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Abstract. In this paper, we prove the generalized Hyers–Ulam–Rassias stability for gener-

alized Jordan derivations on a ring R into a Banach R-bimodule M following Th.M. Rassias’

stability theory approach.

1. Introduction

The stability problem of functional equations originated from a question of
Ulam [34] concerning the stability of group homomorphisms : Let (G1, ∗) be
a group and let (G2, ¦, d) be a metric group with the metric d. Given ε > 0,
does there exist δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the
inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1?
In other words, we are looking for situations where homomorphisms are

stable, i.e., if a mapping is almost a homomorphism, then there exists a ho-
momorphism near it. Hyers [10] gave a first partial affirmative answer to the
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question of Ulam for Banach spaces. Let X and Y be Banach spaces and
assume that f : X → Y satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for some ε ≥ 0 and all x, y ∈ X. Then there exists a unique additive mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Aoki [1] generalized the Hyers’ theorem for additive mappings and Rassias

[28] provided a generalization of the Hyers’ theorem for linear mappings by
allowing the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which
satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for
x 6= 0. Also, if for each x ∈ E the mapping t 7→ f(tx) is continuous in t ∈ R,
then L is linear.

The inequality (1.1) has provided a lot of influence in the development of
what is now known as the Hyers–Ulam–Rassias stability of functional equa-
tions. Isac and Rassias [13] by introducing the concept of ψ-additive mappings
between Banach spaces provided the first generalization of Rassias’ theorem
for approximate homomorphisms. One year later, Gǎvruta [7] provided an-
other generalization of Rassias theorem by replacing the bound ε(‖x‖p +‖y‖p)
by a general control function ϕ(x, y). Isac and Rassias [14] were the first to
prove new fixed point theorems of mappings by applying the stability approach
that has been influenced by the Ulam’s problem. In addition they indicated
new applications to nonlinear eigenvalue problems. In 1998, Hyers, Isac and
Rassias [12] were the first to prove an asymptotic analogue of Rassias’ theorem
for the Hyers–Ulam stability of mappings. Since then the stability problems
of various functional equations and mappings and their Pexiderized versions
with more general domains and ranges have been investigated by a number of
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authors (see [20]–[27]). We also refer the readers to the books [6], [11], [17]
and [29].

Let A be a real or complex algebra. A mapping D : A → A is said to be a
(ring) derivation if

D(a + b) = D(a) + D(b), D(ab) = D(a)b + aD(b)

for all a, b ∈ A. If, in addition, D(λa) = λD(a) for all a ∈ A and all λ ∈ F, then
D is called a linear derivation, where F denotes the scalar field of A. Singer and
Wermer [32] proved that if A is a commutative Banach algebra and D : A → A
is a continuous linear derivation, then D(A) ⊆ rad(A). They also conjectured
that the same result holds even D is a discontinuous linear derivation. Thomas
[33] proved the conjecture. As a direct consequence, we see that there are no
non-zero linear derivations on a semi-simple commutative Banach algebra,
which had been proved by Johnson [16]. On the other hand, it is not the
case for ring derivations. Hatori and Wada [8] determined a representation of
ring derivations on a semi-simple commutative Banach algebra (see also [31])
and they proved that only the zero operator is a ring derivation on a semi-
simple commutative Banach algebra with the maximal ideal space without
isolated points. The stability of derivations between operator algebras was
first obtained by Šemrl [30]. Badora [2] and Miura et al. [21] proved the
Hyers–Ulam–Rassias stability of ring derivations on Banach algebras.

Let R be an associative ring and N be a R-bimodule. An additive mapping
D : R→ N is called a derivation if

D(ab) = D(a)b + aD(b)

holds for all pairs a, b ∈ R and is called a Jordan derivation in case

D(a2) = D(a)a + aD(a)

is fulfilled for all a ∈ R. Every derivation is a Jordan derivation. The converse
is in general not true (see [5, 9]). An additive mapping F : R → N is called
a generalized derivation in case

F (ab) = F (a)b + aD(b)

holds for all pairs a, b ∈ R, where D : R → N is a derivation. The concept
of generalized derivation has been introduced by Brešar [3]. Jing and Lu [15]
introduced a concept of generalized Jordan derivation. An additive mapping
F : R→ N is called a generalized Jordan derivation in case

F (a2) = F (a)a + aD(a)

holds for all a ∈ R, where D : R → N is a Jordan derivation. It is clear
that every generalized derivation is a generalized Jordan derivation. For the
converse see [35].
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The aim of the present paper is to establish the stability problem of gener-
alized Jordan derivations by using the fixed point method (see [4, 18, 20]).

Let E be a set. A function d : E×E → [0,∞] is called a generalized metric
on E if d satisfies

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [19] Let (E, d) be a complete generalized metric space and let
J : E → E be a strictly contractive mapping with Lipschitz constant 0 < L < 1.
Then for each given element x ∈ E, either

d(Jnx, Jn+1x) = ∞
for all non-negative integers n or there exists a non-negative integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set

Y = { y ∈ E : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

2. Main Results

In this section, we assume that R is a 2-divisible associative ring, and M
is a Banach R-bimodule. For convenience, we use the following abbreviation
for given mappings f, g : R →M,

Df,g(a, b, c) := f(a2 + b + c)− f(a)a− ag(a)− f(b)− f(c)

for all a, b, c ∈ R.
Now we prove the generalized Hyers–Ulam–Rassias stability of generalized

Jordan derivations in Banach R-bimodules.

Theorem 2.1. Let f, g : R→M be mappings for which there exist functions
ϕ,ψ : R3 → [0,∞) such that

lim
n→∞ 4nϕ

( a

2n
, 0, 0

)
= lim

n→∞ 2nϕ
(
0,

b

2n
,

c

2n

)
= 0, (2.1)

‖Df,g(a, b, c)‖ ≤ ϕ(a, b, c), (2.2)

lim
n→∞ 4nψ

( a

2n
, 0, 0

)
= lim

n→∞ 2nψ
(
0,

b

2n
,

c

2n

)
= 0, (2.3)

‖Dg,g(a, b, c)‖ ≤ ψ(a, b, c) (2.4)
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for all a, b, c ∈ R. If there exist constants 0 < L, K < 1 such that

2ϕ(0, a, a) ≤ Lϕ(0, 2a, 2a), 2ψ(0, a, a) ≤ Kψ(0, 2a, 2a)

for all a ∈ R, then there exist a unique Jordan derivation G : R →M and a
unique generalized Jordan derivation F : R→M satisfying

‖f(a)− F (a)‖ ≤ L

2− 2L
ϕ(0, a, a), (2.5)

‖g(a)−G(a)‖ ≤ K

2− 2K
ψ(0, a, a), (2.6)

for all a ∈ R.

Proof. It follows from (2.1) and (2.3) that ϕ(0, 0, 0) = 0 = ψ(0, 0, 0) and so
f(0) = g(0) = 0. Letting a = 0 and b = c in (2.2), we get

‖f(2c)− 2f(c)‖ ≤ ϕ(0, c, c) (2.7)

for all c ∈ R. Let E := {h : R →M | h(0) = 0 }. We introduce a generalized
metric on E as follows:

dϕ(h, k) := inf{C ∈ [0,∞] : ‖h(a)− k(a)‖ ≤ Cϕ(0, a, a) for all a ∈ R}.
It is easy to show that (E, dϕ) is a generalized complete metric space [4].

Now we consider the mapping Λ : E → E defined by

(Λh)(a) = 2h
(a

2
)
, for all h ∈ E and a ∈ R.

Let h, k ∈ E and let C ∈ [0,∞] be an arbitrary constant with dϕ(h, k) ≤ C.
From the definition of dϕ, we have

‖h(a)− k(a)‖ ≤ Cϕ(0, a, a)

for all a ∈ R. By the assumption and the last inequality, we have

‖(Λh)(a)− (Λk)(a)‖ = 2
∥∥∥h

(a

2
)− k

(a

2
)∥∥∥ ≤ 2Cϕ

(
0,

a

2
,
a

2
) ≤ CLϕ(0, a, a)

for all a ∈ R. So
dϕ(Λh,Λk) ≤ Ldϕ(h, k)

for any h, k ∈ E. It follows from the assumption and (2.7) that dϕ(Λf, f) ≤
L/2. Therefore according to Theorem 1.2, the sequence {Λnf} converges to a
fixed point F of Λ, i.e.,

F : R→M, F (a) = lim
n→∞(Λnf)(a) = lim

n→∞ 2nf
( a

2n

)

and F (2a) = 2F (a) for all a ∈ R. Also F is the unique fixed point of Λ in the
set Eϕ = {h ∈ E : dϕ(f, h) < ∞} and

dϕ(F, f) ≤ 1
1− L

dϕ(Λf, f) ≤ L

2− 2L
,
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i.e., inequality (2.5) holds true for all a ∈ R. Similarly, we obtain that

dψ(Λh,Λk) ≤ Kdψ(h, k), dψ(Λg, g) ≤ K/2

for any h, k ∈ E, where

dψ(h, k) := inf{C ∈ [0,∞] : ‖h(a)− k(a)‖ ≤ Cψ(0, a, a) for all a ∈ R}.
So according to Theorem 1.2, the sequence {Λng} converges to a fixed point
G of Λ, i.e.,

G : R→M, G(a) = lim
n→∞(Λng)(a) = lim

n→∞ 2ng
( a

2n

)

and G(2a) = 2G(a) for all a ∈ R. Also G is the unique fixed point of Λ in the
set Eψ = {h ∈ E : dψ(g, h) < ∞} and

dψ(G, g) ≤ 1
1−K

dψ(Λg, g) ≤ K

2− 2K
,

i.e., inequality (2.6) holds true for all a ∈ R. It follows from the definitions of
F, G, (2.1) and (2.2) that

‖DF,G(a, 0, 0)‖ = lim
n→∞ 4n

∥∥∥Df,g

( a

2n
, 0, 0

)∥∥∥

≤ lim
n→∞ 4nϕ

( a

2n
, 0, 0

)
= 0,

‖DF,G(0, b, c)‖ = lim
n→∞ 2n

∥∥∥Df,g

(
0,

b

2n
,

c

2n

)∥∥∥

≤ lim
n→∞ 2nϕ

(
0,

b

2n
,

c

2n

)
= 0

for all a, b, c ∈ R. Hence

F (a2) = F (a)a + aG(a), F (b + c) = F (b) + F (c) (2.8)

for all a, b, c ∈ R. Similarly, it follows from the definition of G, (2.3) and (2.4)
that

G(a2) = G(a)a + aG(a), G(b + c) = G(b) + G(c) (2.9)

for all a, b, c ∈ R. Hence G is a Jordan derivation. So we infer from (2.8) and
(2.9) that F is a generalized Jordan derivation.

Finally it remains to prove the uniqueness of F and G. Let F1, G1 : R→M
be another additive mappings satisfying (2.5) and (2.6), respectively. Since
dϕ(f, F1) ≤ L

2−2L , dψ(g, G1) ≤ K
2−2K and F1, G1 are additive, we get F1 ∈

Eϕ, G1 ∈ Eψ and (ΛF1)(a) = 2F1(a/2) = F1(a), (ΛG1)(a) = 2G1(a/2) =
G1(a) for all a ∈ R, i.e., F1, G1 are fixed points of Λ. Since F and G are
the unique fixed points of Λ in Eϕ and Eψ, respectively, we get F1 = F and
G1 = G. ¤



Approximate generalized Jordan derivations 37

Theorem 2.2. Let f, g : R→M be mappings with f(0) = g(0) = 0 for which
there exist functions Φ,Ψ : R3 → [0,∞) such that

lim
n→∞

1
4n

Φ(2na, 0, 0) = lim
n→∞

1
2n

Φ(0, 2nb, 2nc) = 0, (2.10)

‖Df,g(a, b, c)‖ ≤ Φ(a, b, c), (2.11)

lim
n→∞

1
4n

Ψ(2na, 0, 0) = lim
n→∞

1
2n

Ψ(0, 2nb, 2nc) = 0, (2.12)

‖Dg,g(a, b, c)‖ ≤ Ψ(a, b, c) (2.13)

for all a, b, c ∈ R. If there exist constants L,K < 1 such that

Φ(0, 2a, 2a) ≤ 2LΦ(0, a, a), Ψ(0, 2a, 2a) ≤ 2KΨ(0, a, a)

for all a ∈ R, then there exist a unique Jordan derivation G : R →M and a
unique generalized Jordan derivation F : R→M satisfying

‖f(a)− F (a)‖ ≤ 1
2− 2L

Φ(0, a, a), (2.14)

‖g(a)−G(a)‖ ≤ 1
2− 2K

Ψ(0, a, a), (2.15)

for all a ∈ R.

Proof. Using the same method as in the proof of Theorem 2.1, we have
∥∥∥1
2
f(2c)− f(c)

∥∥∥ ≤ 1
2
Φ(0, c, c),

∥∥∥1
2
g(2c)− g(c)

∥∥∥ ≤ 1
2
Ψ(0, c, c) (2.16)

for all c ∈ R. We introduce the same definitions for E, dΦ and dΨ as in
the proof of Theorem 2.1 such that (E, dΦ) and (E, dΨ) become generalized
complete metric spaces. Let Λ : E → E be the mapping defined by

(Λh)(a) =
1
2
h(2a), for all h ∈ E and a ∈ R.

One can show that

dΦ(Λh,Λk) ≤ LdΦ(h, k), dΨ(Λh,Λk) ≤ KdΨ(h, k)

for any h, k ∈ E. It follows from (2.16) that dΦ(Λf, f) ≤ 1
2 and dΨ(Λg, g) ≤ 1

2 .
Due to Theorem 1.2, the sequences {Λnf} and {Λng} converge to fixed points
F and G of Λ, respectively, i.e., F, G : R→M,

F (a) = lim
n→∞(Λnf)(a) = lim

n→∞
1
2n

f(2na),

G(a) = lim
n→∞(Λng)(a) = lim

n→∞
1
2n

g(2na),
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F (2a) = 2F (a) and G(2a) = 2G(a) for all a ∈ R. Also

dΦ(F, f) ≤ 1
1− L

dΦ(Λf, f) ≤ 1
2− 2L

,

dΨ(G, g) ≤ 1
1−K

dΨ(Λg, g) ≤ 1
2− 2K

,

i.e., the inequalities (2.14) and (2.15) hold true for all a ∈ R.
The rest of the proof is similar to the proof of Theorem 2.1 and we omit

the details. ¤

Corollary 2.3. Let ε, δ, p, q be non-negative real numbers with 0 < p, q < 1 or
p, q > 2. If R is a normed ring and f, g : R → M are mappings satisfy the
inequalities

‖Df,g(a, b, c)‖ ≤ ε(‖a‖p + ‖b‖p + ‖c‖p)
and

‖Dg,g(a, b, c)‖ ≤ δ(‖a‖q + ‖b‖q + ‖c‖q)
for all a, b, c ∈ R, then there exist a unique Jordan derivation G : R → M
and a unique generalized Jordan derivation F : R→M satisfying

‖f(a)− F (a)‖ ≤ 2ε

|2− 2p|‖a‖
p, ‖g(a)−G(a)‖ ≤ 2δ

|2− 2q|‖a‖
q

for all a ∈ R.

Proof. Let

L :=
{

2p−1, 0 < p < 1;
21−p, p > 2. K :=

{
2q−1, 0 < q < 1;
21−q, q > 2.

So the result follows from Theorems 2.1 and 2.2. ¤

Corollary 2.4. Let ε and δ be non-negative real numbers and let f, g : R→M
be mappings satisfying f(0) = g(0) = 0 and the inequalities

‖Df,g(a, b, c)‖ ≤ ε, ‖Dg,g(a, b, c)‖ ≤ δ

for all a, b, c ∈ R. Then there exist a unique Jordan derivation G : R → M
and a unique generalized Jordan derivation F : R→M satisfying

‖f(a)− F (a)‖ ≤ ε, ‖g(a)−G(a)‖ ≤ δ

for all a ∈ R.

Proof. The proof follows from Theorem 2.2 by taking

Φ(a, b, c) := ε, Ψ(a, b, c) := δ

for all a, b, c ∈ R. Then we can choose L = K = 1/2 and we get the desired
results. ¤
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Theorem 2.5. Let f, g : R→M be mappings with f(0) = g(0) = 0 for which
there exists a function Φ : R4 → [0,∞) satisfying

lim
n→∞

1
2n

Φ(2na, 2nb, 2nc, 2nd) = lim
n→∞

1
2n

Φ(2na, b, 0, 0)

= lim
n→∞

1
2n

Φ(a, 2nb, 0, 0) = 0,

(2.17)

‖f(ab + c + d)− f(a)b− ag(b)− f(c)− f(d)‖ ≤ Φ(a, b, c, d), (2.18)

for all a, b, c, d ∈ R. If R has the identity e, M is unit linked and there exists
a constant 0 < L < 1 such

Φ(0, 0, 2a, 2a) ≤ 2LΦ(0, 0, a, a)

for all a ∈ R, then g is a derivation and f is a generalized derivation. More-
over, f(a) = ba + g(a) for all a ∈ R, where b = limn→∞ 1

2n f(2ne).

Proof. Letting a = b = 0 and c = d in (2.18), we get

‖f(2c)− 2f(c)‖ ≤ Φ(0, 0, c, c)

for all c ∈ R. Using the same method as in the proof of Theorem 2.2, we infer
that the limit

F (a) := lim
n→∞

1
2n

f(2na) (2.19)

exists for all a ∈ R and the mapping F : R→M is additive. Letting c = d = 0
and replacing a and b by 2ne and 2nb, respectively, in (2.18), we get

‖f(4nb)− 2nf(2ne)b− 2ng(2nb)‖ ≤ Φ(2ne, 2nb, 0, 0)

for all b ∈ R and all n ∈ N. Then
∥∥ 1
4n

f(4nb)− 1
2n

f(2ne)b− 1
2n

g(2nb)‖ ≤ 1
4n

Φ(2ne, 2nb, 0, 0) (2.20)

for all b ∈ R and all n ∈ N. It follows from (2.17), (2.19) and (2.20) that the
limit

G(b) := lim
n→∞

1
2n

g(2nb)

exists and G(b) = F (b) − F (e)b for all b ∈ R. Hence G is additive. It follows
from the definitions of F, G, (2.17) and (2.18) that

‖F (ab)− F (a)b− aG(b)‖
= lim

n→∞
1
4n
‖f(4nab)− 2nf(2na)b− 2nag(2nb)‖

≤ lim
n→∞

1
4n

Φ(2na, 2nb, 0, 0) = 0

for all a, b ∈ R. Therefore

F (ab) = F (a)b + aG(b) (2.21)
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for all a, b ∈ R. Further, by (2.21) we have

G(ab) = F (ab)− F (e)ab

= F (a)b + aG(b)− F (e)ab

= [F (a)− F (e)a]b + aG(b)

= G(a)b + aG(b)

for all a, b ∈ R. Thus G is a derivation and (2.21) shows that F is a generalized
derivation.

By (2.17), (2.18) and the definitions of F, G, we have

F (ab)− F (a)b = ag(b), (2.22)

F (ab)− aG(b) = f(a)b (2.23)

for all a, b ∈ R. Since G(e) = 0, letting a = e in (2.22) and b = e in (2.23),
we get g(b) = F (b) − F (e)b = G(b) and F (a) = f(a), respectively, for all
a, b ∈ R. So g is a derivation and f is a generalized derivation. Moreover,
f(a) = F (e)a + g(a) for all a ∈ R. ¤

Corollary 2.6. Let ε, δ, p be non-negative real numbers with 0 < p < 1. If R
is a normed ring with the identity e, M is unit linked and f, g : R →M are
mappings with f(0) = g(0) = 0 and satisfy the inequality

‖f(ab + c + d)− f(a)b− ag(b)− f(c)− f(d)‖
≤ δ + ε(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p),

for all a, b, c, d ∈ R, then g is a derivation and f is a generalized derivation.
Moreover, f(a) = ba + g(a) for all a ∈ R, where b = limn→∞ 1

2n f(2ne).

Theorem 2.7. Let f, g : R→M be mappings for which there exist functions
ϕ,ψ : R2 → [0,∞) such that

lim
n→∞

1
n

ϕ(na, b) = lim
n→∞

1
n

ϕ(a, nb) = 0, (2.24)

lim
n→∞

1
n

ψ(na, b) = lim
n→∞

1
n

ψ(a, nb) = 0, (2.25)

‖f(ab)− f(a)b− ag(b)‖ ≤ ϕ(a, b), (2.26)

‖g(ab)− g(a)b− ag(b)‖ ≤ ψ(a, b) (2.27)

for all a, b, c ∈ R. If R is normed with the identity e and M is unit linked,
then

g(ab) = g(a)b + ag(b), f(ab) = f(a)b + ag(b) (2.28)

for all a, b ∈ R.
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Proof. By (2.25) and (2.27), we get

lim
n→∞

1
n

[g(nab)− g(na)b] = ag(b),

lim
n→∞

1
n

[g(nab)− ag(nb)] = g(a)b
(2.29)

for all a, b ∈ R. Using the Badora’s method [2] on the inequality (2.27), we
get that the mapping g satisfies

g(ab) = g(a)b + ag(b) (2.30)

for all a, b ∈ R. By (2.24) and (2.26), we have

lim
n→∞

1
n

[f(nab)− f(na)b] = ag(b),

lim
n→∞

1
n

[f(nab)− ag(nb)] = f(a)b
(2.31)

for all a, b ∈ R. Let a, b ∈ R and n ∈ N be fixed. Since g satisfies (2.30), we
have g(nb) = g(bne) = bg(ne) + ng(b). Using (2.26), we have

‖f(ab)− f(a)b− ag(b)‖ ≤ ∥∥f(ab)− 1
n

f(nabe) +
1
n

abg(ne)
∥∥

+
∥∥ 1
n

f(nab)− 1
n

ag(nb)− f(a)b
∥∥

+
∥∥ 1
n

f(nab)− 1
n

f(na)b− ag(b)
∥∥

+
1
n
‖ag(nb)− abg(ne) + f(na)b− f(nab)‖

=
∥∥f(ab)− 1

n
f(nabe) +

1
n

abg(ne)
∥∥

+
∥∥ 1
n

f(nab)− 1
n

ag(nb)− f(a)b
∥∥

+
∥∥ 1
n

f(nab)− 1
n

f(na)b− ag(b)
∥∥

+
1
n
‖nag(b) + f(na)b− f(nab)‖

≤ ∥∥f(ab)− 1
n

f(nabe) +
1
n

abg(ne)
∥∥

+
∥∥ 1
n

f(nab)− 1
n

ag(nb)− f(a)b
∥∥

+
∥∥ 1
n

f(nab)− 1
n

f(na)b− ag(b)
∥∥ +

1
n

ϕ(na, b).
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Applying (2.24) and (2.31) we observe that the right side of the last inequality
tends to 0 when n tends to infinity. Therefore

f(ab) = f(a)b + ag(b).

¤
Corollary 2.8. Let ε, δ, p, q be non-negative real numbers with 0 < p, q < 1.
If R is a normed ring with the identity e, M is unit linked and f, g : R→M
are mappings satisfy the inequalities

‖f(ab)− f(a)b− ag(b)‖ ≤ δ + ε(‖a‖p + ‖b‖q)

‖g(ab)− g(a)b− ag(b)‖ ≤ δ + ε(‖a‖p + ‖b‖q)

for all a, b ∈ R, then f and g satisfy (2.28) for all a, b ∈ R.
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[3] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988),

1003–1006.
[4] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: A fixed

point approach, Grazer Math. Ber. 346 (2004), 43–52.
[5] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
[6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific

Publishing Co. Inc., River Edge, NJ, 2002.
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