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Abstract. Bhaskar and Lakshmikantham [1], Lakshmikantham and Ćiric [3] introduced the

concept of a coupled coincidence point of a mapping F from X ×X into X and a mapping

g from X into X. In this paper, we introduce Sb-metric spaces and give some of their

properties. Also we prove a coupled coincidence fixed point theorem in Sb-metric spaces.

Using a similar method as in [2] coupled fixed point theorems in Gb-metric spaces is obtained

in Sb-metric spaces. One example is presented to verify the effectiveness and applicability

of our main result.

1. Introduction

The Banach contraction principle is the most celebrated fixed point theo-
rem and has been generalized in various directions. Fixed point problems for
contractive mappings in metric spaces with a partially order have been stud-
ied by meny authors. Bhaskar and Lakshmikantham [1], Lakshmikantham and

Ćiric [3] introduced the concept of a coupled coincidence point and studied the
problems of a uniqueness of a coupled fixed point in partially ordered metric
spaces. They applied their theorems to problems of the existence of solution
for periodic boundary value problem. Lakshmikantham [1], Lakshmikantham
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and Ćiric [3] established some coincidence and common coupled fixed point
theorems under nonlinear contractions in partially ordered metric spaces.

In this paper, we prove a coupled coincidence fixed point theorem in Sb-
metric spaces.

First we recall some notions, lemmas and examples which will be useful
later.

Definition 1.1. ([6]) Let X be a nonempty set. A S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions for all x, y, z, a ∈ X,

(S1) 0 < S(x, y, z) for all x, y, z ∈ X with x 6= y 6= z,
(S2) S(x, y, z) = 0 if x = y = z,
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

The pair (X,S) is called an S-metric space.

Example 1.1. ([6]) Let X = R2 and d be an ordinary metric on X. Put
S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all x, y, z ∈ R2, that is, S is the
perimeter of the triangle given x, y, z. Then S is an S-metric on X.

Lemma 1.1. ([5]) In an S-metric space, we have S(x, x, y) = S(y, y, x).

Definition 1.2. ([7]) Let (X,S) be an S-metric space and A ⊆ X.

(1) If for every x ∈ X there exists r > 0 such that Bs(x, r) ⊆ A, then the
subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that
S(x, x, y) < r for all x, y ∈ A.

(3) A sequence {xn} in X convergents to x if and only if S(xn, xn, x)→ 0
as n → ∞. That is for each ε > 0, there exists n0 ∈ N such that for
each n ≥ n0, S(xn, xn, x) < ε and we denote by lim

n−→∞
xn = x.

(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0,
there exists n0 ∈ N such that for each n,m ≥ n0, S(xn, xn, xm) < ε.

(5) The S-metric space (X,S) is said to be complete if every Cauchy se-
quence is convergent.

(6) Let τ be the of all A ⊆ X which x ∈ A if and only if there exists r > 0
such that Bs(x, r) ⊆ A. Then τ is a topology on X.

Lemma 1.2. ([7]) Let (X,S) be an S-metric space. If there exist sequence
{xn}, {yn} such that lim

n−→∞
xn = x and lim

n−→∞
yn = y, then

lim
n−→∞

S(xn, xn, yn) = S(x, x, y).



Coupled fixed point theorems in Sb-metric spaces 219

Lemma 1.3. ([2]) Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z)

and

S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y)

for all x, y, z ∈ X.

Following we give our definitions and examples of Sb-metric spaces.

Definition 1.3. Let X be a nonempty set and b ≥ 1 be a given real number.
Suppose that a mapping S : X3 → [0,∞) satisfies:

(Sb1) 0 < S(x, y, z) for all x, y, z ∈ X with x 6= y 6= z,
(Sb2) S(x, y, z) = 0 if x = y = z,
(Sb3) S(x, y, z) ≤ b(S(x, x, a) + S(y, y, a) + S(z, z, a)) for all x, y, z, a ∈ X.

Then S is called a Sb-metric and the pair (X,S) is called a Sb-metric space.

It should be noted that, the class of Sb-metric spaces is effectively larger
than that of S-metric spaces. Indeed each S-metric space is a Sb-metric space
with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric on
X.

Example 1.2. Let (X,S) be a S-metric space and S∗(x, y, z) = S(x, y, z)p,

where p > 1 is a real number. Note that S∗ is a Sb-metric with b = 22(p−1).
Obviously, S∗ satisfies condition (Sb1), (Sb2) of Definition 1.3, so it suffice to
show (Sb3) holds. If 1 < p <∞, then the convexity of the function f(x) = xp,
(x > 0) implies that (a+ b)p ≤ 2p−1(ap + bp). Thus, for each x, y, z, a ∈ X, we
obtain

S∗(x, y, z) = S(x, y, z)p

≤ ([S(x, x, a) + S(y, y, a)] + S(z, z, a))p

≤ 2p−1([S(x, x, a) + S(y, y, a)]p + S(z, z, a)p)

≤ 2p−1(2p−1(S(x, x, a)p + S(y, y, a)p) + S(z, z, a)p)

≤ 22(p−1)(S(x, x, a)p + S(y, y, a)p) + 2p−1S(z, z, a)p

≤ 22(p−1)(S(x, x, a)p + S(y, y, a)p + S(z, z, a)p)

≤ 22(p−1)(S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a))

so, S∗ is a Sb-metric with b = 22(p−1).
Also in the above example, (X,S∗) is not necessarily a S-metric space. For

example, let X = R, S∗(x, y, z) = (|y + z − 2x|+ |y − z|)2 is a Sb-metric on R,
with p = 2, b = 22(2−1) = 4, for all x, y, z ∈ R. But it is not a S-metric on R.
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To see this, let x = 3, y = 5, z = 7, a =
7

2
. Hence, we get

S∗(3, 5, 7) = (|5 + 7− 6|+ |5− 7|)2 = 82 = 64,

S∗

(
3, 3,

7

2

)
=

( ∣∣∣∣3 +
7

2
− 6

∣∣∣∣ +

∣∣∣∣3− 7

2

∣∣∣∣ )2

= 12 = 1,

S∗

(
5, 5,

7

2

)
=

( ∣∣∣∣5 +
7

2
− 10

∣∣∣∣ +

∣∣∣∣5− 7

2

∣∣∣∣ )2

= 32 = 9,

S∗

(
7, 7,

7

2

)
=

( ∣∣∣∣7 +
7

2
− 14

∣∣∣∣ +

∣∣∣∣7− 7

2

∣∣∣∣ )2

= 72 = 49.

Therefore,

S∗(3, 5, 7) = 64

� 59 = S∗

(
3, 3,

7

2

)
+ S∗

(
5, 5,

7

2

)
+ S∗

(
7, 7,

7

2

)
.

Now we present some definitions and propositions in Sb-metric space.

Definition 1.4. Let (X,S) be a Sb-metric space. Then, for x ∈ X, r > 0
we defined the open ball BS(x, r) and closed ball BS [x, r] with center x and
radius r as follows respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 1.3. Let X = R. Denote S(x, y, z) = (|y + z − 2x| + |y − z|)2 is a

Sb-metric on R with b = 22(2−1) = 4, for all x, y, z ∈ R. Thus

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2}

=

{
y ∈ R : |y − 1| <

√
2

2

}
=

{
y ∈ R : 1−

√
2

2
< y < 1 +

√
2

2

}
=

(
1−
√

2

2
, 1 +

√
2

2

)
.

Lemma 1.4. In an Sb-metric space, we have

S(x, x, y) ≤ bS(y, y, x)

and

S(y, y, x) ≤ bS(x, x, y).
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Proof. By third condition of Sb-metric, we have

S(x, x, y) ≤ b(2S(x, x, x) + S(y, y, x))

= bS(y, y, x)

and similarly

S(y, y, x) ≤ b(2S(y, y, y) + S(x, x, y))

= bS(x, x, y).

�

Lemma 1.5. Let (X,S) be an Sb-metric space. Then

S(x, x, z) ≤ 2bS(x, x, y) + bS(z, z, y)

and

S(x, x, z) ≤ 2bS(x, x, y) + b2S(y, y, z).

Proof. By third condition of Sb-metric, we have

S(x, x, z) ≤ b(S(x, x, y) + S(x, x, y) + S(z, z, y))

= 2bS(x, x, y) + bS(z, z, y)

and

S(x, x, z) ≤ b(S(x, x, y) + S(x, x, y) + S(z, z, y))

≤ b(2S(x, x, y) + bS(y, y, z))

= 2bS(x, x, y) + b2S(y, y, z).

�

Definition 1.5. Let (X,S) be a Sb-metric space. A sequence {xn} in X is
said to be:

(1) Sb-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that
S(xn, xn, xm) < ε for each m,n ≥ n0.

(2) Sb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive
integer n0 such that S(xn, xn, x) < ε or S(x, x, xn) < ε for all n ≥ n0
and we denote by lim

n−→∞
xn = x.

Definition 1.6. A Sb-metric space (X,S) is called complete if every Sb-
Cauchy sequence is Sb-convergent in X.

Definition 1.7. ([3]) Let X be a nonempty set. Then we say that the map-
pings F : X×X → X and g : X → X are commutative if gF (x, y) = F (gx, gy).
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Definition 1.8. ([3]) An element (x, y) ∈ X×X is called a coupled coincidence
point of the mappings F : X ×X → X and g : X → X if F (x, y) = gx and
F (y, x) = gy.

Definition 1.9. Let (X,S) and (X ′, S′) be Sb-metric spaces and let f :
(X,S) → (X ′, S′) be a function. Then f is said to be continuous at a point
a ∈ X if and only if for every sequence xn in X, S(xn, xn, a) → 0 implies
S′(f(xn), f(xn), f(a)) → 0. A function f is continuous at X if and only if it
is continuous at all a ∈ X.

Definition 1.10. ([1]) An element (x, y) ∈ X × X is called a coupled fixed
point of a mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

2. Common fixed point results

Let Φ denote the class of all functions φ : R+ → R+ such that φ is increasing,
continuous, φ(t) < t

2 for all t > 0 and φ(0) = 0.

It is easy to see that for every φ ∈ Φ, we can choose 0 < k < 1
2 such that

φ(t) ≤ kt. For example φ(t) = kt for k ∈ (0, 12).

We start our work by proving the following two crucial lemmas.

Lemma 2.1. Let (X,S) be a Sb-metric space with b ≥ 1 and suppose that
{xn} is a Sb-convergent to x, then we have

1

b2
S(x, x, y) ≤ lim inf

n−→∞
S(xn, xn, y) ≤ lim sup

n−→∞
S(xn, xn, y) ≤ b2S(x, x, y).

In particular, if x = y, then we have lim
n−→∞

S(xn, xn, y) = 0.

Proof. Using the condition (Sb3) of Definition 1.3 in (X,S), it is easy to see
that

S(xn, xn, y) ≤ 2bS(xn, xn, x) + b2S(x, x, y)

and
1

b2
S(x, x, y) ≤ 2S(xn, xn, x) + S(xn, xn, y).

Taking the upper limit as n→∞ in the first inequality and the lower limit as
n→∞ in the second inequality we obtain the desired result. �

Lemma 2.2. Let (X,S) be a Sb-metric space. Let F : X × X → X and
g : X → X be two functions such that

S(F (x, y), F (u, v), F (z, w)) ≤ φ(S(gx, gu, gz) + S(gy, gv, gw)) (2.1)
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for some φ ∈ Φ and for all x, y, z, w, u, v ∈ X. Assume that (x, y) is a coupled
coincidence point of the mappings F and g. Then

F (x, y) = gx = gy = F (y, x).

Proof. Since (x, y) is a coupled coincidence point of the mappings F and g,
we have gx = F (x, y) and gy = F (y, x). Assume gx 6= gy. Then by (2.1), we
get

S(gx, gx, gy) = S(F (x, y), F (x, y), F (y, x))

≤ φ(S(gx, gx, gy) + S(gy, gy, gx)).

Also by (2.1), we have

S(gy, gy, gx) = S(F (y, x), F (y, x), F (x, y))

≤ φ(S(gy, gy, gx) + S(gx, gx, gy)).

Therefore

S(gx, gx, gy) + S(gy, gy, gx) ≤ 2φ(S(gx, gx, gy) + S(gy, gy, gx)).

Since φ(t) < t
2 , we get

S(gx, gx, gy) + S(gy, gy, gx) < S(gx, gx, gy) + S(gy, gy, gx),

which is a contradiction. So gx = gy, and hence

F (x, y) = gx = gy = F (y, x).

�

The following is the main result of this section.

Theorem 2.1. Let (X,S) be a complete Sb-metric space. Let F : X×X → X
and g : X → X be two functions such that

S(F (x, y), F (u, v), F (z, w)) ≤ 1

b3
φ(S(gx, gu, gz) + S(gy, gv, gw)) (2.2)

for all x, y, z, w, u, v ∈ X. Assume that F and g satisfy the following condi-
tions:

(1) F (X ×X) ⊆ g(X),
(2) g(X) is complete, and
(3) g is continuous and commutes with F .

If φ ∈ Φ, then there is a unique x in X such that gx = F (x, x) = x.

Proof. Let x0, y0 ∈ X. Since F (X×X) ⊆ g(X), we can choose x1, y1 ∈ X such
that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since F (X × X) ⊆ g(X),
we can choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1).
Continuing this process, we can construct two sequences (xn) and (yn) in X
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such that gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn). For n ∈ N ∪ {0}, by
(2.2) we have

S(gxn−1, gxn−1, gxn)

= S(F (xn−2, yn−2), F (xn−2, yn−2), F (xn−1, yn−1))

≤ 1

b3
φ(S(gxn−2, gxn−2, gxn−1) + S(gyn−2, gyn−2, gyn−1)).

Similarly by (2.2) we have

S(gyn−1, gyn−1, gyn)

= S(F (yn−2, xn−2), F (yn−2, xn−2), F (yn−1, xn−1))

≤ 1

b3
φ(S(gyn−2, gyn−2, gyn−1) + S(gxn−2, gxn−2, gxn−1)).

Hence, we have

an = S(gxn−1, gxn−1, gxn) + S(gyn−1, gyn−1, gyn)

≤ 2

b3
φ(S(gxn−2, gxn−2, gxn−1) + S(gyn−2, gyn−2, gyn−1))

=
2

b3
φ(an−1)

holds for all n ∈ N. Thus, we get 0 < k < 1
2 such that

an ≤
2

b3
φ(an−1) ≤

2k

b3
an−1 ≤

2k

b
an−1 = qan−1,

for q = 2k
b . Hence we have

an ≤
2k

b
an−1 ≤ · · · ≤

(
2k

b

)n

a0.

Let m,n ∈ N with m > n. By Axioms (Sb3) of Definition 1.3 of Sb-metric
spaces, we have

S(gxn−1, gxn−1, gxm) + S(gyn−1, gyn−1, gym)

≤ b(2S(gxn−1, gxn−1, gxn) + S(gxm, gxm, gxn))

+ b(2S(gyn−1, gyn−1, gyn) + S(gym, gym, gyn))

= 2b(S(gxn−1, gxn−1, gxn) + S(gyn−1, gyn−1, gyn))

+ b(S(gxm, gxm, gxn) + S(gym, gym, gyn))

≤ · · ·
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≤ 2(ban + b2an+1 + b3an+2 + · · ·+ bm−nam−1 + bm−nam)

≤ 2(bqna0 + b2qn+1a0 + · · ·+ bm−nqm−1a0 + bm−nqma0)

≤ 2(bqna0(1 + bq + b2q2 + · · · ))

≤ 2bqna0
1− bq

−→ 0,

since bq = 2k < 1. Thus (gxn) and (gyn) are Sb-Cauchy in g(X). Since g(X)
is complete, we get (gxn) and (gyn) are Sb-convergent to some x ∈ X and
y ∈ X respectively. Since g is continuous, we have (ggxn) is Sb-convergent to
gx and (ggyn) is Sb-convergent to gy. Also, since g and F are commute, we
have

ggxn+1 = g(F (xn, yn)) = F (gxn, gyn)

and

ggyn+1 = g(F (yn, xn)) = F (gyn, gxn).

Thus

S(ggxn+1, ggxn+1, F (x, y)) = S(F (gxn, gyn), F (gxn, gyn), F (x, y))

≤ 1

b3
φ(S(ggxn, ggxn, gx) + S(ggyn, ggyn, gy)).

Taking lim sup
n−→∞

, and using the Lemma 2.1, we get that

1

b2
S(gx, gx, F (x, y)) ≤ lim sup

n−→∞
S(F (gxn, gyn), F (gxn, gyn), F (x, y))

≤ lim sup
n−→∞

1

b3
φ(S(ggxn, ggxn, gx) + S(ggyn, ggyn, gy))

≤ 1

b3
φ(b2(S(gx, gx, gx) + S(gy, gy, gy)) = 0.

Hence gx = F (x, y). Similarly, we may show that gy = F (y, x). By Lemma
2.2, (x, y) is coupled fixed point of the mappings F and g. So

gx = F (x, y) = F (y, x) = gy.

Thus, using the Lemma 2.1, we have

1

b2
S(x, x, gx) ≤ lim sup

n−→∞
S(gxn+1, gxn+1, gx)

= lim sup
n−→∞

S(F (xn, yn), F (xn, yn), F (x, y))

≤ lim sup
n−→∞

1

b3
φ(S(gxn, gxn, gx) + S(gyn, gyn, gy))

≤ 1

b3
φ(b2(S(x, x, gx) + S(y, y, gy))).
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Hence, we get

S(x, x, gx) ≤ 1

b
φ(b(S(x, x, gx) + S(y, y, gy))).

Similarly, we may show that

S(y, y, gy) ≤ 1

b
φ(b(S(y, y, gy) + S(x, x, gx))).

Thus

S(x, x, gx) + S(y, y, gy) ≤ 2

b
φ(b(S(x, x, gx) + S(y, y, gy)))

≤ 2kS(x, x, gx) + S(y, y, gy).

Since 2k < 1, the last inequality happened only if S(x, x, gx) = 0 and S(y, y, gy) =
0. Hence x = gx and y = gy. Thus we get

gx = F (x, x) = x.

To prove the uniqueness, let z ∈ X with z 6= x such that

z = gz = F (z, z).

Then

S(x, x, z) = S(F (x, x), F (x, x), F (z, z))

≤ 1

b3
φ(2S(gx, gx, gz))

<
1

b3
2kS(x, x, z) ≤ 2kS(x, x, z).

Since 2k < 1, we get S(x, x, z) < S(x, x, z), which is a contradiction. Thus F
and g have a unique common fixed point. �

Corollary 2.1. Let (X,S) be a Sb-metric space. Let F : X × X → X and
g : X → X be two functions such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

b3
(S(gx, gx, gu) + S(gy, g, gv)) (2.3)

for all x, y, u, v ∈ X. Assume F and g satisfy the following conditions:

(1) F (X ×X) ⊆ g(X),
(2) g(X) is complete, and
(3) g is continuous and commutes with F .

If k ∈ (0, 12), then there is a unique x in X such that gx = F (x, x) = x.

Proof. Follows from Theorem 2.1, by taking z = u, v = w and φ(t) = kt. �
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Corollary 2.2. Let (X,S) be a complete Sb-metric space. Let F : X×X → X
be a mapping such that

S(F (x, y), F (x, y), F (u, v)) ≤ k

b3
(S(x, x, u) + S(y, y, v))

for all x, y, u, v ∈ X. If k ∈ [0, 12), then there is a unique x in X such that
F (x, x) = x.

Now, we introduce some examples of our theorem.

Example 2.1. Let X = [0, 1]. Define S : X3 → R+ by

S(x, y, z) = (|y + z − 2x|+ |y − z|)2

for all x, y, z ∈ X. Then (X,S) is a complete Sb-metric space with b = 4,
according to Example 1.1. Define a map F : X × X → X by F (x, y) =
x

128
+

y

256
for x, y ∈ X. Also, define g : X → X by g(x) =

x

4
for x ∈ X and

φ(t) =
t

4
for t ∈ R+. We have

S(F (x, y), F (u, v), F (z, w))

= (|F (u, v) + F (z, w)− 2F (x, y)|+ |F (u, v)− F (z, w)|)2

=

( ∣∣∣∣ u128
+

v

256
+

z

128
+

w

256
− 2x

128
− 2y

256

∣∣∣∣ +
∣∣∣ u
128

+
v

256
− z

128
− w

256

∣∣∣ )2

≤
(

1

128
|u+ z − 2x|+ 1

256
|v + w − 2y|+ 1

128
|u− z|+ 1

256
|v − w|

)2

=

(
1

128
(|u+ z − 2x|+ |u− z|) +

1

256
(|v + w − 2y|+ |v − w|)

)2

=

(
1

32

( ∣∣∣∣u4 +
z

4
− 2x

4

∣∣∣∣ +
∣∣∣u
4
− z

4

∣∣∣ ) +
1

64

( ∣∣∣∣v4 +
w

4
− 2y

4

∣∣∣∣ +
∣∣∣v
4
− w

4

∣∣∣ ))2

≤ 2

322

( ∣∣∣∣u4 +
z

4
− 2x

4

∣∣∣∣ +
∣∣∣u
4
− z

4

∣∣∣ )2

+
2

642

( ∣∣∣∣v4 +
w

4
− 2y

4

∣∣∣∣ +
∣∣∣v
4
− w

4

∣∣∣ )2

=
2

322
S(gx, gu, gz) +

2

642
S(gy, gv, gw)

≤ 2

322
(S(gx, gu, gz) + S(gy, gv, gw))

≤ 1

64

S(gx, gu, gz) + S(gy, gv, gw)

4

=
1

43
φ(S(gx, gu, gz) + S(gy, gv, gw))
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holds for all x, y.u, v, z, w ∈ X. It is easy to see that F and g satisfy all the
hypothesis of Theorem 2.1. Thus F and g have a unique common fixed point.
Here F (0, 0) = g(0) = 0.
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