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Abstract. In this paper we prove the existence as well as approximation of the solutions for

a nonlinear generalized quadratic fractional integral equation of mixed type. An algorithm

for the solutions is developed and it is shown that the sequence of successive approximations

starting with a lower or an upper solution converges monotonically to the solution of the

related quadratic fractional integral equation under some suitable mixed hybrid conditions.

The existence of minimal and maximal solutions and the related integral inequalities are

also proved under certain monotonic conditions. We base our main results on the Dhage

iteration principle embodied in a recent hybrid fixed point theorem of Dhage (2014) in

partially ordered normed linear spaces. A couple of examples are also provided to illustrate

the hypotheses and abstract theory developed in the paper.

1. Introduction

The quadratic integral equations have been a topic of interest since long
time because of their occurrence in the problems of some natural and physical
processes of the universe. See Argyros [1], Deimling [4], Chandrasekher [2] and
the references therein. The study gained momentum after the formulation of
the hybrid fixed point principles in Banach algebras due to Dhage [5]–[8]. The
existence results for such quadratic operators equations are generally proved
under the mixed Lipschitz and compactness type conditions together with a
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certain growth condition on the nonlinearities involved in the quadratic op-
erator or functional equations. The hybrid fixed point theorems in Banach
algebras find numerous applications in the theory of nonlinear quadratic dif-
ferential and integral equations. See Dhage [6, 7, 8, 14, 15], Dhage and Dhage
[18, 19], Dhage et.al. [20] and the references therein. The Lipschitz and com-
pactness hypotheses are considered to be very strong conditions in the theory
of nonlinear differential and integral equations but nevertheless do not yield
any algorithm to determine the numerical solutions. Therefore, it is of inter-
est to relax or weaken these conditions in the existence and approximation
theory of quadratic integral equations. This is the main motivation of the
present paper. In this paper we prove the existence as well as approximations
of the solutions of a certain generalized quadratic integral equation via an al-
gorithm based on successive approximations under weak partial Lipschitz and
compactness type conditions.

Given a closed and bounded interval J = [0, T ] of the real line R for some
T > 0, we consider the quadratic functional integral equation (in short QFIE)

x(t) = k(t, x(t), x(α(t)))

+
[
f(t, x(t), x(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

)
(1.1)

for all t ∈ J, where the functions k, f, g : J × R × R → R, α, β, η : J → J
and v : J × J → R are continuous functions, 1 ≤ q ≤ 2 and Γ is the Euler’s
Gamma function.

By a solution of the QFIE (1.1) we mean a function x ∈ C(J,R) that
satisfies the equation (1.1) on J , where C(J,R) is the space of continuous
real-valued functions defined on J .

The QFIE (1.1) is well-known in the literature and studied earlier in the
works of Dhage [5], Dhage and Ntouyas [21], El-Sayed and Hashem [22, 23].
In particular, If f(t, x, y) = 0 for all t ∈ J and x, y ∈ R the QFIE (1.1) reduces
to the nonlinear functional equation

x(t) = k(t, x(t), x(α(t))), t ∈ J, (1.2)

and if k(t, x, y) = q(t) and f(t, x, y) = 1 for all t ∈ J and x, y ∈ R, it is reduced
to nonlinear usual Volterra integral equation

x(t) = q(t) +

∫ t

0
v(t, s)g(s, x(s), x(η(s))) ds, t ∈ J. (1.3)



Approximate solutions for generalized quadratic fractional integral equations 173

Again, if f(t, x, y) = 1 for all t ∈ J and x, y ∈ R, then (1.1) reduces to the
following well-known nonlinear functional integral equation

x(t) = k(t, x(t), x(α(t)))

+
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds, t ∈ J.

(1.4)

Next, if k(t, x, y) = 0, f(t, x, y) = f(t, x), v(t, s) = 1 and q = 1, then the
QFIE (1.1) reduces to the following quadratic integral equation

x(t) =
[
f(t, x(t))

](∫ t

0
g(s, x(s), x(η(s))) ds

)
, (1.5)

which is discussed in Dhage [5] via classical fixed point theory.

Finally, if k(t, x, y) = k(t, x) + f(t, x)h(t), f(t, x, y) = f(t, x), g(t, x, y) =
g(t, x) and q = 1, then the QFIE (1.1) reduces to the following quadratic
integral equation

x(t) = k(t, x(t)) +
[
f(t, x(t))

](
q(t) +

∫ t

0
v(t, s)g(s, x(s)) ds

)
, t ∈ J. (1.6)

The QFIE (1.6) has been discussed in Dhage [14] for the existence and
approximation of the solutions under hybrid conditions via Dhage iteration
method. Therefore, the QFIE (1.1) is more general and the existence theorem
for which is proved in Dhage and Ntouyas [21] for the general case q > 0
under usual classic Lipschitz and compactness type conditions via a hybrid
fixed point theorem of Dhage [5]. In this paper we prove the existence as
well as approximations of the solutions, integral inequalities, maximal and
minimal solutions and comparison principle etc. for the QFIE (1.1) under
weaker conditions which include the existence and approximation results for
all the above nonlinear functional and functional Volterra integral equations
as special cases under weak partial Lipschitz and partial compactness type
conditions.

The rest of the paper is organized as follows: In the following Section 2 we
give the preliminaries and auxiliary results needed in the subsequent part of
the paper. The main existence and approximations results are given in Section
3. In Section 4, a result concerning the maximal and minimal solutions are
proved for the considered nonlinear quadratic integral equation.

2. Auxiliary results

Unless otherwise mentioned, throughout this paper that follows, let E de-
note a partially ordered real normed linear space with an order relation � and
the norm ‖ · ‖ in which the addition and the scalar multiplication by positive
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real numbers are preserved by � . A few details of a partially ordered normed
linear space appear in Dhage [8], Heikkilä and Lakshmikantham [24] and the
references therein.

Two elements x and y in E are said to be comparable if either the relation
x � y or y � x holds. A non-empty subset C of E is called a chain or
totally ordered if all the elements of C are comparable. It is known that E is
regular if {xn} is a nondecreasing (resp., nonincreasing) sequence in E such
that xn → x∗ as n → ∞, then xn � x∗ (resp., xn � x∗) for all n ∈ N.
The conditions guaranteeing the regularity of E may be found in Heikkilä and
Lakshmikantham [24] and the references therein.

We need the following definitions (see Dhage [6]–[10] and the references
therein) in what follows.

Definition 2.1. A mapping T : E → E is called isotone or monotone nonde-
creasing if it preserves the order relation �, that is, if x � y implies T x � T y
for all x, y ∈ E. Similarly, T is called monotone nonincreasing if x � y implies
T x � T y for all x, y ∈ E. Finally, T is called monotonic or simply monotone
if it is either monotone nondecreasing or monotone nonincreasing on E.

Definition 2.2. A mapping T : E → E is called partially continuous at a
point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever
x is comparable to a and ‖x − a‖ < δ. T called partially continuous on E if
it is partially continuous at every point of it. It is clear that if T is partially
continuous on E, then it is continuous on every chain C contained in E.

Definition 2.3. A non-empty subset S of the partially ordered Banach space
E is called partially bounded if every chain C in S is bounded. An operator
T on a partially normed linear space E into itself is called partially bounded
if T (E) is a partially bounded subset of E. T is called uniformly partially
bounded if all chains C in T (E) are bounded by a unique constant.

Definition 2.4. A non-empty subset S of the partially ordered Banach space
E is called partially compact if every chain C in S is a relatively compact
subset of E. A mapping T : E → E is called partially compact if T (E) is
a partially relatively compact subset of E. T is called uniformly partially
compact if T is a uniformly partially bounded and partially compact operator
on E. T is called partially totally bounded if for any bounded subset S of E,
T (S) is a partially relatively compact subset of E. If T is partially continuous
and partially totally bounded, then it is called partially completely continuous
on E.
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Remark 2.5. Suppose that T is a nondecreasing operator on E into itself.
Then T is a partially bounded or partially compact if T (C) is a bounded or
relatively compact subset of E for each chain C in E.

Definition 2.6. The order relation � and the metric d on a non-empty
set E are said to be compatible if {xn}n∈N is a monotone, that is, mono-
tone nondecreasing or monotone nonincreasing sequence in E and if a subse-
quence {xnk

}n∈N of {xn}n∈N converges to x∗ implies that the original sequence
{xn}n∈N converges to x∗. Similarly, given a partially ordered normed linear
space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be com-
patible if � and the metric d defined through the norm ‖ · ‖ are compatible.
A subset S of E is called Janhavi if the order relation � and the metric d or
the norm ‖ · ‖ are compatible in it. In particular, if S = E, then E is called a
Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm
defined by the absolute value function | · | has this property. Similarly, the
finite dimensional Euclidean space Rn with usual componentwise order relation
and the standard norm possesses the compatibility property. In general every
finite dimensional Banach space with a standard norm and an order relation
is a Janhavi Banach space.

Definition 2.7. ([7]) A upper semi-continuous and monotone nondecreasing
function ψ : R+ → R+ is called a D-function provided ψ(r) = 0 iff r = 0. Let
(E,�, ‖·‖) be a partially ordered normed linear space. A mapping T : E → E
is called partially nonlinear D-Lipschitz if there exists a D-function ψ : R+ →
R+ such that

‖T x− T y‖ ≤ ψ(‖x− y‖) (2.1)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called a
partially Lipschitz with a Lipschitz constant k.

Let (E,�, ‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{
x ∈ E | x � θ, where θ is the zero element of E

}
and

K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+}. (2.2)

The elements of K are called the positive vectors of the normed linear al-
gebra E. The following lemma follows immediately from the definition of the
set K and which is often times used in the applications of hybrid fixed point
theory in Banach algebras.

Lemma 2.8. ([8]) If u1, u2, v1, v2 ∈ K are such that u1 � v1 and u2 � v2,
then u1u2 � v1v2.
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Definition 2.9. An operator T : E → E is said to be positive if the range
R(T ) of T is such that R (T ) ⊆ K.

The Dhage iteration principle may be described as “the monotonic con-
vergence of the sequence of successive approximations to the solutions of a
nonlinear equation beginning with a lower or an upper solution of the equation
as its initial or first approximation” and it is a powerful tool in the existence
theory of nonlinear analysis. The procedure involved in the application of
Dhage iteration principle to nonlinear equation is called the “Dhage iteration
method.” It is clear that Dhage iteration method is different for different non-
linear problems and also different from the usual Picard’s successive iteration
method. The Dhage iteration method embodied in the following applicable
hybrid fixed point theorems of Dhage [10] is used as the key tool for our work
contained in this paper. A few other hybrid fixed point theorems involving
the Dhage iteration method may be found in Dhage [9]–[12].

Theorem 2.10. ([11]) Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete

normed linear algebra such that the order relation � and the norm ‖ · ‖ in E
are compatible in every compact chain of E. Let A,B : E → K and C : E → E
be three nondecreasing operators such that

(a) A and C are partially bounded and partially nonlinear D-Lipschitz with
D-functions ψA and ψC respectively,

(b) B is partially continuous and uniformly partially compact, and
(c) MψA(r) + ψC(r) < r, r > 0,

where M = sup{‖B(C)‖ : C is a chain in E}, and
(d) there exists an element x0 ∈ X such that x0 � Ax0 Bx0 + Cx0 or

x0 � Ax0 Bx0 + Cx0.

Then the operator equation

AxBx+ Cx = x (2.3)

has a solution x∗ in E and the sequence {xn} of successive iterations defined
by xn+1 = Axn Bxn + Cxn, n = 0, 1, · · · , converges monotonically to x∗.

Remark 2.11. The compatibility of the order relation � and the norm ‖ · ‖
in every compact chain of E holds if every partially compact subset of E
possesses the compatibility property with respect to � and ‖ · ‖. This simple
fact has been utilized to prove the main results of this paper.

Remark 2.12. The hypothesis (a) of Theorem 2.10 implies that the operators
A and C are partially continuous and consequently all the three operators A,
B and C in the theorem are partially continuous on E. The regularity of E in
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above Theorem 2.10 may be replaced with a stronger continuity condition of
the operators A, B and C on E.

3. Existence and approximation result

The QFIE (1.1) is considered in the function space C(J,R) of continuous
real-valued functions defined on J . We define a norm ‖ · ‖ and the order
relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (3.1)

and

x ≤ y ⇐⇒ x(t) ≤ y(t), ∀ t ∈ J, (3.2)

respectively. Clearly, C(J,R) is a Banach algebra with respect to the above
supremum norm and is also partially ordered w.r.t. the above partially order
relation ≤. It is known that the partially ordered Banach algebra C(J,R) has
some nice properties concerning the compatibility property with respect to
the norm ‖ · ‖ and the order relation ≤ in certain subsets of it. The following
lemma in this connection follows by an application of Arzelá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with

the norm ‖ · ‖ and the order relation ≤ defined by (3.1) and (3.2) respectively.
Then every partially compact subset S of C(J,R) is Janhavi, i.e., ‖ · ‖ and ≤
are compatible in every compact chain C in S.

Proof. The lemma mentioned in Dhage [9, 10], but the proof appears in Dhage
and Dhage [16, 18, 19]. Since the proof is not well-known, we give the details
of the proof. Let S be a partially compact subset of C(J,R) and let {xn}n∈N
be a monotone nondecreasing sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (3.3)

for each t ∈ J .
Suppose that a subsequence {xnk

}n∈N of {xn}n∈N is convergent and con-
verges to a point x in S. Then the subsequence {xnk

(t)}k∈N of the monotone
real sequence {xn(t)}n∈N is convergent. By monotone characterization, the
whole sequence {xn(t)}n∈N is convergent and converges to a point x(t) in R
for each t ∈ J . This shows that the sequence {xn}n∈N converges to x point-
wise on J . To show the convergence is uniform, it is enough to show that the
sequence {xn(t)}n∈N is equicontinuous. Since S is partially compact, every
chain or totally ordered set and consequently {xn}n∈N is an equicontinuous
sequence by Arzelá-Ascoli theorem. Hence {xn}n∈N is convergent and con-
verges uniformly to x. As a result ‖ · ‖ and ≤ are compatible in S. This
completes the proof. �
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We need the following definition in what follows.

Definition 3.2. A function u ∈ C(J,R) is said to be a lower solution of the
QFIE (1.1) if it satisfies

u(t) ≤ k(t, u(t), u(α(t)))

+
[
f(t, u(t), u(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, u(s), u(η(s))) ds

)
for all t ∈ J. Similarly, a function v ∈ C(J,R) is said to be an upper solution
of the QFIE (1.1) if it satisfies the above inequalities with reverse sign.

Definition 3.3. A function g(t, x, y) is called Carathéodory if

(i) the map t 7→ g(t, x, y) is measurable for each x, y ∈ R and
(ii) the map (x, y) 7→ g(t, x, y) is jointly continuous for each t ∈ J.

A Caratheódory function g is called L2-Carathéodory if

(iii) there exists a function h ∈ L2(J,R) such that

|g(t, x, y)| ≤ h(t) a.e. t ∈ J

for all x, y ∈ R.

We consider the following set of assumptions in what follows:

(A1) The function f is nonnegative on J × R× R.
(A2) There exists a D-function ψf such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ψf (max{x1 − y1, x1 − y1})

for all t ∈ J and x1, x2, y1, y2 ∈ R, x1 ≥ y1, x2 ≥ y2.
(A3) There exists a constant Mf > 0 such that 0 ≤ f(t, x, y) ≤ Mf for all

t ∈ J and x, y ∈ R.
(B1) The function v is nonnegative on J × J .
(B2) g defines a L2-Carathéodory function g : J × R× R→ R+.
(B3) g(t, x, y) is nondecreasing in x and y for all t ∈ J .
(C1) There exists a D-function ψk such that

0 ≤ k(t, x1, x2)− k(t, y1, y2) ≤ ψk(max{x1 − y1, x1 − y1})

for all t ∈ J and x1, x2, y1, y2 ∈ R with x1 ≥ y1, x2 ≥ y2.
(C2) There exists a constant Mk > 0 such that |k(t, x, y)| ≤Mk for all t ∈ J

and x ∈ R.
(C3) The QFIE (1.1) has a lower solution u ∈ C(J,R).
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Theorem 3.4. Assume that hypotheses (A1)-(A3), (B1)-(B3) and (C1)-(C3)
hold. Furthermore, assume that(

V T q−1 ‖h‖L2

Γ(q)

)
ψf (r) + ψk(r) < r, r > 0, (3.4)

then the QFIE (1.1) has a solution x∗ defined on J and the sequence {xn}n∈N∪{0}
of successive approximations defined by

xn+1(t)

= k(t, xn(t), xn(α(t)))

+
[
f(t, xn(t), xn(β(t)))

]( 1

Γ(q)

∫ t

t0

v(t, s)

(t−s)1−q
g(s, xn(s), xn(η(s))) ds

) (3.5)

for all t ∈ J, where x0 = u, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact
chain in E possesses the compatibility property with respect to the norm ‖ · ‖
and the order relation ≤ in E.

Define three operators A, B and C on E by

Ax(t) = f(t, x(t), x(α(t))), t ∈ J, (3.6)

Bx(t) =
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds, t ∈ J, (3.7)

and

Cx(t) = k(t, x(t), x(α(t))), t ∈ J. (3.8)

From the continuity of the integral and the hypotheses (A0)-(A1) and (B1), it
follows that A and B define the maps A,B : E → K. Now by definitions of
the operators A and B, the QFIE (1.1) is equivalent to the operator equation

Ax(t)Bx(t) + Cx(t) = x(t), t ∈ J. (3.9)

We shall show that the operators A, B and C satisfy all the conditions of
Theorem 2.10. This is achieved in the series of following steps.

Step I: A, B and C are nondecreasing on E. Let x, y ∈ E be such that x ≥ y.
Then by hypothesis (A2) and (C2), we obtain

Ax(t) = f(t, x(t), x(α(t))) ≥ f(t, y(t), y(α(t))) = Ay(t)

and

Cx(t) = k(t, x(t), x(α(t))) ≥ k(t, y(t), y(α(t))) = Cy(t),
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for all t ∈ J . This shows that A and C are nondecreasing operators on E into
E. Similarly, using hypothesis (B3),

Bx(t) =
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

≤ 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, y(s), y(η(s))) ds

= By(t)

for all t ∈ J . Hence, it is follows that the operator B is also a nondecreas-
ing operator on E into itself. Thus, A, B and C are nondecreasing positive
operators on E into itself.

Step II: A and C are partially bounded and partially D-Lipschitz on E. Let
x ∈ E be arbitrary. Then by (A2),

|Ax(t)| ≤
∣∣f(t, x(t), x(α(t)))

∣∣ ≤Mf

for all t ∈ J . Taking supremum over t, we obtain ‖Ax‖ ≤ Mf and so, A is
bounded. This further implies that A is partially bounded on E. Similarly,
using hypothesis (C1), it is shown that ‖Cx‖ ≤ Mk and consequently C is
partially bounded on E.

Next, let x, y ∈ E be such that x ≥ y. Then, by hypothesis (A3),

|Ax(t)−Ay(t)| =
∣∣f(t, x(t), x(α(t)))− f(t, y(t), y(α(t)))

∣∣
≤ ψf (max{|x(t)− y(t)| , |x(α(t))− y(α(t))|})
≤ ψf (‖x− y‖)

for all t ∈ J . Taking supremum over t, we obtain

‖Ax−Ay‖ ≤ ψf (‖x− y‖)

for all x, y ∈ E with x ≥ y. Similarly, by hypothesis (C2),

‖Cx− Cy‖ ≤ ψk(‖x− y‖)

for all x, y ∈ E with x ≥ y. Hence A and C are partially nonlinear D-Lipschitz
operators on E which further implies that they are also a partially continuous
on E into itself.

Step III: B is a partially continuous operator on E. Let {xn}n∈N be a
sequence in a chain C of E such that xn → x for all n ∈ N. Then, by
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dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, xn(s), xn(η(s))) ds

=
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[

lim
n→∞

g(s, xn(s), xn(η(s))
]
ds

=
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s)) ds

= Bx(t),

for all t ∈ J . This shows that Bxn converges monotonically to Bx pointwise
on J .

Next, we will show that {Bxn}n∈N is an equicontinuous sequence of functions
in E. Let t1, t2 ∈ J be arbitrary with t1 < t2. Then∣∣∣Bxn(t2)−Bxn(t1)

∣∣∣
=

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, xn(s), xn(η(s))) ds

∣∣∣∣
≤
∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

− 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, xn(s), xn(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, xn(s), xn(η(s))) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t2

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

|g(s, xn(s), xn(η(s)))| ds

+
1

Γ(q)

∣∣∣∣∫ t2

t1

|v(t1, s)|
(t2 − s)1−q

|g(s, xn(s), xn(η(s)))| ds
∣∣∣∣

+
1

Γ(q)

∫ t1

0

|v(t1, s)| |(t2 − s)q−1 − (t1 − s)q−1| |g(s, xn(s), xn(η(s)))| ds
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≤ 1

Γ(q)

∫ T

0

|v(t2, s)−v(t1, s)|
(t2−s)1−q

h(s)ds+
1

Γ(q)

∫ t2

t1

|v(t, s)|
(t2−s)1−q

h(s)ds

+
1

Γ(q)

∫ T

0
|v(t1, s)|

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣ h(s) ds

≤ T q−1

Γ(q)

(∫ T

0
|v(t2, s)− v(t1, s)|2 ds

)1/2 (∫ T

0
h2(s) ds

)1/2

+
V

Γ(q)

(∫ T

0

∣∣(t2−s)q−1−(t1−s)q−1
∣∣2 ds)1/2(∫ T

0
h2(s)ds

)1/2

+
V T q−1

Γ(q)
|p(t1)− p(t2)| (3.10)

Since the functions p is continuous on compact interval J and v and (t− s)q−1
are continuous on compact set J × J , they are uniformly continuous there.
Therefore, from the above inequality (3.10) it follows that

|Bxn(t2)− Bxn(t1)| → 0 as n→∞

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform
and hence B is partially continuous on E.

Step IV: B is uniformly partially compact operator on E. Let C be an arbi-
trary chain in E. We show that B(C) is a uniformly bounded and equicontin-
uous set in E. First we show that B(C) is uniformly bounded. Let y ∈ B(C)
be any element. Then there is an element x ∈ C be such that y = Bx. Now,
by hypothesis (B2),

|y(t)| =
∣∣∣∣ 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
|g(s, x(s), x(η(s)))| ds

≤ V T q−1 ‖h‖L2

Γ(q)

= r

for all t ∈ J . Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for
all y ∈ B(C). Hence, B(C) is a uniformly bounded subset of E. Moreover,
‖B(C)‖ ≤ r for all chains C in E. Hence, B is a uniformly partially bounded
operator on E.



Approximate solutions for generalized quadratic fractional integral equations 183

Next, we will show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J
be arbitrary with t1 < t2. Then, for any y ∈ B(C), one has

∣∣∣Bx(t2)−Bx(t1)
∣∣∣

=

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤
∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t2

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

|g(s, x(s), x(η(s)))| ds

+
1

Γ(q)

∫ t2

t1

|v(t1, s)|
(t2 − s)1−q

|g(s, x(s), x(η(s)))| ds

+
1

Γ(q)

∫ t1

0
|v(t1, s)| |[(t2 − s)q−1 − (t1 − s)q−1]| |g(s, x(s), x(η(s)))| ds

≤ 1

Γ(q)

∫ T

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

h(s) ds+
1

Γ(q)

∫ t2

t1

|v(t, s)|
(t2 − s)1−q

h(s) ds

+
1

Γ(q)

∫ T

0
|v(t1, s)|

∣∣[(t2 − s)q−1 − (t1 − s)q−1
]∣∣ h(s) ds

≤ 1

Γ(q)

∫ T

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

h(s) ds+
1

Γ(q)

∣∣∣∣∫ t2

t1

|v(t, s)|
(t2 − s)1−q

h(s) ds

∣∣∣∣
+

1

Γ(q)

∫ T

0
|v(t1, s)|

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣ h(s) ds
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≤ T q−1

Γ(q)

(∫ T

0
|v(t2, s)− v(t1, s)|2 ds

)1/2 (∫ T

0
h2(s) ds

)1/2

+
V

Γ(q)

(∫ T

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣2 ds)1/2 (∫ T

0
h2(s) ds

)1/2

+
V T q−1

Γ(q)
|p(t1)− p(t2)|

−→ 0 as t1 → t2,

uniformly for all y ∈ B(C). Hence B(C) is an equicontinuous subset of E.
Now, B(C) is a uniformly bounded and equicontinuous set of functions in E,
so it is compact. Consequently, B is a uniformly partially compact operator
on E into itself.

Step V: u satisfies the operator inequality u ≤ AuBu + Cu. By hypothesis
(C4), the QFIE (1.1) has a lower solution u defined on J . Then, we have

u(t)

≤ k(t, u(t), u(α(t)))

+
[
f(t, u(t), u(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, u(s), u(η(s))) ds

) (3.11)

for all t ∈ J. From the definitions of the operators A, B and C it follows that
u(t) ≤ Au(t)Bu(t) + Cu(t) for all t ∈ J . Hence u ≤ AuBu+ Cu.

Step VI: The D-functions ψA and ψC satisfy the growth condition MψA(r)+
ψC(r) < r for r > 0. Finally, the D-function ψA and ψC of the operator A and
C satisfy the inequality given in hypothesis (d) of Theorem 2.10, viz.,

MψA(r) + ψC(r) ≤
(
V T q−1 ‖h‖L2

Γ(q)

)
ψf (r) + ψk(r) < r

for all r > 0.

Thus A, B and C satisfy all the conditions of Theorem 2.10 and we conclude
that the operator equation AxBx+ Cx = x has a solution. Consequently the
QFIE (1.1) has a solution x∗ defined on J . Furthermore, the sequence {xn}n∈N
of successive approximations defined by (3.5) converges monotonically to x∗.
This completes the proof. �

The conclusion of Theorems 3.4 also remains true if we replace the hypoth-
esis (C3) with the following one:

(C′3) The QFIE (1.1) has an upper solution v ∈ C(J,R).
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The proof of Theorem 3.4 under this new hypothesis is similar and can be
obtained by closely observing the same arguments with appropriate modifica-
tions.

Remark 3.5. We note that if the QFIE (1.1) has a lower solution u as well
as an upper solution v such that u ≤ v, then under the given conditions of
Theorem 3.4 it has corresponding solutions x∗ and x∗ and these solutions
satisfy x∗ ≤ x∗. Hence they are the minimal and maximal solutions of the
QFIE (1.1) in the vector segment [u, v] of the Banach space E = C(J,R),
where the vector segment [u, v] is a set in C1(J,R) defined by

[u, v] = {x ∈ C(J,R) | u ≤ x ≤ v}.

This is because the order relation ≤ defined by (3.2) is equivalent to the order
relation defined by the order cone K = {x ∈ C(J,R) | x ≥ θ} which is a closed
set in C(J,R).

Remark 3.6. If the function k is nonnegative on J × R × R in Theorem
3.4, then the QFIE (1.1) has a positive solution x∗ and the sequence {xn} of
successive approximations defined by (3.5) converges to x∗.

4. Maximal and minimal solutions

We need the following definition in what follows.

Definition 4.1. A function r ∈ C(J,R) is said be a maximal solution of the
QFIE (1.1) if for any other solution x of the QFIE (1.1), one has x(t) ≤ r(t)
for all t ∈ J . Similarly, a minimal solution ρ of the QFIE (1.1) can be defined
in a similar way by reversing the above inequality.

The following lemma is fundamental in the proof of minimal and maximal
solutions for the QFIE (1.1) on J .

Lemma 4.2. Assume that hypotheses (A1)-(A1), (B1), (B3) and (C1) hold.
Suppose that there exist two functions y, z ∈ C(J,R) satisfying

y(t) ≤ k(t, y(t), y(α(t)))

+
[
f(t, y(t), y(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, y(s), y(η(s))) ds

)
(4.1)

and

z(t) ≥ k(t, z(t), z(α(t)))

+
[
f(t, z(t), z(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, z(s), z(η(s))) ds

)
(4.2)
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for all t ∈ J . If one of the inequalities (4.1) and (4.2) is strict, then

y(t) < z(t) (4.3)

for all t ∈ J .

Proof. Suppose that the inequality (4.2) is strict and let the conclusion (4.3)
be false. Then there exists t1 ∈ J such that

y(t1) = z(t1), t1 > 0

and

y(t) < z(t), 0 < t < t1.

From the monotonicity of f(t, x, y), g(t, x, y) and k(t, x, y) in x and y , we get

y(t1)

≤ k(t1, y(t1), y(α(t1)))

+
[
f(t1, y(t1), y(β(t1)))

]( 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, y(s), y(η(s))) ds

)
= k(t1, z(t1), z(α(t2)))

+
[
f(t1, z(t1), z(β(t1)))

]( 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, z(s), z(η(s))) ds

)
< z(t1), (4.4)

which contradicts the fact that y(t1) = z(t1). Hence, y(t) < z(t) for all
t ∈ J . �

Theorem 4.3. Suppose that all the hypotheses of Theorem 3.4 hold. Then
the QFIE (1.1) has a minimal and a maximal solution on J .

Proof. We shall prove the case of maximal solution only, because the case of
minimal solution is similar and can be obtained with appropriate modifica-
tions. Let ε > 0 be given. Now consider the quadratic fractional integral
equation

xε(t)

= kε(t, xε(t), xε(α(t)))

+
[
fε(t, xε(t), xε(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t−s)1−q
gε(s, xε(s), xε(η(s))) ds

)
(4.5)

for all t ∈ J , where

fε(t, xε(t), xε(β(t))) = f(t, xε(t), xε(β(t))) + ε,

gε(s, xε(s), xε(η(s))) = g(s, xε(s), xε(η(s))) + ε
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and

kε(t, xε(t), xε(α(t))) = k(t, xε(t), xε(α(t))) + ε.

Clearly the functions fε(t, xε, xε(β)), gε(t, xε, xε(η)) and kε(t, xε, xε(α)) satisfy
all the hypotheses (A0)-(A3), (B1)-(B4) and (C1)-(C3), and therefore, by The-
orem 3.4, QFIE (4.5) has at least a solution xε(t) ∈ C(J,R).

Let ε1 and ε2 be two real numbers such that 0 < ε2 < ε1 < ε. Then, we
have

xε2(t) = kε2(t, xε2(t), xε2(α(t)))

+
[
fε2(t, xε2(t), xε2(β(t)))

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
gε2(s, xε2(s), xε2(η(s))) ds

)
= k(t, xε2(t), xε2(α(t))) + ε2

+
[
f(t, xε2(t), xε2(β(t))) + ε2

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xε2(s), xε2(η(s))) + ε2

]
ds

)
(4.6)

and

xε1(t) = kε1(t, xε1(t), xε1(α(t)))

+
[
fε1(t, xε1(t), xε1(β(t)))

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
gε1(s, xε1(s), xε1(η(s))) ds

)
= k(t, xε1(t), xε1(α(t))) + ε1

+
[
f(t, xε1(t), xε1(β(t))) + ε1

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xε1(s), xε1(η(s))) + ε1

]
ds

)
> k(t, xε1(t), xε1(α(t))) + ε2

+
[
f(t, xε1(t), xε1(β(t))) + ε2

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xε1(s), xε1(η(s))) + ε2

]
ds

)
(4.7)

for all t ∈ J . Now, applying the Lemma 4.2 to the inequalities (4.6) and (4.7),
we obtain

xε2(t) < xε1(t) (4.8)

for all t ∈ J .
Let ε0 = ε and define a decreasing sequence {εn}∞n=0 of positive real numbers

such that limn→∞ εn = 0. Then in view of the above facts {xεn} is a decreasing
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sequence of functions in C(J,R). We show that is is uniformly bounded and
equicontinuous. Now, by hypotheses,

|xεn(t)| ≤ |kεn(t, xεn(t), xεn(α(t))|)
+
∣∣[kεn(t, xεn(t), xεn(α(t))|)

]∣∣
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
|gεn(s, xεn(s), xεn(η(s)))| ds

)
≤Mk + ε+ (Mf + ε)

(
V T q−1 (‖h‖L2 + T ε)

Γ(q)

)
= r

for all t ∈ J . Taking the supremum over t, we obtain ‖xεn‖ ≤ r for all n ∈ N.
This shows that the sequence {xεn} is uniformly bounded.

Next we show that {xεn} is an equicontinuous sequence of functions in
C(J,R). Let t1, t2 ∈ J be arbitrary. Then,

|xεn(t1)− xεn(t2)|
≤ |k(t1, xεn(t1), xεn(α(t1)))− k(t2, xεn(t2), xεn(α(t2)))|

+ |f(t1, xεn(t1), xεn(α(t1)))− f(t2, xεn(t2), xεn(α(t2)))|

×
(

1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
|gεn(s, xεn(s), xεn(η(s)))| ds

)
+ |f(t2, xεn(t2), xεn(α(t2)))|

× 1

Γ(q)

∣∣∣∣ ∫ t1

0

v(t1, s)

(t1 − s)1−q
|gεn(s, xεn(s), xεn(η(s)))| ds

−
∫ t2

0

v(t2, s)

(t2 − s)1−q
|gεn(s, xεn(s), xεn(η(s)))| ds

∣∣∣∣
≤ |k(t1, xεn(t1), xεn(α(t1)))− k(t2, xεn(t2), xεn(α(t2)))|

+
∣∣f(t1, xεn(t1), xεn(α(t1)))− f(t2, xεn(t2), xεn(α(t2)))

∣∣
×
(
V T q−1 (‖h‖L2 + T ε)

Γ(q)

)
+Mf

1

Γ(q)

∣∣∣∣ ∫ t1

0

v(t1, s)

(t1 − s)1−q
gεn(s, xεn(s), xεn(η(s))) ds

−
∫ t2

0

v(t2, s)

(t2 − s)1−q
gεn(s, xεn(s), xεn(η(s))) ds

∣∣∣∣
≤ |k(t1, xεn(t1), xεn(α(t1)))− k(t2, xεn(t2), xεn(α(t2)))|

+
∣∣f(t1, xεn(t1), xεn(α(t1)))− f(t2, xεn(t2), xεn(α(t2)))

∣∣
×
(
V T q−1 (‖h‖L2 + T ε)

Γ(q)

)
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+Mf
1

Γ(q)

∣∣∣∣ ∫ t1

t2

v(t1, s)

(t1 − s)1−q
|gεn(s, xεn(s), xεn(η(s)))| ds

∣∣∣∣
+Mf

1

Γ(q)

∫ T

0

∣∣∣∣ v(t1, s)

(t1 − s)1−q
− v(t2, s)

(t2 − s)1−q

∣∣∣∣ |gεn(s, xεn(s), xεn(η(s)))| ds

≤ |k(t1, xεn(t1), xεn(α(t1)))− k(t2, xεn(t2), xεn(α(t2)))|
+
∣∣f(t1, xεn(t1), xεn(α(t1)))− f(t2, xεn(t2), xεn(α(t2)))]

∣∣
×
(
V T q−1 (‖h‖L2 + T ε)

Γ(q)

)

+Mf
T q−1

Γ(q)

(∫ T

0

∣∣∣∣ v(t1, s)

(t1 − s)1−q
− v(t2, s)

(t2 − s)1−q

∣∣∣∣2 ds
)1/2

×

(∫ T

0

h2(s) ds

)1/2

+
V T q−1

Γ(q)
|p(t1)− p(t2)|. (4.9)

Since the functions k and f are continuous on compact [0, T ]×[−r, r]×[−r, r],
v(t,s)

(t−s)1−q is continuous on compact [0, T ]×[0, T ] and p is continuous on compact

[0, T ], they are uniformly continuous there. Hence, from (4.9) it follows that

|xεn(t1)− xεn(t2)| → 0 as t1 → t2

uniformly for all n ∈ N. As a result {xεn} is an equicontinuous sequence
of functions in C(J,R). Now the sequence {xεn} is uniformly bounded and
equicontinuous, so it is compact in view of Arzelá-Ascoli theorem. By Lemma
3.1, {xεn} converges uniformly to a function, say r ∈ C(J,R), that is,
limn→∞ xεn(t) = r(t) uniformly on J .

We show that the function r is a solution of the QFIE (1.1) on J . Now,
{xεn} is a solution of the QFIE

xεn(t) = kεn(t, xεn(t), xεn(α(t)))

+
[
fεn(t, xεn(t), xεn(β(t)))

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
gεn(s, xεn(s), xεn(η(s))) ds

)
= k(t, xεn(t), xεn(α(t))) + εn

+
[
f(t, xεn(t), xεn(β(t))) + εn

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xεn(s), xεn(η(s))) + εn

]
ds

)
(4.10)
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for all t ∈ J . Now, taking the limit as by hypotheses n → ∞ in the above
inequality (4.10), we obtain

r(t) = k(t, r(t), r(α(t)))

+
[
f(t, r(t), r(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, r(s), r(η(s))) ds

)
for all t ∈ J . This shows that r is a solution of the QFIE (1.1) defined on J .

Finally, we shall show that r(t) is the maximal solution of the QFIE (1.1)
defined on J . To do this, let x(t) be any solution of the QFIE (1.1) defined
on J . Then,we have

x(t) = k(t, x(t), r(α(t)))

+
[
f(t, x(t), x(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t−s)1−q
g(s, x(s), x(η(s))) ds

)
(4.11)

for all t ∈ J . Similarly, if xε is any solution of the QFIE

xε(t) = k(t, xε(t), xε(α(t))) + ε

+
[
f(t, xε(t), xε(β(t))) + ε

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xε(s), xε(η(s))) + ε

]
ds

)
, (4.12)

then

xε(t) > k(t, xε(t), xε(α(t)))

+
[
f(t, xε(t), xε(β(t)))

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, xε(s), xε(η(s)))

]
ds

)
(4.13)

for all t ∈ J . From the inequalities (4.11) and (4.13) it follows that x(t) ≤
xε(t), t ∈ J. Taking the limit as ε → 0, we obtain x(t) ≤ r(t) for all t ∈ J .
Hence r is a maximal solution of the QFIE (1.1) defined on J . This completes
the proof. �

5. Comparison principle

The main problem of the integral inequalities is to estimate a bound for the
solution set of the integral inequality related to the QFIE (1.1). In this section
we prove that the maximal and minimal solutions serve as the bounds for the
solutions of the related differential inequality to QFIE (1.1) on J = [0, T ].
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Theorem 5.1. Suppose that all the hypotheses of Theorem 3.4 hold. Further,
if there exists a function u ∈ C(J,R) such that

u(t) ≤ k(t, u(t), u(α(t)))

+
[
f(t, u(t), u(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t−s)1−q
g(s, u(s), u(η(s))) ds

)
(5.1)

for all t ∈ J , then

u(t) ≤ r(t) (5.2)

for all t ∈ J , where r is a maximal solution of the QFIE (1.1) on J .

Proof. Let ε > 0 be arbitrary small. Then, by Theorem 3.4, rε(t) is a solution
of the QFIE (4.5) and that the limit

r(t) = lim
ε→0

rε(t) (5.3)

is uniform on J and is a maximal solution of the QFIE (1.1) on J . Hence, we
obtain

rε(t) = k(t, rε(t), rε(α(t))) + ε

+
[
f(t, rε(t), rε(β(t))) + ε

]
×
(

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
[
g(s, rε(s), rε(η(s))) + ε

]
ds

)
for all t ∈ J . From the above inequality it follows that

rε(t)

> k(t, rε(t), rε(α(t)))

+
[
f(t, rε(t), rε(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t−s)1−q
g(s, rε(s), rε(η(s))) ds

) (5.4)

for all t ∈ J . Now we apply Lemma 4.2 to the inequalities (5.1) and (5.4) and
conclude that

u(t) < rε(t) (5.5)

for all t ∈ J . This further in view of limit (5.3) implies that the inequality
(5.2) holds on J . This completes the proof. �

Similarly, we have the following comparison result for the QFIE (1.1) on J .

Theorem 5.2. Suppose that all the hypotheses of Theorem 3.4 hold. Further,
if there exists a function v ∈ C(J,R) such that

v(t) ≥ k(t, v(t), v(α(t)))

+
[
f(t, v(t), v(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t−s)1−q
g(s, v(s), v(η(s))) ds

)
(5.6)
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for all t ∈ J , then

v(t) ≥ ρ(t) (5.7)

for all t ∈ J , where ρ is a minimal solution of the QFIE (1.1) on J .

Finally, we give a couple of examples to illustrate the hypotheses imposed
on the nonlinearities and the main existence and approximation result proved
in this paper.

Example 5.3. Given a closed and bounded interval J = [0, 1], consider the
QFIE,

x(t) =
1

2

[
2 + arctanx(t)

]( 1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
· [1 + tanhx(s)]

4
ds

)

+
1

2
arctanx(t) (5.8)

for t ∈ J .

Here, v(t, s) =
1

t2 + 1
which is continuous and V = 1. Similarly, the func-

tions k, f and g are defined by k(t, x, y) = k(t, x) =
1

2
arctanx, f(t, x, y) =

f(t, x) =
1

2

[
2 + arctanx(t)

]
and g(t, x, y) = g(t, x) =

1 + tanhx

4
.

The function f satisfies the hypothesis (A3) with ψf (r) =
1

2
· r

1 + ξ2
for

each 0 < ξ < r. To see this, we have

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤
1

2
· 1

1 + ξ2
· (x1 − y1)

for all x1, y1 ∈ R, x1 ≥ y1 and x1 > ξ > y1. Moreover, the function f is
nonnegative and bounded on J×R× with bound Mf = 2 and so the hypothesis
(A2) is satisfied. Again, since g is nonnegative and bounded on J×R×R with

bound ‖h‖L2 =
1

2
, the hypothesis (B2) holds. Furthermore, g(t, x, y) = g(t, x)

is nondecreasing in x and y for all t ∈ J , and thus hypothesis (B3) is satisfied.

Similarly, the function k satisfies the hypothesis (C2) with ψk(r) =
1

2
· r

1 + ξ2

for every 0 < ξ < r. To see this, we have

0 ≤ k(t, x1, x2)− k(t, y1, y2) ≤
1

2
· 1

1 + ξ2
· (x1 − y1)

for all x1, y1 ∈ R, x1 ≥ y1 and x1 > ξ > y1. Moreover, the function k is

bounded on J×R with bound Mk =
π

4
and so the hypothesis (C1) is satisfied.
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Also we have (
V T q ‖h‖L2

Γ(q)

)
ψf (r) + ψk(r) ≤

r

1 + ξ2
< r

for every r > 0. Thus, condition (3.4) of Theorem 3.4 is held. Finally, the
QFIE (5.8) has a lower solution u(t) = 0 on J . Thus all the hypotheses of
Theorem 3.4 are satisfied. Hence we apply Theorem 3.4 and conclude that the
QFIE (5.8) has a solution x∗ defined on J and the sequence {xn}n∈N defined
by

xn+1(t) =
1

2

[
2 + arctanxn(t)

](∫ t

0

(t− s)1/2

t2 + 1
· [1 + tanhxn(s)]

4
ds

)

+
1

2
arctanxn(t), (5.9)

for all t ∈ J , where x0 = 0, converges monotonically to x∗.

Example 5.4. Given a closed and bounded interval J = [0, 1], consider the
QFIE,

x(t) =
1

2

[
2 + arctanx(t)

]( 1

Γ(3/2)

∫ t

0

(t− s)1/2

t2 + 1
· [1 + tanhx(s)]

4
ds

)
+ arctanx(t) + 1 (5.10)

for t ∈ J .

Now following the arguments similar to those given in Example 5.3 it is
proved that the nonlinear quadratic fractional integral equation (5.10) has a
positive x∗ defined on J and the sequence {xn}n∈N defined by

xn+1(t) =
1

2

[
2 + arctanxn(t)

](∫ t

0

(t− s)1/2

t2 + 1
· [1 + tanhxn(s)]

4
ds

)
+ arctanxn(t) + 1, (5.11)

for all t ∈ J , where x0 = 0, converges monotonically to x∗.

Remark 5.5. The conclusion of Examples 5.3 and 5.4 also remains true if
we replace the lower solution u of the nonlinear quadratic fractional integral
equations with the upper solution v(t) = t+ 1, t ∈ [0, 1].
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