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Abstract. This paper is devoted to the study of a nonlinear Carrier wave equation in the

annular associated with Robin-Dirichlet conditions. Using a high order iterative scheme, the

existence of a local unique weak solution is proved. Moreover, the sequence established here

converges to a unique weak solution at a rate of order N with N ≥ 2.

1. Introduction

In this paper, we consider the following nonlinear Carrier wave equation in
the annular

utt − µ(‖u(t)‖20)(uxx + 1
xux) = f(x, t, u), ρ < x < 1, 0 < t < T, (1.1)
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associated with Robin-Dirichlet conditions

u(ρ, t) = 0, ux(1, t) + ζu(1, t) = 0 (1.2)

and initial conditions

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where µ, f, ũ0, ũ1 are given functions and ρ, ζ are given constants with 0 < ρ
< 1. In (1.1), the nonlinear term µ(‖u(t)‖20) depends on the integral ‖u(t)‖20 =∫ 1
ρ xu

2 (x, t) dx.

(1.1) herein is the bidimensional nonlinear wave equation describing nonlin-
ear vibrations of the annular membrane Ω1 = {(x, y) : ρ2 < x2 + y2 < 1}. In
the vibration processing, the area of the annular membrane and the tension at
various points change in time. The condition on the boundary Γ1 = {(x, y) :
x2 + y2 = 1}, that is ux(1, t) + ζu(1, t) = 0, describes elastic constraints where
ζ the constant has a mechanical signification. And with the boundary con-
ditions on Γρ = {(x, y) : x2 + y2 = ρ2} requiring u(ρ, t) = 0, the annular
membrane is fixed.

In [1], Carrier established the equation which models vibrations of an elastic
string when changes in tension are not small

ρutt −
(

1 + EA
LT0

∫ L
0 u2(y, t)dy

)
uxx = 0, (1.5)

where u(x, t) is the x-derivative of the deformation, T0 is the tension in the
rest position, E is the Young modulus, A is the cross-section of a string, L is
the length of a string and ρ is the density of a material. Clearly, if properties
of a material vary with x and t, then there is a hyperbolic equation of the type
(Larkin [5])

utt −B
(
x, t,

∫ 1
0 u

2 (y, t) dy
)
uxx = 0. (1.6)

The Kirchhoff-Carrier equations of the form (1.1) received much attention.
We refer the reader to, e.g., Cavalcanti et al. [2], Ebihara, Medeiros and
Miranda [4], Larkin [5], Medeiros [10], Miranda et al. [11], for many interesting
results and further references.

Motivated by results for nonlinear wave equations in [8], [9], where recurrent
sequences converge at a rate of order 1 or 2, we will construct a high order
iterative scheme to obtain a convergent sequence at a rate of order N to a local
weak solution of (1.1)–(1.3). This scheme is established based on a high order
method for solving operator equation F (x) = 0, it also has been applied in
[12], [13], [17] and some other works. It is well known that, Newton’s method
and its variants are used to solve nonlinear operator equations, see [14] and
references therein. In case lim

n→∞
un = u, one speaks of convergence of order
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N if |un+1 − u| ≤ C|un − u|N for some C > 0 and all large N. In the special
cases N = 1 with C < 1 and N = 2 one also speaks of linear and quadratic
convergence, respectively, see [3]. Here we shall associate with (1.1) a recurrent
sequence {um} defined by

∂2um
∂t2

− µ(‖um(t)‖20)

(
∂2um
∂x2

+
1

x

∂um
∂x

)
=
∑N−1

i=0

1

i!

∂if

∂ui
(x, t, um−1)(um − um−1)i,

(1.7)

ρ < x < 1, 0 < t < T with um satisfying (1.2), (1.3) and u0 ≡ 0. If
f ∈ CN ([ρ, 1] × R+ × R), we prove that the sequence {um} converges at a
rate of order N to a local weak solution of (1.1)–(1.3). We note more that,
the result obtained here is local (in time T small enough), because T is chosen
corresponding to the size of the initial data, see (3.40) in Section 3. In our
proofs, the Faedo-Galerkin approximation method associated to a priori es-
timates, weak convergence, compactness techniques and a known fixed point
theorem are used. Our results can be regarded as an extension and improve-
ment of the corresponding results of [8], [9], [16].

2. Preliminaries

Put Ω = (ρ, 1), QT = Ω × (0, T ), T > 0. We will omit the definitions of
the usual function spaces and denote them by the notations Lp = Lp(Ω),
Hm = Hm (Ω) . The norm in L2 is denoted by ‖·‖ . We also denote by (·, ·) the
scalar product in L2.We denoted by ‖·‖X the norm of a Banach spaceX and by
X ′ the dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space
of real functions u : (0, T ) → X measurable such that ‖u‖Lp(0,T ;X) < +∞,
with

‖u‖Lp(0,T ;X) =


(∫ T

0 ||u(t)||pXdt
)1/p

, if 1 ≤ p <∞,
ess sup
0<t<T

||u(t)||X , if p =∞.

With f ∈ Ck([ρ, 1] × R+ × R), f = f(x, t, y), we put D1f = ∂f
∂x , D2f = ∂f

∂t ,

D3f = ∂f
∂y and Dαf = Dα1

1 Dα2
2 Dα3

3 f, α = (α1, α2, α3) ∈ Z3
+, |α| = α1 + α2 +

α3 = k, D(0,0,0)f = f.
On H1, H2, we shall use the following norms

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

) 1
2

(2.1)

and

‖v‖H2 =
(
‖v‖2 + ‖vx‖2 + ‖vxx‖2

) 1
2
, (2.2)

respectively.
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Note that L2, H1, H2 are also the Hilbert spaces with respect to the corre-
sponding scalar products

〈u, v〉 =

∫ 1

ρ
xu (x) v (x) dx,

〈u, v〉+ 〈ux, vx〉, 〈u, v〉+ 〈ux, vx〉+ 〈uxx, vxx〉,
(2.3)

respectively. The norms in L2, H1 and H2 induced by the corresponding
scalar products (2.3) are denoted by ‖·‖0 , ‖·‖1 and ‖·‖2 , respectively.

We put
V =

{
v ∈ H1 : v (ρ) = 0

}
. (2.4)

Then V is a closed subspace of H1 and on V two norms ‖v‖H1 and ‖vx‖ are
equivalent norms. V1 is continuously and densely embedded in L2. Identifying

L2 with
(
L2
)′

(the dual of L2), we have V ↪→ L2 ↪→ V ′. We remark that the
notation 〈·, ·〉 is also used for the pairing between V and V ′.

We have the following lemmas.

Lemma 2.1. We have the following inequalities

(i)
√
ρ ‖v‖ ≤ ‖v‖0 ≤ ‖v‖ , ∀ v ∈ L2,

(ii)
√
ρ ‖v‖H1 ≤ ‖v‖1 ≤ ‖v‖H1 , ∀ v ∈ H1.

Proof. From the following inequalities

ρ
∫ 1
ρ v

2 (x) dx ≤
∫ 1
ρ xv

2 (x) dx ≤
∫ 1
ρ v

2 (x) dx, for all v ∈ L2,

ρ
∫ 1
ρ v

2
x (x) dx ≤

∫ 1
ρ xv

2
x (x) dx ≤

∫ 1
ρ v

2
x (x) dx, for all v ∈ H1,

the Lemma 2.1 is proved. �

Lemma 2.2. The embedding V ↪→ C0
(
Ω
)

is compact and for all v ∈ V, we
have

(i) ‖v‖C0(Ω) ≤
√

1− ρ ‖vx‖ ,

(ii) ‖v‖ ≤ 1−ρ√
2
‖vx‖ ,

(iii) ‖v‖0 ≤
1−ρ√

2ρ
‖vx‖0 ,

(iv) ‖vx‖20 + v2 (1) ≥ ‖v‖20 ,
(v) |v (1)| ≤

√
3 ‖v‖1 .

Proof. The embedding V ↪→ H1 is continuous and the embedding H1 ↪→
C0
(
Ω
)

is compact, so the embedding V ↪→ C0
(
Ω
)

is compact.

(i) For all v ∈ V and x ∈ [ρ, 1] ,

|v (x)| =
∣∣∣∣∫ x

ρ
vx (y) dy

∣∣∣∣ ≤ ∫ 1

ρ
|vx (y)| dy ≤

√
1− ρ ‖vx‖ . (2.5)
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(ii) For all v ∈ V and x ∈ [ρ, 1] ,

v2 (x) =

∣∣∣∣∫ x

ρ
vx (y) dy

∣∣∣∣2 ≤ (x− ρ)

∫ x

ρ
v2
x (y) dy ≤ (x− ρ) ‖vx‖2 . (2.6)

Integrating over x from ρ to 1, we obtain

‖v‖2 =

∫ 1

ρ
v2 (x) dx ≤

∫ 1

ρ
(x− ρ) ‖vx‖2 dx =

(1− ρ)2

2
‖vx‖2 . (2.7)

(iii) For all v ∈ V,

‖v‖0 ≤ ‖v‖ ≤
1− ρ√

2
‖vx‖ ≤

1− ρ√
2ρ
‖vx‖0 . (2.8)

(iv) By using integration by part we have, for any v ∈ V,

‖v‖20 =
∫ 1
ρ xv

2 (x) dx = 1
2

[
x2v2 (x)

]1
ρ
−
∫ 1
ρ x

2v (x) vx (x) dx,
1
2v

2 (1)−
∫ 1
ρ x

2v (x) vx (x) dx

≤ 1
2v

2 (1) + ‖v‖0 ‖vx‖0 ≤
1
2v

2 (1) + 1
2

(
‖v‖20 + ‖vx‖20

)
,

(2.9)

which implies (iv).

(v) By ‖v‖20 = 1
2v

2 (1)−
∫ 1
ρ x

2v (x) vx (x) dx, we have,

v2 (1) = 2 ‖v‖20 + 2
∫ 1
ρ x

2v (x) vx (x) dx

≤ 2 ‖v‖20 + 2 ‖v‖0 ‖vx‖0 ≤ 2 ‖v‖20 + ‖v‖20 + ‖vx‖20 ≤ 3 ‖v‖21 ,
(2.10)

it gives (v). The Lemma 2.2 is proved. �

Remark 2.3. On L2, two norms v 7→ ‖v‖ and v 7→ ‖v‖0 are equivalent. So are
two norms v 7→ ‖v‖H1 and v 7→ ‖v‖1 on H1, and five norms v 7→ ‖v‖H1 , v 7→
‖v‖1 , v 7→ ‖vx‖ , v 7→ ‖vx‖0 and v 7→

√
‖vx‖20 + v2 (1) on V.

Now, we define the bilinear form

a (u, v) = ζu (1) v (1) +

∫ 1

ρ
xux (x) vx (x) dx for all u, v ∈ V1, (2.11)

where ζ ≥ 0 is a constant. We then have the following lemma.

Lemma 2.4. The symmetric bilinear form a (·, ·) defined by (2.11) is contin-
uous on V × V and coercive on V, i.e.,

(i) |a (u, v)| ≤ C1 ‖u‖1 ‖v‖1 ,
(ii) a (v, v) ≥ C0 ‖v‖21 ,
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for all u, v ∈ V, where C0 = 1
2 min{1, 2ρ

(1−ρ)2
} and C1 = 1 + 3ζ.

Proof. (i) By
√

1− ρ ‖vx‖ ≥ ‖v‖C0(Ω) ≥ |v (1)| and
√
ρ ‖vx‖ ≤ ‖vx‖0 for all

v ∈ V, we have

|a (u, v)| ≤ ζ |u (1)| |v (1)|+
∫ 1

ρ
|xux (x) vx (x)| dx

≤ 3ζ ‖u‖1 ‖v‖1 + ‖ux‖0 ‖vx‖0 ≤ (3ζ + 1) ‖u‖1 ‖v‖1 .

(ii) By the inequality

‖vx‖20 ≥
2ρ

(1− ρ)2 ‖v‖
2
0 ,

we have

a (v, v) = ζv2 (1) +

∫ 1

ρ
xv2

x (x) dx = ζv2 (1) + ‖vx‖20

≥ ‖vx‖20 =
1

2
‖vx‖20 +

1

2
‖vx‖20

≥ 1

2
‖vx‖20 +

1

2

2ρ

(1− ρ)2 ‖v‖
2
0 ≥

1

2
min

{
1,

2ρ

(1− ρ)2

}
‖v‖21 .

The Lemma 2.4 is proved. �

Lemma 2.5. There exists the Hilbert orthonormal base {wj} of the space L2

consisting of eigenfunctions wj corresponding to eigenvalues λj such that

(i) 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ λj+1 ≤ · · · , lim
j→+∞

λj = +∞,

(ii) a (wj , v) = λj 〈wj , v〉 for all v ∈ V, j = 1, 2, · · · .
(2.12)

Furthermore, the sequence {wj/
√
λj} is also the Hilbert orthonormal base of

V with respect to the scalar product a (·, ·) .
On the other hand, we also have wj satisfying the following boundary value

problem{
Awj ≡ −

(
wjxx + 1

xwjx
)

= − 1
x
∂
∂x (xwjx) = λjwj , in Ω,

wj (ρ) = wjx(1) + ζwj(1) = 0, wj ∈ C∞ ([ρ, 1]) .
(2.13)

Proof. The proof of Lemma 2.5 can be found in [[15], p.87, Theorem 7.7], with
H = L2 and a(·, ·) as defined by (2.11). �

We also note that the operator A : V −→ V ′ in (2.13) is uniquely defined
by the Lax-Milgram’s lemma, i.e.,

a (u, v) = 〈Au, v〉 for all u, v ∈ V. (2.14)
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Lemma 2.6. On V ∩H2, three norms

v 7→ ‖v‖H2 , v 7→ ‖v‖2 =

√
‖v‖20 + ‖vx‖20 + ‖vxx‖20

and

v 7→ ‖v‖2∗ =

√
‖vx‖20 + ‖Av‖20

are equivalent.

Proof. (i) It is easy to see that two norms

v 7→ ‖v‖H2 , v 7→ ‖v‖2 =

√
‖v‖20 + ‖vx‖20 + ‖vxx‖20

are equivalent on V ∩H2, because of
√
ρ ‖v‖H2 ≤ ‖v‖2 ≤ ‖v‖H2 for all v ∈ H2. (2.15)

(ii) For all x ∈ [ρ, 1] , and v ∈ V ∩H2, we have

x |Au (x)|2 = x 1
x2

[
∂
∂x (xux)

]2
= xu2

xx + 2uxuxx + 1
xu

2
x. (2.16)

(ii)-(a). We verify ‖u‖2 ≤ const ‖u‖2∗ .
It follows from (2.16) that

xu2
xx ≤ x |Au (x)|2 + 2 |uxuxx|+ 1

xu
2
x. (2.17)

Hence

‖uxx‖20 ≤ ‖Au‖
2
0 + 2

ρ ‖ux‖0 ‖uxx‖0 + 1
ρ2
‖ux‖20

≤ ‖Au‖20 + 1
ρ

(
2
ρ ‖ux‖

2
0 +

ρ

2
‖uxx‖20

)
+ 1

ρ2
‖ux‖20

= ‖Au‖20 + 2
ρ2
‖ux‖20 + 1

2 ‖uxx‖
2
0 + 1

ρ2
‖ux‖20 .

(2.18)

This implies that

‖uxx‖20 ≤ 2 ‖Au‖20 + 6
ρ2
‖ux‖20 ≤ 2

(
1 + 3

ρ2

)(
‖Au‖20 + ‖ux‖20

)
≤ 2

(
1 + 3

ρ2

)
‖u‖22∗ .

(2.19)

By ‖v‖0 ≤
1−ρ√

2ρ
‖vx‖0 , for all v ∈ V, we get

‖u‖22 = ‖u‖20 + ‖ux‖20 + ‖uxx‖20
≤ (1−ρ)2

2ρ ‖ux‖20 + ‖ux‖20 + ‖uxx‖20
=
(

1 + (1−ρ)2

2ρ

)
‖ux‖20 + ‖uxx‖20

≤
(

1 + (1−ρ)2

2ρ

)
‖u‖22∗ + 2

(
1 + 3

ρ2

)
‖u‖22∗

=
(

(1−ρ)2

2ρ + 3 + 6
ρ2

)
‖u‖22∗ .

(2.20)

(ii)-(b). We verify ‖u‖2∗ ≤ const ‖u‖2 .
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It follows from (2.16) that

x |Au (x)|2 = x 1
x2

[
∂
∂x (xux)

]2
= xu2

xx + 2uxuxx + 1
xu

2
x. (2.21)

Hence

x |Au (x)|2 ≤ xu2
xx + 2 |uxuxx|+ 1

xu
2
x. (2.22)

Thus

‖Au‖20 ≤ ‖uxx‖
2
0 + 2

ρ ‖ux‖0 ‖uxx‖0 + 1
ρ2
‖ux‖20

≤ ‖uxx‖20 + 1
ρ

(
‖ux‖20 + ‖uxx‖20

)
+ 1

ρ2
‖ux‖20

=
(

1 + 1
ρ

) [
‖uxx‖20 + 1

ρ ‖ux‖
2
0

]
≤
(

1 + 1
ρ

)
1
ρ

[
‖uxx‖20 + ‖ux‖20

]
≤
(

1 + 1
ρ

)
1
ρ ‖u‖

2
2 .

(2.23)

This implies

‖u‖22∗ = ‖ux‖20 + ‖Au‖20
≤ ‖u‖22 +

(
1 + 1

ρ

)
1
ρ ‖u‖

2
2 =

(
1 + 1

ρ + 1
ρ2

)
‖u‖22 .

(2.24)

The Lemma 2.6 is proved. �

3. A high order iterative scheme

First, we say that u is a weak solution of (1.1)–(1.3) if

u ∈ L∞(0, T ;V ∩H2), ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2)} (3.1)

and u satisfies the following variational equation

〈utt(t), v〉+ µ
(
‖u(t)‖20

)
a(u(t), v) = 〈f (x, t, u) , v〉 , (3.2)

for all v ∈ V and a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, ut(0) = ũ1, (3.3)

where a(·, ·) is the symmetric bilinear form on V defined by (2.11).

Now, we make the following assumptions.

(H1) ũ0 ∈ V ∩H2, ũ1 ∈ V ;

(H2) µ ∈ C1 (R+) , and there exist constants p > 1, µ∗ > 0, µ1 > 0, µ2 > 0
such that

(i) 0 < µ∗ ≤ µ(z) ≤ µ1(1 + zp), for all z ≥ 0,

(ii) |µ′(z)| ≤ µ2(1 + zp−1), for all z ≥ 0;

(H3) f ∈ C0([ρ, 1]× R+ × R) such that f(ρ, t, 0) = 0, ∀ t ≥ 0 and
(i) Di

3f ∈ C0([ρ, 1]× R+ × R), 1 ≤ i ≤ N,
(ii) D1D

i
3f ∈ C0([ρ, 1]× R+ × R), 0 ≤ i ≤ N − 1.
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Fix T ∗ > 0. For each M > 0 given, we set the constants K̃M (µ) , K̄M (f)
as follows

K̃M (µ) = sup
0≤z≤M2

(µ(z) + |µ′(z)|) ,

K̄M (f) =
∑N

i=0

∥∥Di
3f
∥∥
C0(A∗(M))

+
∑N−1

i=1

∥∥D1D
i
3f
∥∥
C0(A∗(M))

,

‖f‖C0(A∗(M)) = sup{|f(x, t, y)| : (x, t, y) ∈ A∗ (M)},

where A∗ (M) =

{
(x, t, y) ∈ [ρ, 1]× [0, T ∗]× R : |y| ≤

√
1− ρ
ρ

M

}
. For each

M > 0 and T ∈ (0, T ∗], we put

W (M,T ) = {u ∈ L∞
(
0, T ;V ∩H2

)
: ut ∈ L∞ (0, T ;V ) , utt ∈ L2 (QT ) ,

‖u‖L∞(0,T ;V ∩H2) ≤M, ‖ut‖L∞(0,T ;V ) ≤M, ‖utt‖L2(QT ) ≤M},
W1 (M,T ) = {u ∈W (M,T ) : utt ∈ L∞

(
0, T ;L2

)
}.

Now, we establish the following recurrent sequence {um}. The first term is
chosen as u0 ≡ 0, suppose that

um−1 ∈W1(M,T ), (3.4)

we associate (3.2) with the following problem.

Find um ∈W1(M,T ) (m ≥ 1) satisfying the linear variational problem{
〈üm(t), v〉+ µ̄m (t) a(um(t), v) =

〈
F̄m (t) , v

〉
, ∀ v ∈ V,

um(0) = ũ0, u̇m(0) = ũ1,
(3.5)

where

µ̄m (t) = µ
(
‖um(t)‖20

)
,

F̄m(x, t) =
∑N−1

i=0
1
i!D

i
3f(x, t, um−1)(um − um−1)i.

(3.6)

Then we have the following theorem.

Theorem 3.1. Let (H1)-(H3) hold. Then there exist a constant M > 0 de-
pending on ũ0, ũ1, µ, ζ, ρ and T > 0 depending on ũ0, ũ1, µ, f, ζ, ρ such
that, for u0 ≡ 0, there exists a recurrent sequence {um} ⊂ W1(M,T ) defined
by (3.5) and (3.6).

Proof. Step 1. Approximating solutions. Consider the basis {wj} for V as in
Lemma 2.5. Put

u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj , (3.7)
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where the coefficients c
(k)
mj satisfy the system of nonlinear differential equations{ 〈

ü
(k)
m (t), wj

〉
+µ

(k)
m (t) a(u

(k)
m (t), wj)=

〈
F

(k)
m (t) , wj

〉
, j = 1, · · · , k,

u
(k)
m (0) = u0k, u̇

(k)
m (0) = u1k,

(3.8)

in which {
u0k =

∑k
j=1 α

(k)
j wj −→ ũ0 strongly V ∩H2,

u1k =
∑k

j=1 β
(k)
j wj −→ ũ1 strongly V,

(3.9)

and 
µ

(k)
m (t) = µ

(∥∥∥u(k)
m (t)

∥∥∥2

0

)
,

F
(k)
m (x, t) =

∑N−1
i=0

1
i!D

i
3f(x, t, um−1)(u

(k)
m − um−1)i

=
∑N−1

j=0 Aj(x, t, um−1)(u
(k)
m )j ,

(3.10)

with

Aj(x, t, um−1) =
∑N−1

i=j
(−1)i−j

j!(i−j)!D
i
3f(x, t, um−1)ui−jm−1. (3.11)

The system (3.8), (3.9) can be written in the form{
c̈

(k)
mj(t) + λjµ

(k)
m (t)c

(k)
mj(t) = F

(k)
mj (t), 1 ≤ j ≤ k,

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j ,

(3.12)

where

F
(k)
mj (t) =

〈
F

(k)
m (t), wj

〉
, 1 ≤ j ≤ k. (3.13)

It is obviously that the system (3.13) is equivalent to the system of intergal
equations

c
(k)
mj(t) = α

(k)
j + β

(k)
j t− λj

∫ t
0 dτ

∫ τ
0 µ

(k)
m (s)c

(k)
mj(s)ds

+
∫ t

0 dτ
∫ τ

0 F
(k)
mj (s)ds, 1 ≤ j ≤ k.

(3.14)

Note that by (3.4), it is not difficult to prove that the system (3.14) has a

unique solution c
(k)
mj(t), 1 ≤ j ≤ k on interval [0, T

(k)
m ] ⊂ [0, T ], so let us omit

the details.
The following estimates allow one to take T

(k)
m = T independent of m and

k.

Step 2. A priori estimates. We put

S
(k)
m (t) = X

(k)
m (t) + Y

(k)
m (t) +

∫ t
0

∥∥∥ü(k)
m (s)

∥∥∥2

0
ds, (3.15)
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where 
X

(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2

0
+ µ

(k)
m (t) a(u

(k)
m (t), u

(k)
m (t)),

Y
(k)
m (t) = a

(
u̇

(k)
m (t), u̇

(k)
m (t)

)
+ µ

(k)
m (t)

∥∥∥Au(k)
m (t)

∥∥∥2

0
.

(3.16)

Then, it follows from (3.8), (3.15), (3.16), that

S
(k)
m (t) = S

(k)
m (0)+

∫ t
0 µ̇

(k)
m (s)

[
a
(
u

(k)
m (s), u

(k)
m (s)

)
+
∥∥∥Au(k)

m (s)
∥∥∥2

0

]
ds

+
∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2

0
ds+ 2

∫ t
0

〈
F

(k)
m (s) , u̇

(k)
m (s)

〉
ds

+2
∫ t

0 a
(
F

(k)
m (s), u̇

(k)
m (s)

)
ds

≡ S(k)
m (0) +

∑4
j=1 Ij .

(3.17)

We shall estimate the terms Ij on the right–hand side of (3.17) as follows.

First term I1. By the following inequalities

‖v‖0 ≤
1−ρ√

2ρ
‖vx‖0 ≤

1−ρ√
2ρ

√
a(v, v) for all v ∈ V,

S
(k)
m (t) ≥ µm (t)

[
a(u

(k)
m (t), u

(k)
m (t)) +

∥∥∥Au(k)
m (t)

∥∥∥2

0

]
≥ µ∗

[
a(u

(k)
m (t), u

(k)
m (t)) +

∥∥∥Au(k)
m (t)

∥∥∥2

0

]
,∥∥∥u(k)

m (t)
∥∥∥

0
≤ 1−ρ√

2ρ

∥∥∥u(k)
mx(t)

∥∥∥
0
≤ 1−ρ√

2ρ

√
a(u

(k)
m (t), u

(k)
m (t)

≤ 1−ρ√
2ρµ∗

√
S

(k)
m (t)

(3.18)

and∣∣∣µ̇(k)
m (t)

∣∣∣ = 2

∣∣∣∣µ′(∥∥∥u(k)
m (t)

∥∥∥2

0

)
〈u(k)
m (t), u̇

(k)
m (t)〉

∣∣∣∣
≤ 2µ2

(
1 +

∥∥∥u(k)
m (t)

∥∥∥2p−2

0

)∥∥∥u(k)
m (t)

∥∥∥
0

∥∥∥u̇(k)
m (t)

∥∥∥
0

≤ 2µ2

[
1+

(
1−ρ√
2ρµ∗

√
S

(k)
m (t)

)2p−2
]

1−ρ√
2ρµ∗

√
S

(k)
m (t)

√
S

(k)
m (t)

= 2µ2
1−ρ√
2ρµ∗

[
1 +

(
(1−ρ)2

2ρµ∗

)p−1 (
S

(k)
m (t)

)p−1
]
S

(k)
m (t),

(3.19)
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we have

I1 =
∫ t

0 µ̇
(k)
m (s)

[
a
(
u

(k)
m (s), u

(k)
m (s)

)
+
∥∥∥Au(k)

m (s)
∥∥∥2

0

]
ds

≤ 2µ2
1−ρ√
2ρµ3∗

∫ t
0

[
1 +

(
(1−ρ)2

2ρµ∗

)p−1 (
S

(k)
m (s)

)p−1
](
S

(k)
m (s)

)2
ds

≤ 2µ2
1−ρ√
2ρµ3∗

∫ t
0

[(
S

(k)
m (s)

)2
+
(

(1−ρ)2

2ρµ∗

)p−1 (
S

(k)
m (s)

)p+1
]
ds

≤ 2µ2
1−ρ√
2ρµ3∗

[
1 +

(
(1−ρ)2

2ρµ∗

)p−1
] ∫ t

0

[
1 +

(
S

(k)
m (s)

)N1
]
ds

= β̃1

∫ t
0

[
1 +

(
S

(k)
m (s)

)N1
]
ds,

(3.20)

where

N1 = max{p+ 1, N − 1}, β̃1 = 2µ2
1−ρ√
2ρµ3∗

[
1 +

(
(1−ρ)2

2ρµ∗

)p−1
]
. (3.21)

Second term I2. (3.8)1 can be rewritten as follows〈
ü

(k)
m (t), wj

〉
+µ

(k)
m (t)

〈
Au

(k)
m (t), wj

〉
=
〈
F

(k)
m (t) , wj

〉
, j = 1, · · · , k. (3.22)

Hence, it follows after replacing wj with ü
(k)
m (t), we obtain that∥∥∥ü(k)

m (t)
∥∥∥2

0

= −µ(k)
m (t)

〈
Au

(k)
m (t), ü

(k)
m (t)

〉
+
〈
F

(k)
m (t) , ü

(k)
m (t)

〉
≤
[
µ

(k)
m (t)

∥∥∥Au(k)
m (t)

∥∥∥
0

+
∥∥∥F (k)

m (t)
∥∥∥

0

] ∥∥∥ü(k)
m (s)

∥∥∥
0

≤
[
µ

(k)
m (t)

∥∥∥Au(k)
m (t)

∥∥∥
0

+
∥∥∥F (k)

m (t)
∥∥∥

0

]2

≤ 2
(
µ

(k)
m (t)

)2 ∥∥∥Au(k)
m (t)

∥∥∥2

0
+ 2

∥∥∥F (k)
m (t)

∥∥∥2

0

≤ 2µ1

(
1 +

∥∥∥u(k)
m (t)

∥∥∥2p

0

)
S

(k)
m (t) + 2

∥∥∥F (k)
m (t)

∥∥∥2

0

≤ 2µ1

[
1 +

(
1−ρ√
2ρµ∗

√
S

(k)
m (t)

)2p
]
S

(k)
m (t) + 2 (1−ρ)2

2ρ

∥∥∥F (k)
mx (t)

∥∥∥2

0

≤ 2µ1

[
S

(k)
m (t) +

(
(1−ρ)2

2ρµ∗

)p (
S

(k)
m (t)

)p+1
]

+ (1−ρ)2

ρ

∥∥∥F (k)
mx (t)

∥∥∥2

0

≤ 2µ1

[
1 +

(
(1−ρ)2

2ρµ∗

)p] [
1 +

(
S

(k)
m (t)

)N1
]

+ (1−ρ)2

ρ

∥∥∥F (k)
mx (t)

∥∥∥2

0
.

(3.23)

Integrating in t to get
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I2 =
∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2

0
ds

≤ 2µ1

[
1 +

(
(1−ρ)2

2ρµ∗

)p] ∫ t
0

[
1 +

(
S

(k)
m (s)

)N1
]
ds

+ (1−ρ)2

ρ

∫ t
0

∥∥∥F (k)
mx (s)

∥∥∥2

0
ds

= β̃2

∫ t
0

[
1 +

(
S

(k)
m (s)

)N1
]
ds+ (1−ρ)2

ρ

∫ t
0

∥∥∥F (k)
mx (s)

∥∥∥2

0
ds,

(3.24)

where

β̃2 = 2µ1

[
1 +

(
(1−ρ)2

2ρµ∗

)p]
. (3.25)

Third integral I3.

I3 = 2
∫ t

0

〈
F

(k)
m (s) , u̇

(k)
m (s)

〉
ds

≤
∫ t

0 S
(k)
m (s)ds+ (1−ρ)2

2ρ

∫ t
0

∥∥∥F (k)
mx (s)

∥∥∥2

0
ds.

(3.26)

Fourth term I4.

I4 = 2
∫ t

0 a
(
F

(k)
m (s), u̇

(k)
m (s)

)
ds

≤ 2
∫ t

0

√
a
(
u̇

(k)
m (s), u̇

(k)
m (s)

)√
a
(
F

(k)
m (s), F

(k)
m (s)

)
ds

≤
∫ t

0 a
(
u̇

(k)
m (s), u̇

(k)
m (s)

)
ds+

∫ t
0 a
(
F

(k)
m (s), F

(k)
m (s)

)
ds

≤
∫ t

0 S
(k)
m (s)ds+ C1

∫ t
0

∥∥∥F (k)
m (s)

∥∥∥2

1
ds

≤
∫ t

0 S
(k)
m (s)ds+ C1

∫ t
0

[∥∥∥F (k)
m (s)

∥∥∥2

0
+
∥∥∥F (k)

mx(s)
∥∥∥2

0

]
ds

≤
∫ t

0 S
(k)
m (s)ds+ C1

(
1 + (1−ρ)2

2ρ

) ∫ t
0

∥∥∥F (k)
mx(s)

∥∥∥2

0
ds.

(3.27)

Therefore, we deduce from (3.17), (3.20), (3.24), (2.24), (3.27) that

S
(k)
m (t) ≤ S(k)

m (0)+
(
β̃1+β̃2

) ∫ t
0

[
1+
(
S

(k)
m (s)

)N1
]
ds+2

∫ t
0 S

(k)
m (s)ds

+
[

3(1−ρ)2

2ρ + C1

(
1 + (1−ρ)2

2ρ

)] ∫ t
0

∥∥∥F (k)
mx(s)

∥∥∥2

0
ds.

(3.28)

The following property of F
(k)
mx(t) is useful to continue estimates∥∥∥F (k)

mx(t)
∥∥∥

0
≤ c̄M

[
1 +

(√
S

(k)
m (t)

)N−1
]
, (3.29)

where c̄M =
∑N−1

i=0 c̃i,
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c̃i =


K̄M (f)

[√
1−ρ2

2
+M+

∑N−1
i=1

2i−1

i! γ
∗
i (M,ρ)M i

]
, i = 0,

K̄M (f)2i−1

i!

γ∗i (M,ρ)√
µi∗

, i = 1, 2, · · · , N − 1,

γ∗i (M,ρ) =

[(√
1− ρ2

2
+M

)(√
1− ρ
ρ

)i
+ i

(√
1− ρ
ρ

)i−1
]
,

1 ≤ i ≤ N − 1.

(3.30)

Indeed, by

F
(k)
mx(x, t)

= D1f(x, t, um−1) +D3f(x, t, um−1)∇um−1

+
∑N−1

i=1

[
1
i!D1D

i
3f(x, t, um−1)

+ 1
i!D

i+1
3 f(x, t, um−1)∇um−1

]
(u

(k)
m − um−1)i

+
∑N−1

i=1
1
i!D

i
3f(x, t, um−1)i(u

(k)
m − um−1)i−1(∇u(k)

m −∇um−1),

(3.31)

using inequalities

(a+ b)p ≤ 2p−1(ap + bp), ∀ a, b > 0, p ≥ 1,

and

si ≤ 1 + sq, ∀ s ≥ 0, ∀ i, q, 0 ≤ i ≤ q, (3.32)

we get∣∣∣F (k)
mx(x, t)

∣∣∣
≤ |D1f(x, t, um−1) +D3f(x, t, um−1)∇um−1|

+
∑N−1
i=1

∣∣∣[ 1i!D1D
i
3f(x, t, um−1) + 1

i!D
i+1
3 f(x, t, um−1)∇um−1

]
(u

(k)
m − um−1)i

∣∣∣
+
∑N−1
i=1

∣∣∣ 1i!Di
3f(x, t, um−1)i(u

(k)
m − um−1)i−1(∇u(k)m −∇um−1)

∣∣∣
≤ K̄M (f) (1 + |∇um−1|) + K̄M (f)

∑N−1
i=1

1
i! (1 + |∇um−1|)

∣∣∣u(k)m − um−1

∣∣∣i
+K̄M (f)

∑N−1
i=1

i
i!

∣∣∣(u(k)m − um−1)i−1(∇u(k)m −∇um−1)
∣∣∣

≤ K̄M (f) (1 + |∇um−1|)

+K̄M (f)
∑N−1
i=1

1
i! (1 + |∇um−1|)

(√
1− ρ
ρ

(∥∥∥u(k)mx(t)
∥∥∥
0

+ ‖∇um−1(t)‖0
))i

+K̄M (f)
∑N−1
i=1

i
i!

∣∣∣∇u(k)m −∇um−1

∣∣∣ (√1− ρ
ρ

(∥∥∥u(k)mx(t)
∥∥∥
0

+ ‖∇um−1(t)‖0
))i−1

≤ K̄M (f) (1 + |∇um−1|)
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+K̄M (f)
∑N−1
i=1

1
i! (1+|∇um−1|)

(√
1−ρ
ρ

)i(∥∥∥u(k)mx(t)
∥∥∥
0
+‖∇um−1(t)‖0

)i
+K̄M (f)

∑N−1
i=1

i
i!

∣∣∣∇u(k)m −∇um−1

∣∣∣ (√1− ρ
ρ

)i−1

×
(∥∥∥u(k)mx(t)

∥∥∥
0

+ ‖∇um−1(t)‖0
)i−1

.

(3.33)

Hence

∥∥∥F (k)
mx(t)

∥∥∥
0

≤ K̄M (f)

(√
1− ρ2

2
+ ‖∇um−1‖0

)

+K̄M (f)
∑N−1
i=1

1
i!

(√
1−ρ2

2
+‖∇um−1‖0

)(√
1− ρ
ρ

)i(∥∥∥u(k)mx(t)
∥∥∥
0
+‖∇um−1(t)‖0

)i
+K̄M (f)

∑N−1
i=1

i
i!

∥∥∥u(k)mx(t)−∇um−1(t)
∥∥∥
0

(√
1−ρ
ρ

)i−1(∥∥∥u(k)mx(t)
∥∥∥
0
+‖∇um−1(t)‖0

)i−1

≤ K̄M (f)

(√
1− ρ2

2
+M

)

+K̄M (f)
∑N−1
i=1

1
i!

(√
1− ρ2

2
+M

)(√
1− ρ
ρ

)i (∥∥∥u(k)mx(t)
∥∥∥
0

+M
)i

+K̄M (f)
∑N−1
i=1

i
i!

(√
1− ρ
ρ

)i−1 (∥∥∥u(k)mx(t)
∥∥∥
0

+M
)i

= K̄M (f)

(√
1− ρ2

2
+M

)
+ K̄M (f)

∑N−1
i=1

1
i!γ

∗
i (M,ρ)

(∥∥∥u(k)mx(t)
∥∥∥
0

+M
)i

≤ K̄M (f)

(√
1− ρ2

2
+M

)
+ K̄M (f)

∑N−1
i=1

1
i!γ

∗
i (M,ρ)2i−1

(∥∥∥u(k)mx(t)
∥∥∥i
0

+M i

)
≤ K̄M (f)

(√
1− ρ2

2
+M

)
+ K̄M (f)

∑N−1
i=1

2i−1

i! γ
∗
i (M,ρ)

[(√
S

(k)
m (t)
µ∗

)i
+M i

]

= K̄M (f)

(√
1− ρ2

2
+M

)
+ K̄M (f)

∑N−1
i=1

2i−1

i! γ
∗
i (M,ρ)

[(√
S

(k)
m (t)
µ∗

)i
+M i

]

= K̄M (f)

[√
1− ρ2

2
+M +

∑N−1
i=1

2i−1

i! γ
∗
i (M,ρ)M i

]

+K̄M (f)
∑N−1
i=1

2i−1

i!

γ∗i (M,ρ)√
µi∗

(√
S
(k)
m (t)

)i
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=
∑N−1
i=0 c̃i

(√
S
(k)
m (t)

)i
≤
∑N−1
i=0 c̃i

[
1 +

(√
S
(k)
m (t)

)N−1
]

= c̄M

[
1 +

(√
S
(k)
m (t)

)N−1
]
,

(3.34)

where γ∗i (M,ρ), 1 ≤ i ≤ N − 1, c̃j , 0 ≤ j ≤ N − 1, c̄M are defined by (3.30).

Now, we can estimate the intergal
∫ t

0

∥∥∥F (k)
mx(s)

∥∥∥2

0
ds. Using the property of

F
(k)
mx(t) as in (3.29), we obtain

∫ t
0

∥∥∥F (k)
mx(s)

∥∥∥2

0
ds ≤ c̄2

M

∫ t
0

[
1 +

(√
S

(k)
m (s)

)N−1
]2

ds

≤ 2c̄2
M

∫ t
0

[
1 +

(
S

(k)
m (s)

)N−1
]
ds

≤ 4c̄2
M

[
T +

∫ t
0

(
S

(k)
m (s)

)N1

ds

]
,

(3.35)

since N1 = max{2, p + 1, N − 1} ≥ N − 1. Combining (3.28) and (3.35), it
gives

S
(k)
m (t) ≤ S(k)

m (0) + TC1(M) + C1(M)
∫ t

0

(
S

(k)
m (s)

)N1

ds, (3.36)

in which

C1(M) = 2 + β̃1 + β̃2 + 4c̄2
M

[
3(1−ρ)2

2ρ + C1

(
1 + (1−ρ)2

2ρ

)]
. (3.37)

By means of the convergences (2.5), there exists a constant M > 0 independent
of k and m such that, for all m, k ∈ N,

S
(k)
m (0)

= ‖u1k‖20 + a (u1k, u1k) + µ
(
‖u0k‖20

) [
a(u0k, u0k) + ‖Au0k‖20

]
≤ M2

4 .

(3.38)

Finally, it follows from (3.36), (3.38) that

S
(k)
m (t) ≤ M2

4 + TC1(M) + C1(M)
∫ t

0

(
S

(k)
m (s)

)N1

ds, (3.39)

for 0 ≤ t ≤ T (k)
m ≤ T.

Then by solving a nonlinear Volterra integral inequality (3.39) (based on
the methods in [7]), the following lemma is proved.

Lemma 3.2. There exists a constant T > 0 independent of k and m such that

S
(k)
m (t) ≤M2, ∀ t ∈ [0, T ], for all k and m ∈ N. (3.40)
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By Lemma 3.2, we can take constant T
(k)
m = T for all m and k. Therefore,

we have

u
(k)
m ∈W (M,T ), for all m and k ∈ N. (3.41)

Step 3. Convergence. Thanks to (3.41), there exists a subsequence {u(kj)
m } of

{u(k)
m } such that

u
(k)
m → um in L∞(0, T ;V ∩H2) weakly*,

u̇
(k)
m → u′m in L∞(0, T ;V ) weakly*,

ü
(k)
m → u′′m in L2(QT ) weakly,

um ∈W (M,T ).

(3.42)

By the compactness lemma of Lions ([6], p.57) and applying the theorem’s

Fischer-Riesz, from (3.42), one has a subsequence of {u(k)
m }, denoted by the

same symbol satisfying{
u

(k)
m → um strongly in L2(0, T ;V ) and a.e. in QT ,

u̇
(k)
m → u′m strongly in L2(QT ) and a.e. in QT .

(3.43)

On the other hand, using the inequality∣∣aj − bj∣∣ ≤ jM j−1
1 |a− b| , ∀ a, b ∈ [−M1,M1], ∀M1 > 0, ∀ j ∈ N, (3.44)

we deduce from (3.41) and (3.42)4, that∣∣∣(u(k)
m )j − (um)j

∣∣∣ ≤ j (√1− ρ
ρ

M

)j−1 ∣∣∣u(k)
m − um

∣∣∣ , j = 1, N − 1. (3.45)

Thus ∥∥∥(u
(k)
m )j − (um)j

∥∥∥
L2(QT )

≤ j
(√

1− ρ
ρ

M

)j−1 ∥∥∥u(k)
m − um

∥∥∥
L2(QT )

, j = 1, N − 1.

(3.46)

Therefore, (3.43) and (3.46) give

(u
(k)
m )j → (um)j strongly in L2(QT ). (3.47)

We note that∥∥∥F (k)
m − F̄m

∥∥∥
L2(QT )

≤
∑N−1

j=0 ‖Aj(·, ·, um−1)‖L∞(QT )

∥∥∥(u
(k)
m )j − (um)j

∥∥∥
L2(QT )

,
(3.48)

so (3.43) leads to

F
(k)
m → F̄m strongly in L2(QT ). (3.49)
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On the other hand, we have∣∣∣µ(k)
m (t)− µ̄m(t)

∣∣∣ =

∣∣∣∣µ(∥∥∥u(k)
m (t)

∥∥∥2

0

)
− µ

(
‖um(t)‖20

)∣∣∣∣
≤ 2MK̃M (µ)

∥∥∥u(k)
m (t)− um(t)

∥∥∥
0
.

(3.50)

Hence, from (3.43) and (3.50), we obtain

µ
(k)
m → µ̄m strongly in L2(0, T ). (3.51)

Passing to limit in (3.8), (3.9), we have um satisfying (3.5), (3.6) in L2(0, T ).
On the other hand, it follows from (3.5)1 and (3.42)4 that

u′′m = −µ̄m (t)Aum + F̄m ∈ L∞(0, T ;L2). (3.52)

Therefore, um ∈W1(M,T ) and Theorem 3.1 is proved. �

Next, in order to obtain the main result in this section, we put

W1(T ) = {v ∈ L∞(0, T ;V ) : v′ ∈ L∞(0, T ;L2)},

then W1(T ) is a Banach space with respect to the norm

‖v‖W1(T ) = ‖v‖L∞(0,T ;V ) + ‖v′‖L∞(0,T ;L2) .

Theorem 3.3. Let (H1)-(H3) hold. Then, there exist constants M > 0 and
T > 0 such that

(i) (1.1)-(1.3) has a unique weak solution u ∈W1(M,T ).
(ii) The recurrent sequence {um}, defined by (3.5) and (3.6), converges at

a rate of order N to the solution u strongly in the space W1(T ) in the
sense

‖um − u‖W1(T ) ≤ C ‖um−1 − u‖NW1(T ) , (3.53)

for all m ≥ 1, where C is a suitable constant. On the other hand, the
estimate is fulfilled

‖um − u‖W1(T ) ≤ CTβN
m

T , for all m ∈ N, (3.54)

in which CT and 0 < βT < 1 are the constants depending only on T.

Proof. Existence. We can prove that {um} is a Cauchy sequence in W1(T ).
Indeed, let wm = um+1 − um. Then wm satisfies the variational problem
〈w′′m(t), v〉+µ̄m+1 (t) a(wm(t), v)+[µ̄m+1 (t)−µ̄m (t)] 〈Aum(t), v〉
=
〈
F̄m+1(t)− F̄m(t), v

〉
, ∀ v ∈ V,

wm(0) = w′m(0) = 0.

(3.55)
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Taking v = w′m in (3.55)1, after integrating in t, we get

Zm(t) =
∫ t

0 µ̄
′
m+1 (s) a(wm(s), wm(s))ds

−2
∫ t

0 [µ̄m+1 (s)− µ̄m (s)] 〈Aum(s), w′m(s)〉ds
+2
∫ t

0

〈
F̄m+1(s)− F̄m(s), w′m(s)

〉
ds

≡ J1 + J2 + J3,

(3.56)

where

Zm(t) = ‖w′m(t)‖20 + µ̄m+1 (t) a(wm(t), wm(t))

≥ ‖w′m(t)‖20 + µ∗a(wm(t), wm(t))

≥ ‖w′m(t)‖20 + µ∗C0 ‖wm(t)‖21
≥ 2
√
µ∗C0 ‖w′m(t)‖0 ‖wm(t)‖1 ,

(3.57)

and all integrals on the right – hand side of (3.56) are estimated as follows.

Estimating J1. It follows from (3.42)4 that

|µ̄′m (t)| = 2
∣∣∣µ′ (‖um(t)‖20

)∣∣∣ |〈um(t), u′m(t)〉|
≤ 2K̃M (µ) ‖um(t)‖0 ‖u′m(t)‖0
≤ 2K̃M (µ) ‖um(t)‖1 ‖u′m(t)‖0 ≤ 2M2K̃M (µ) ,

(3.58)

this implies that

J1 =
∫ t

0 µ̄
′
m+1 (s) a(wm(s), wm(s))ds ≤ 2

µ∗
M2K̃M (µ)

∫ t
0 Zm(s)ds. (3.59)

Estimating J2.

|µ̄m+1 (t)− µ̄m (t)| =
∣∣∣µ(‖um+1(t)‖20

)
− µ

(
‖um(t)‖20

)∣∣∣
≤ K̃M (µ)

∣∣∣‖um+1(t)‖20 − ‖um(t)‖20
∣∣∣

≤ 2MK̃M (µ) ‖wm(t)‖0 .

(3.60)

Thus

J2 = −2
∫ t

0 [µ̄m+1 (s)− µ̄m (s)] 〈Aum(s), w′m(s)〉ds
≤ 4MK̃M (µ)

∫ t
0 ‖wm(s)‖0 ‖Aum(s)‖0 ‖w′m(s)‖0 ds

≤ 4

µ∗
M2K̃M (µ)

∫ t
0 ‖wm(s)‖1 ‖w′m(s)‖0 ds

≤ 4

µ∗
M2K̃M (µ)

∫ t
0

Zm(s)

2
√
µ∗C0

ds =
2√
µ3
∗C0

M2K̃M (µ)
∫ t

0 Zm(s)ds.

(3.61)

Estimating J3. Using Taylor’s expansion of the function

f(x, t, um) = f(x, t, um−1 + wm−1)



166 L. T. P. Ngoc, L. H. K. Son, T. M. Thuyet and N. T. Long

around the point um−1 up to order N , we obtain

f(x, t, um)− f(x, t, um−1)

=
∑N−1

i=1
1
i!D

i
3f(x, t, um−1)wim−1 + 1

N !D
N
3 f(x, t, λ̃m)wNm−1,

(3.62)

where λ̃m = λ̃m(x, t) = um−1 + θ1 (um − um−1), 0 < θ1 < 1. Hence, it follows
from (3.6) and (3.62) that

F̄m+1(x, t)− F̄m(x, t)

=
∑N−1

i=1
1
i!D

i
3f(x, t, um)wim + 1

N !D
N
3 f(x, t, λ̃m)wNm−1.

(3.63)

It implies that∣∣F̄m+1(x, t)− F̄m(x, t)
∣∣

≤ K̄M (f)
∑N−1

i=1
1
i!

∣∣wim∣∣+ 1
N !K̄M (f)

∣∣wNm−1

∣∣
≤ K̄M (f)

∑N−1
i=1

1
i!

(√
1− ρ
ρ
‖wmx(t)‖0

)i
+ 1
N !K̄M (f)

(√
1− ρ
ρ
‖wm−1, x(t)‖0

)N
= K̄M (f)

∑N−1
i=1

1
i!

(√
1− ρ
ρ

)i
‖wmx(t)‖i−1

0 ‖wmx(t)‖0

+ 1
N !K̄M (f)

(√
1− ρ
ρ

)N
||wm−1||NW1(T )

≤ K̄M (f)
∑N−1

i=1
1
i!

(√
1− ρ
ρ

)i
M i−1 1

√
µ∗

√
Zm(t)

+ 1
N !K̄M (f)

(√
1− ρ
ρ

)N
||wm−1||NW1(T ).

(3.64)

Hence ∥∥F̄m+1(t)− F̄m(t)
∥∥

0

≤
√

1− ρ2

2
K̄M (f)

∑N−1
i=1

1
i!

(√
1− ρ
ρ

)i
M i−1 1

√
µ∗

√
Zm(t)

+

√
1− ρ2

2
1
N !K̄M (f)

(√
1− ρ
ρ

)N
‖wm−1‖NW1(T )

= ζ
(1)
T

√
Zm(t) + ζ

(2)
T ‖wm−1‖NW1(T ) ,

(3.65)
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where

ζ
(1)
T =

1
√
µ∗
K̄M (f)

√
1− ρ2

2

∑N−1
i=1

1
i!

(√
1− ρ
ρ

)i
M i−1,

ζ
(2)
T = 1

N !K̄M (f)

√
1− ρ2

2

(√
1− ρ
ρ

)N
.

(3.66)

It leads to

J3 = 2
∫ t

0

〈
F̄m+1(s)− F̄m(s), w′m(s)

〉
ds

≤ 2
∫ t

0

∥∥F̄m+1(s)− F̄m(s)
∥∥

0
‖w′m(s)‖0 ds

≤ 2
∫ t

0

(
ζ

(1)
T

√
Zm(s) + ζ

(2)
T ‖wm−1‖NW1(T )

)√
Zm(s)ds

≤ 2
(
ζ

(1)
T + ζ

(2)
T

) ∫ t
0 Zm(s)ds+

1

2
Tζ

(2)
T ‖wm−1‖2NW1(T ) .

(3.67)

Then we deduce from (3.56), (3.59), (3.61) and (3.67) that

Zm(t) ≤ 1

2
Tζ

(2)
T ‖wm−1‖2NW1(T )

+2

[
1

µ∗

(
1+

1√
µ∗C0

)
M2K̃M (µ)+ζ

(1)
T +ζ

(2)
T

] ∫ t
0 Zm(s)ds.

(3.68)

By using Gronwall’s lemma, (3.68) yields

‖wm‖W1(T ) ≤ µT ‖wm−1‖NW1(T ) , (3.69)

where

µT =

(
1+

1√
µ∗C0

)√
1

2
Tζ

(2)
T exp

[
T

(
1

µ∗

(
1+

1√
µ∗C0

)
M2K̃M (µ)+ζ

(1)
T +ζ

(2)
T

)]
.

Then, it follows from (3.69) that, for all m and p,

||um − um+p||W1(T ) ≤ (1− βT )−1 (µT )
−1

N−1 βN
m

T . (3.70)

Choosing T small enough such that βT = Mµ
1

N−1

T < 1. It follows that {um}
is a Cauchy sequence in W1(T ). Then there exists u ∈W1(T ) such that

um −→ u strongly in W1(T ). (3.71)

Note that um ∈W1(M,T ), then there exists a subsequence {umj} of {um} such
that 

umj → u in L∞(0, T ;V ∩H2) weakly*,
u′mj
→ u′ in L∞(0, T ;V ) weakly*,

u′′mj
→ u′′ in L2(QT ) weakly,

u ∈W (M,T ).

(3.72)
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We have∥∥F̄m(·, t)− f(·, t, u(t))
∥∥

0
≤ ‖f(·, t, um−1)− f(·, t, u(t))‖0

+
∥∥∥∑N−1

i=1
1
i!
∂if
∂ui

(x, t, um−1)(um − um−1)i
∥∥∥

0

≤ K̄M (f) ‖um−1 − u‖W1(T )

+K̄M (f)
∑N−1

i=1
1
i!

√
1− ρ2

2

(√
1− ρ
ρ

)i
‖um − um−1‖iW1(T ) .

(3.73)

Hence, it implies from (3.71) and (3.73) that

F̄m → f(·, t, u(t)) strongly in L∞(0, T ;L2). (3.74)

Furthermore, we have∣∣∣µ̄m(t)− µ
(
‖u(t)‖20

)∣∣∣ ≤ 2MK̃M (µ) ‖um(t)− u(t)‖0
≤ 2MK̃M (µ) ‖um − u‖W1(T ) .

(3.75)

Hence, from (3.71) and (3.75), we obtain

µ̄m(t)→ µ
(
‖u(t)‖20

)
strongly in L∞(0, T ). (3.76)

Finally, passing to limit in (3.5), (3.6) as m = mj → ∞, there exists u ∈
W (M,T ) satisfying the equation

〈u′′(t), v〉+ µ
(
‖u(t)‖20

)
a(u(t), v) = 〈f(·, t, u(t)), v〉 , (3.77)

for all v ∈ V and the initial conditions

u(0) = ũ0, u
′(0) = ũ1. (3.78)

Uniqueness. Applying a similar argument used in the proof of Theorem 3.1,
u ∈W1(M,T ) is a unique local weak solution of (1.1)–(1.3).

Passing to the limit in (3.70) as p → +∞ for fixed m, we get (3.54). Also
with a similar argument, (3.53) follows. Theorem 3.3 is proved completely. �

Remark 3.4. In order to construct a N -order iterative scheme, we need the
condition (H3). Then, we get a convergent sequence at a rate of order N to
a local unique weak solution of the problem and the existence follows. This
condition of f can be relaxed if we only consider the existence of solutions,
see [8], [16].
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