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Abstract. In this paper, we establish some fixed point theorems under rational contraction

in the setting of complex valued metric spaces. The results presented in this paper extend

and generalize several results from the current existing literature.

1. Introduction

Fixed point theory plays a very important role in the development of non-
linear analysis. The Banach contraction principle [4] is a very popular tool
in solving existence problems in many branches of mathematics. The Banach
contraction principle with rational expressions have been expanded and some
fixed point and common fixed point theorems have been obtained in [6], [7].

In the existing literature, there are a great number of generalizations of the
Banach contraction principle (see [1, 2] and others).

In 2011, Azam et al. [3] (Numer. Funct. Anal. Optim 3(3) (2011), 243–
253) introduced the concept of complex valued metric space and established
some fixed point results for mappings satisfying a rational inequality. In this
paper, we establish some fixed point theorems under rational contraction in
the framework of complex valued metric spaces.
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2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It follows that
z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii), or (iii) is
satisfied and we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 . z1 � z2 ⇒ |z1| < |z2|,
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

The following definition was introduced by Azam et al. in 2011 (see, [3]).

Definition 2.1. ([3]) Let X be a nonempty set. Suppose that the mapping
d : X ×X → C satisfies:

(i) 0 - d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = 0 ⇔ x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric on X and (X, d) is called a complex
valued metric space.

Example 2.2. Let X = C, where C is the set of complex numbers. Define
a mapping d : X × X → C by d(z1, z2) = eit|z1 − z2| where z1 = (x1, y1),
z2 = (x2, y2) and t ∈ [0, π2 ]. Then (X, d) is a complex valued metric space.

Definition 2.3. A point x ∈ X is called an interior point of a subset A ⊆ X
whenever there exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

Definition 2.4. A point x ∈ X is called a limit of A whenever for every
0 ≺ r ∈ C such that

B(x, r) ∩
(
A− {X}

)
6= ∅.

Definition 2.5. The set A is called open whenever each element of A is an
interior point of A. A subset B is called closed whenever each limit point of
B belongs to B.
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The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff
topology τ on X.

Definition 2.6. ([3]) Let (X, d) be a complex valued metric space. Let {xn}
be a sequence in X and x ∈ X. Then

(i) {xn} is called convergent, if for every c ∈ C, with 0 ≺ c there exists
n0 ∈ N such that for all n > n0, d(xn, x) ≺ c. Also, {xn} converges to
x (written as, xn → x or limn→∞ xn = x) and x is the limit of {xn}.

(ii) {xn} is called a Cauchy sequence in X, if for every c ∈ C, with 0 ≺ c
there exists n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c. If every
Cauchy sequence converges in X, then X is called a complete complex
valued metric space.

Lemma 2.7. ([3]) Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if limn→∞ |d(xn, x)|
= 0.

Lemma 2.8. ([3]) Let (X, d) be a complex valued metric space and let {xn}
be a sequence in X. Then {xn} is a Cauchy sequence if and only if limn→∞
|d(xn, xn+m)| = 0.

3. Main Results

In this section we shall prove some fixed point theorems under rational
contraction in the framework of complex valued metric spaces.

Theorem 3.1. Let (X, d) be a complete complex valued metric space. Suppose
that the mapping T : X → X satisfies:

d(Tx, Ty) - a d(x, y) + b
d(x, Tx)d(y, Ty)

1 + d(x, y)

+c
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)
(3.1)

for all x, y ∈ X, where a, b, c are nonnegative reals with a+ b+ c < 1. Then
T has a unique fixed point in X.

Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where
xn = Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (3.1), we have

d(xn, xn+1) = d(Txn−1, Txn)

- a d(xn−1, xn) + b
d(xn−1, Txn−1)d(xn, Txn)

1 + d(xn−1, xn)

+c
d(xn−1, Txn−1)d(xn, Txn)

1 + d(Txn−1, Txn)
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= a d(xn−1, xn) + b
d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn)

+c
d(xn−1, xn)d(xn, xn+1)

1 + d(xn, xn+1)

- (a+ b+ c)d(xn−1, xn)

= αd(xn−1, xn),

where α = a+ b+ c. As a+ b+ c < 1, it follows that 0 < α < 1. By induction,
we have

d(xn+1, xn) - αd(xn−1, xn) - α2 d(xn−2, xn−1) - . . .

- αn d(x0, x1).

Let m,n ≥ 1 and m > n, we have

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3)

+ · · ·+ d(xn+m−1, xm)

- [αn + αn+1 + αn+2 + · · ·+ αn+m−1]d(x1, x0)

-
[ αn

1− α

]
d(x1, x0)

and so

|d(xn, xm)| ≤
[ αn

1− α

]
|d(x1, x0)| → 0 as m,n→∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there
exists v ∈ X such that xn → v as n → ∞. It follows that v = Tv, otherwise
d(v, Tv) = z > 0 and we would then have

z - d(v, xn+1) + d(xn+1, T v)

= d(v, xn+1) + d(Txn, T v)

- d(v, xn+1) + a d(xn, v) + b
d(xn, Txn)d(v, Tv)

1 + d(xn, v)

+c
d(xn, Txn)d(v, Tv)

1 + d(Txn, T v)

- d(v, xn+1) + a d(xn, v) + b
d(xn, xn+1)d(v, Tv)

1 + d(xn, v)

+c
d(xn, xn+1)d(v, Tv)

1 + d(xn+1, T v)
.

This implies that
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|z| ≤ |d(v, xn+1)|+ a |d(xn, v)|+ b
|d(xn, xn+1)||d(v, Tv)|

1 + |d(xn, v)|

+c
|d(xn, xn+1)||d(v, Tv)|

1 + |d(xn+1, T v)|
.

Letting n→∞, it follows that

|z| ≤ 0

which is a contradiction and so |z| = 0, that is, v = Tv.
To prove the uniqueness of fixed point of T , assume that v∗ is another fixed

point of T , that is, Tv∗ = v∗ such that v 6= v∗. Then

d(v, v∗) = d(Tv, Tv∗)

- a d(v, v∗) + b
d(v, Tv)d(v∗, T v∗)

1 + d(v, v∗)
+ c

d(v, Tv)d(v∗, T v∗)

1 + d(Tv, Tv∗)

= a d(v, v∗) + b
d(v, v)d(v∗, v∗)

1 + d(v, v∗)
+ c

d(v, v)d(v∗, v∗)

1 + d(v, v∗)

= a d(v, v∗),

so that |d(v, v∗)| ≤ a |d(v, v∗)| < |d(v, v∗)|, since 0 < a < 1, which is a contra-
diction and hence d(v, v∗) = 0. Thus v = v∗, which proves the uniqueness of
fixed point of T . This completes the proof. �

Corollary 3.2. Let (X, d) be a complete complex valued metric space. Suppose
that the mapping T : X → X satisfies (for fixed n):

d(Tnx, Tny) - a d(x, y) + b
d(x, Tnx)d(y, Tny)

1 + d(x, y)

+c
d(x, Tnx)d(y, Tny)

1 + d(Tnx, Tny)

for all x, y ∈ X, where a, b, c are nonnegative reals with a+ b+ c < 1. Then
T has a unique fixed point in X.

Proof. By Theorem 3.1, there exists u ∈ X such that Tnu = u. Then

d(Tu, u) = d(TTnu, Tnu) = d(TnTu, Tnu)

- a d(Tu, u) + b
d(Tu, TnTu)d(u, Tnu)

1 + d(Tu, u)

+c
d(Tu, TnTu)d(u, Tnu)

1 + d(TnTu, Tnu)
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= a d(Tu, u) + b
d(Tu, TTnu)d(u, Tnu)

1 + d(Tu, u)

+c
d(Tu, TTnu)d(u, Tnu)

1 + d(TTnu, Tnu)

= a d(Tu, u) + b
d(Tu, Tu)d(u, u)

1 + d(Tu, u)

+c
d(Tu, Tu)d(u, u)

1 + d(Tu, u)

= a d(Tu, u),

so that |d(Tu, u)| ≤ a |d(Tu, u)| < |d(Tu, u)|, since 0 < a < 1, which is a
contradiction and hence d(Tu, u) = 0. Thus Tu = u. This shows that T has
a unique fixed point in X. This completes the proof. �

If we put b = c = 0 in Corollary 3.2, we draw following corollary which
can be viewed as an extension of Bryant (see, [5]) theorem to complex valued
metric space.

Corollary 3.3. Let (X, d) be a complete complex valued metric space. Suppose
that the mapping T : X → X satisfying the condition:

d(Tnx, Tny) - a d(x, y)

for all x, y ∈ X and a ∈ [0, 1) is a constant. Then T has a unique fixed point
in X.

The following example demonstrates the superiority of Bryant (see, [5])
theorem over Banach contraction theorem.

Example 3.4. ([8]) Let X = C, where C is the set of complex numbers.
Define a mapping d : C × C → C by d(z1, z2) = |x1 − x2| + i|y1 − y2| where
z1 = x1 + iy1, z2 = x2 + iy2. Then (C, d) is a complex valued metric space.
Define T : C→ C as

T (x+ iy) =



0, if x, y ∈ Q,

i, if x, y ∈ Qc,

1, if x ∈ Qc, y ∈ Q,

1 + i, if x ∈ Q, y ∈ Qc.
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Now for x = 1√
2

and y = 0, we get

d(T (
1√
2

), T (0)) = d(1, 0) - λd(
1√
2
, 0) =

λ√
2
.

Thus λ ≥
√

2 which is a contradiction that 0 ≤ λ < 1. However, we notice
that T 2(z) = 0, so that

0 = d(T 2(z1), T
2(z2)) - λd(z1, z2),

which shows that T 2 satisfies the requirement of Bryant theorem and z = 0 is
a unique fixed point of T .

Example 3.5. Let X = {0, 12 , 2} and partial order ′ -′ is defined as x - y iff
x ≥ y. Let the complex valued metric d be given as

d(x, y) = |x− y|
√

2ei
π
4 = |x− y|(1 + i) for x, y ∈ X.

Let T : X → X be defined as follows:

T (0) = 0, T (
1

2
) = 0, T (2) =

1

2
.

Case I. Take x = 1
2 , y = 0, T (0) = 0 and T (12) = 0 in Theorem 3.1, then we

have

d(Tx, Ty) = 0 ≤ a.
(1 + i

2

)
+ b.0 + c.0.

This implies that a ≥ 0. If we take a = 1
3 and b = c = 1

4 , then all the conditions
of Theorem 3.1 are satisfied and of course 0 is the unique fixed point of T .

Case II. Take x = 2, y = 1
2 , T (2) = 1

2 and T (12) = 0 in Theorem 3.1, then we
have

d(Tx, Ty) =
1 + i

2
≤ a.

(3(1 + i)

2

)
+ b.

( 3/4(1 + i)

1 + 3/2(1 + i)

)
+ c.

( 3/4(1 + i)

1 + 1/2(1 + i)

)
.

This implies that a = 1
6 and b = c = 1

3 satisfied all the conditions of Theorem
3.1 and of course 0 is the unique fixed point of T .

Case III. Take x = 2, y = 0, T (2) = 1
2 and T (0) = 0 in Theorem 3.1, then

we have

d(Tx, Ty) =
1 + i

2
≤ a.2(1 + i) + b.0 + c.0.

This implies that a ≥ 1
4 . If we take a = 1

2 and b = c = 1
5 , then all the

conditions of Theorem 3.1 are satisfied and of course 0 is the unique fixed
point of T .
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4. Conclusion

In this paper, we establish some fixed point theorems using rational con-
traction in the setting of complex-valued metric spaces and give an example
in support of our results. Our results extend and generalize several known
results from the current existing literature.
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