alum (), v) = (Fin (1) ,v) , YV EV,

Um(o) = Uo, um(o) uy,

Q Hlit) i 56)

Sivo! FDLf (@t 1) (U — Um—1)"-

(3.5)

where

Then we have the following theorem.

Theorem 3.1. Let (H1)-(Hs) hold. Then there exist a constant M > 0 de-
pending on g, U1, 4, ¢, p and T > 0 depending on g, U1, 1, f, {,p such
that, for ugp = 0, there exists a recurrent sequence {u,,} C Wi(M,T) defined
by (3.5) and (3.6).

Proof. Step 1. Approzimating solutions. Consider the basis {w;} for V as in
Lemma 2.5. Put

uh) (1) = Sk B 6wy, (3.7)



156 L. T. P. Ngoc, L. H. K. Son, T. M. Thuyet and N. T. Long

(k)

where the coefficients c,, J satisfy the system of nonlinear differential equations

{ (i) 0,3 ) ) (1) ) 0, 03) = (FD 0 s ) G =10k
ugn)(O) = Ugk, u&’i)(()) = U1k, .
in which
Ugk = 25:1 ozg-k)wj — lig strongly V N H?,
{ Ul = Z?:l B](-k)wj — 1y strongly V, (3.9)
and
(=T
F® (@,1) = Y5 403 (@t ) (1) — ) .
= SN At 1)l
with
Ayt 1) = S S D F (1 iy (3.11)
The system (3.8), (3.9) can be written in the form
{ Ep (&) + A (D)clur(8) = Fi)(8), 1< <k,
(k) ® .0 (*) (3.12)
i (0) =, 6,5(0) = B},
where
F9() = <F7(f)(t),wj>, 1<j<k. (3.13)

It is obviously that the system (3.13) is equivalent to the system of intergal
equations

<) = ol +B(kt—)\ Jedr [ ) (s)cn)(s)ds

mj o (3.14)
+f0d Iy F, my (8)ds, 1§j§k.

Note that by (3.4), it is not difficult to prove that the system (3.14) has a
unique solution c(k)( t), 1 < j < k on interval [0, T ¢ | C
the details.

The following estimates allow one to take TT(,{C )

k.
Step 2. A priori estimates. We put

[0, 77, so let us omit

= T independent of m and

$B @) = xP (o) + ¥ 90 + fotHﬁg?(s)szs, (3.15)
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where

0] + @ a0 0,

Y =a (u$,’§) @), uP (t)) + 19 @) HAuffi) (t)HZ . 210
Then, it follows from (3.8), (3.15), (3.16), that
Sk (t) = Sk (0)+f0t ik (s) [a (uﬁ?(s),uﬁ?(s)) —i—HAugf)(s)Hz] ds
o [0 ds 2 g (R )08 (9)) ds (3.17)
+2 f(f ( (k)(s) ugf)(s)) ds
=5 (0) + Tt 1

We shall estimate the terms I; on the right-hand side of (3.17) as follows.

First term I;. By the following inequalities

||’UH0 S 1;2/) ||'Um”0 S 1772'0\/m fOI’ all v e V
V2o V2o

SW @) >y (1) [a(ugf)(t) ) +HAu ‘

o]

> s {a(u,(q}i)(t),ugi)( + HAu H ] (3.18)
[P, <2 [ufo), < e\ Ja(ul) (), (1)
< e/ S0
and
i (1)) = 2| (Hué’i’(t)@ <u£’i)(t),a£i“’(t)>'

S:"

<o (1 o) o, o
1+ (\}% ) (t)> v \/1%\/ SRI \/ S®) ()

_ _y2\p—1 p—1
= 2#2712pz* [1 + ((;piz ) (Sr(’f) (t)> ] Sin ®),

(3.19)
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we have
L= 89 6 [a (00 00) + 4 ] s
<2M2\/12L3f0[ (;5 ) (S<k)( ))p ](s(’“)( )> ds
<22 i {(5““ ) +(%2)" (n’f)(s))pﬂ ds
- <%p5 s o (s o
i )]

where

_ 2\ p—1
Ny = max{p—l— 1, N — 1} 51 2#‘2\/? |:1 + (%p;ﬁ? ) :| ’

Second term I3. (3.8); can be rewritten as follows
<u’£ﬂ)( ) >+M£ﬂ) ( ) <Augn)(t)¢w]>:<Fr(n) (t) 7wj> y J = 11 T

Hence, it follows after replacing w; with uﬁlf)(t), we obtain that

[ |

:—u,(fi)(t)<Au(k (), ik >+<F<’“

< [ 0 |au 0]+ <t>HJH H
< [0 0[] + |0 o] ]
<2(utd @) |4k +2 w0 0

<o (14 [u0))) s 27 o]

2p 2

ri o]

k _ )2
50 6) + 2052 |

<2u |1+ ( i S(k)(t)>

< 2 sﬁ’f’(t)+ Gal (S}r’f)(t))pﬂ} 4 e

2pp
<o o+ ()] [+ (s010) ]

Integrating in ¢ to get

F¥) (t)HZ

F®) (t)HZ.

=

(3.20)

(3.21)

(3.22)

(3.23)
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et (k) 2
Iy = [y |iim’ (s) Ods
_\2\P k Ny
< 2u [1 + <(;p[2 > } fg [1 + <S7(n)(5)> } ds
2
ey

= Bo f} {1+( $0) s ))Nl] ds+@f§HF£§2 (s)szs

where

B =24 [1+ <(2pu3 )p} '
Third integral Is.
Iy = 2fé< P (s), ué’i><s>> ds
< [E 5 (s)ds + L52E ” IN HE(fx H

Fourth term I4.
Ii=2 fya (FY (s). 16 (s) ) ds
<2 \/a uﬁff)(S),uﬁﬁ)(s)) \/a (F,Sf)(s), Fﬁf)(s))ds
nga@(k) ()( )ds+f0 ( )( ), F(k)( )) ds
< 3580, 50

< fJSn’;f)(s)derC’l st [HFm (s)H2—|— HF,S{?Z(S)Hﬂ ds

< [1sW(s)ds + C) (1 + &7 ")2) s HFM
Therefore, we deduce from (3.17), (3.20), (3.24), (2.24), (3.27) that

S (t) < 5% (0)+ (ﬁl+ﬁz) Ji [H( )(s))Nl] ds+2 [T S%)(s)ds

# [ 0 (14 050)] [P s
The following property of F,swg (t) is useful to continue estimates

t sﬁ’:)u))Nl] ,

o], <o

where ¢y = > ; _01 i,

159

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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- [1-p? 191, 1
KM(f) [ 2 +M+Z’f\;11 2i! Yi (Map)MZ] ) 1= 07

Ru(p2p 2000

1=1,2

N (3.30)

ﬁ(M,m:[( 1_2,)2+M>< ) “[)p)]

1<i<N-1

Indeed, by
F¥) (2, 1)
= D1 f(@,t,um—1) + D3 f(z,t, um—1)Vum—1
+ N [AD1 Dy f(,t um) (3.31)
+%D§+1f(w,t,um_1)Vum_1] (uﬁ,’i) — Upp—1)"
+ Zfi}l %D%f(x, t, um_l)z’(ug,’i) — um_l)ifl(Vugf) — Vium-1),
using inequalities
(a+b)P < 2P7YaP +bP), Ya,b>0, p>1,
and
$§<14s% Vs>0, Vi,g, 0<i<gq, (3.32)
we get
‘F,Sﬁz (m)\
< [Dif(z,t,um—1) + Ds f(@,t, um—1)Vum—1]

+ 27{\;711 [%DlDéf(x,taumfl) + %Dé—i_lf(xatvumfl)vumfl] (USZ:) - Umfl)i
+ 0 D4 @t i) = 1) (V) = V)|

9

< Rar(F) (L V) + Bor () S5 (U [Vt ) [0l = s
+KM(f) 211\;_11 % (u?(vlz) - um—l)iil(vugﬁ) - Vum_l)’
< Kar(f) L+ [V )

TR () S (1 Vo) (,/1;” (Jluszm|, + |Vum1<t>||o))i
T L Y (YL (eI

< Ku(f) (14 [Vum-l)
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u¥) (1)

FRag(f) ST (14 Vi) (\/?)i(] | 191 (0’
FRM(N TS 4 [Tl — V| (W)M (3.33)

x (s, + 1w 0l)

Hence

]

_ 1— p?
< KM(f) < 2p + ||Vum—1||0>

a2 (1) + 1V 1))

(k

) i—1
Umz (t) + ||Vum71 (t) HO
0

uk) (1)

|, +31)

_|_
=
g
=
N/
LT
2|
VR
=
ol |
S
[
+
<
N———
N
=
S|
)
N—
P
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@ N-1
=ik ( S’ (t)) <Yilta |1+ ( s <t>) ]
N-1
s90) ] ,

where v/ (M,p), 1 <i< N —1,¢,0<j<N —1, ¢y are defined by (3.30).

(3.34)

=cyp |1+

7 N

2
Now, we can estimate the intergal fg HESQ(S)HO ds. Using the property of

ol (t) as in (3.29), we obtain

2

1+< S,S’,,“)(s)>N_1] ds

<2, J [1 - (Sﬁ’f)(s))N_l] ds (3.35)
< 483, [T + Ji (s#?(s))m ds] ,

since Ny = max{2,p + 1, N — 1} > N — 1. Combining (3.28) and (3.35), it
gives

Je [P as <

N
s® ) < s (0) + TCy (M) + C1 (M) ! (s,(,f)(s)) " ds, (3.36)
in which
~ ~ N2 )2
C1(M) =2+ By + B + 422, [%Jrcl (1+%)} (3.37)

By means of the convergences (2.5), there exists a constant M > 0 independent
of k and m such that, for all m,k € N,

S1(0)
= [Jutkll§ + a (uik, uik) + p (HUOng) [G(UOkaOk:) + IIAUokH?)} (3.38)
< A
—_— 4 .
Finally, it follows from (3.36), (3.38) that

Ny

S < 2+ TC (M) + (M) [y (8W(5))  ds, (3.39)

for0<t<T® <

Then by solving a nonlinear Volterra integral inequality (3.39) (based on
the methods in [7]), the following lemma is proved.

Lemma 3.2. There exists a constant T > 0 independent of k and m such that

S¥@) < M2, Yte0,T), forall k and m € N. (3.40)
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By Lemma 3.2, we can take constant T}f ) = T for all m and k. Therefore,
we have

WP e W(M,T), foral m and ke N. (3.41)

Step 3. Convergence. Thanks to (3.41), there exists a subsequence {u,(ylf] )} of

{u } such that
u®) o, in L%(0,T;V N H?) weakly*,

W ul, in L*(0,7;V) weakly™*,

T in L2%(Qr) weakly,

Um € W(M,T).

By the compactness lemma of Lions ([6], p.57) and applying the theorem’s

(3.42)

Fischer-Riesz, from (3.42), one has a subsequence of {ugi)}, denoted by the
same symbol satisfying

{ug;:) — up, stronglyin L?*(0,7;V) and a.e. in Qr,

3.43
e (3.43)

— ! stronglyin L?(Qr) and a.e. in Qr.

On the other hand, using the inequality

o/ — b7 < jM{ ' |a—b|, Va,be[-M, M), VM >0, VjeN, (3.44)
we deduce from (3.41) and (3.42)4, that

W = | < 1‘.M) Ul ] =T )

p
Thus
(k) J_ J
H(um) (ttm) )L2(QT)
— (3.46)
Sj< ”M) [uf? , j=LN-L
T)
Therefore, (3.43) and (3.46) give
UV = (um)?  stronglyin  L2(Qr). (3.47)
We note that
|74 = ] 2
(3.48)

< Z HA (7 y Um— 1>HL°°(QT)

o (3.43) leads to

)

) = (|

L2(Qr)

J Ny o stronglyin L?(Q7). (3.49)
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On the other hand, we have

u ([ 0]) - (lumceie)

Hm - ‘ =
| (3.50)
<2M K () Hum — Uy ( )HO.
Hence, from (3.43) and (3.50), we obtain
,u#f) — [im strongly in L2(0,T). (3.51)

Passing to limit in (3.8), (3.9), we have u,, satisfying (3.5), (3.6) in L%(0,T).
On the other hand, it follows from (3.5); and (3.42)4 that

ult = —fip, (t) Aup, + Fp, € L2(0,T; L?). (3.52)

Therefore, u,, € Wi(M,T) and Theorem 3.1 is proved. O

Next, in order to obtain the main result in this section, we put
Wh(T) = {v e L>(0,T;V) : v € L*>(0,T; L?)},
then W7 (T) is a Banach space with respect to the norm

1ol iy = IVl oo, vy + 1101 oo 0,722 -

Theorem 3.3. Let (Hy)-(H3) hold. Then, there exist constants M > 0 and
T > 0 such that

(i) (1.1)-(1.3) has a unique weak solution w € Wi (M, T).

(ii) The recurrent sequence {um}, defined by (3.5) and (3.6), converges at
a rate of order N to the solution u strongly in the space W1(T) in the
sense

[t = vy, () < C 1 = ulliy, o1y » (3.53)

for all m > 1, where C is a suitable constant. On the other hand, the
estimate is fulfilled

[tm = ully, (1) < CrBY™,  for all m €N, (3.54)
in which Ct and 0 < B < 1 are the constants depending only on T.

Proof. Ezistence. We can prove that {un,} is a Cauchy sequence in Wi (T').
Indeed, let wyp, = wmy1 — Um. Then wy, satisfies the variational problem

(wip, (8), 0) + i1 () a(win (t),v) +[fms1 () = fim (8)] (A (2), 0)
= (Frn41(t) — Fp(t),v), Yvev, (3.55)
Wi (0) = w,,(0) = 0.
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Taking v = w), in (3.55)1, after integrating in ¢, we get
t fo Mm+1 wm(s)a wm(8>)d8
-2 f() /Lm+1 ( ) Hm (S)] <Aum(8)’w;n(5)>d8 (3.56)
+2 fo < Tn+1( ) — Fm(s),w;n(s»ds
=+ Jo+ Js,
where
Zm(t) = Hwin(t)Ho + fim+1 (£) a(wm(t), wm(t))
> | ;n(t)| o+ pxa(wp(t), wn;(t)) (3.57)
> | Zn( )Ilo + 1xCo [[wm (1) |7
> 2v/11xCo [[wi, (8)lg [[wm (@)l
and all integrals on the rlght — hand side of (3.56) are estimated as follows.
Estimating Jy. It follows from (3.42)4 that
i ()] = 2|3 (s )13) | Kt (8), w0 (21
< 2K (1) fum Ol lu Ol (358)
< 2Kn (1) lum ()1 sy (0)llg < 2M2 K ()
this implies that
2 -
1= Jo o (8) a(win(s), win(9))ds < “=M2Kar () fo Zun(s)ds. (3.59)
FEstimating J.
i1 (8) = o ()] = |1t (i1 1) = 1 (e (®)13) |
< Rt ()| lim 1 ()1 = s (1)) (3.60)
< 2MKn (1) lwm ()l -
Thus
Jp = =2 [ [fim+1 (8) = fim (5)] (At (s), wh, (s))ds
< AMEKr (1) [y l[wnm(5)llo (14w (5) o [[wh,(5)llo ds
4 -
< ;MQKM fo llwm H [wi (8)llg ds (3.61)
4 . 2 ~
< —M?’K M2K (1) [ Z(s)ds.

Estimating Js. Using Taylor’s expansion of the function

f(f]f,t,um) = f(.f,t, Um—1 + w’m—l)
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around the point u,,_1 up to order N, we obtain

f(m,t,um) - f(l'at’umfl)

= Zfi}l %Dgf(xamum—l)wfnfl + %D:{;Vf(xatv j\m)wrj\nffh

(3.62)

where )\, = ;\m(:r,t) = Upm—1 + 01 (U, — Um—1), 0 < 01 < 1. Hence, it follows

from (3.6) and (3.62) that

Fm+1(x, t) - Fm(x7 t)
= SNV LDk, ug)wh, + DY f(a,t, Am)wl_ .

i=1 7l

It implies that

_ 1—-p N
%KM(f)( p) eomer 1, )

B B T—o\" 1
SKM(f)valli( pp> MV an)

N
_ 1—p
wdnEa() ({=2) ol
Hence

| Fms (t) — Fm(t)”o :
2 T
<57 KM(f>Zf-V113!( H) M /7,10

p v M
1-p* - T—p\"
+ 5 K (f) < ,o> me—l\lévvlm

N!
1 2
= V2D + G Tl

(3.63)

(3.64)

(3.65)
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where
1 - 1—p? _ I—p\'
Cq(ﬂl) = K (f) 2p Zi:1l% ( p> M1,
Vi - N (3.66)
& = hEul 5 (=
T ! 9 P)
It leads to

J3 =2 Jo (P () = Fn(s), i, (s)) ds
< 2f0 HFm+1 ) Fn(s HO Hw;n(S)HOdS

<2; (CT V() + G [ 1||%1 ) v/ Zuns)ds (3.67)
S 2( +<T )fO d + TCT [ — 1HW1(T)
Then we deduce from (3.56), (3.59), (3.61) and (3.67) that

1
Zm(t) < §TC§2) w135 r)

+2 [ ! <1+ ! >M2f( 1)+ +<(2>] JE Zin(s)d (369
— M m(s)ds.
ok VN*CO H
By using Gronwall’s lemma, (3.68) yields
lwmlly oy < 11 lwm—1 i, oy » (3.69)

where

1 1 1 .
o= (v ) VB o 1 (1 (o) )

Then, it follows from (3.69) that, for all m and p,

_ =1 m
et = ol oy < (1= Br) ™" () ™1 B (3.70)

1

Choosing T' small enough such that 8y = MuY ' < 1. It follows that {u,,}
is a Cauchy sequence in W;(T'). Then there exists u € W1 (T') such that

Um —> u strongly in - Wi (T). (3.71)

Note that u,, € W1(M,T), then there exists a subsequence {uy,, } of {um,} such
that

U, — U in L0, T;V N H?) weakly*

ul, —u in L*(0,7;V) weakly*,

u in L?(Qr) kl (3.72)
" ) weakly,

ue W(M,T).
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We have

[ Eon (1) = £ tu(®)|
< Hf('ataum—l) - f('utvu(t))HO

+ HZﬁ;l %g;{ (I7t7um—1)(um - Um—l)i 0

< Kye(f) lum—1 — ullyy, (1)

i
+EKn(f) Zz]izl 7 . —2,02 < . ; ,0> [[tm — um*1||%/V1(T) :
Hence, it implies from (3.71) and (3.73) that
F — f(-,t,u(t)) strongly in L°°(0,T; L?). (3.74)
Furthermore, we have

m(®) = s (Iu®)IF) | < 22K (1) (2) = (@)

(3.73)

- (3.75)
< 2M K (1) llum = ully, (1) -
Hence, from (3.71) and (3.75), we obtain
fim(t) = (||u(t)||§) strongly in  L>(0,T). (3.76)

Finally, passing to limit in (3.5), (3.6) as m = m; — oo, there exists u €
W(M,T) satisfying the equation

w'(6),0) + o (@) alu(®),v) = (FC.tu®),0),  (B.77)
for all v € V and the initial conditions
U(O) = ﬂo, UI(O) = ’17,1. (378)

Uniqueness. Applying a similar argument used in the proof of Theorem 3.1,
u € Wi (M,T) is a unique local weak solution of (1.1)—(1.3).

Passing to the limit in (3.70) as p — +oco for fixed m, we get (3.54). Also
with a similar argument, (3.53) follows. Theorem 3.3 is proved completely. [

Remark 3.4. In order to construct a N-order iterative scheme, we need the
condition (H3). Then, we get a convergent sequence at a rate of order N to
a local unique weak solution of the problem and the existence follows. This
condition of f can be relaxed if we only consider the existence of solutions,
see [8], [16].
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