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Abstract. Bhaskar and Lakshmikantham [1], Lakshmikantham and Ciric [3] introduced the
concept of a coupled coincidence point of a mapping F from X x X into X and a mapping
g from X into X. In this paper, we introduce Sp-metric spaces and give some of their
properties. Also we prove a coupled coincidence fixed point theorem in S,-metric spaces.
Using a similar method as in [2] coupled fixed point theorems in G-metric spaces is obtained
in Spy-metric spaces. One example is presented to verify the effectiveness and applicability

of our main result.

1. INTRODUCTION

The Banach contraction principle is the most celebrated fixed point theo-
rem and has been generalized in various directions. Fixed point problems for
contractive mappings in metric spaces with a partially order have been stud-
ied by meny authors. Bhaskar and Lakshmikantham [1], Lakshmikantham and
Ciric [3] introduced the concept of a coupled coincidence point and studied the
problems of a uniqueness of a coupled fixed point in partially ordered metric
spaces. They applied their theorems to problems of the existence of solution
for periodic boundary value problem. Lakshmikantham [1], Lakshmikantham
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and Ciric [3] established some coincidence and common coupled fixed point
theorems under nonlinear contractions in partially ordered metric spaces.

In this paper, we prove a coupled coincidence fixed point theorem in Sp-
metric spaces.

First we recall some notions, lemmas and examples which will be useful
later.

Definition 1.1. ([6]) Let X be a nonempty set. A S-metric on X is a function
S : X3 —[0,00) that satisfies the following conditions for all z,y, z,a € X,

(S1) 0 < S(z,y,2) for all z,y,z € X with x # y # 2,

(S2) S(z,y,2) =0ifz =y =z,

(S3) S(x,y,2) < S(x,z,a) + S(y,y,a) + S(z,z,a) for all z,y,z,a € X.
The pair (X, S) is called an S-metric space.

Example 1.1. ([6]) Let X = R? and d be an ordinary metric on X. Put
S(z,y,2) = d(z,y) + d(z,z) + d(y,z) for all z,y,z € R? that is, S is the
perimeter of the triangle given z,y, z. Then S is an S-metric on X.

Lemma 1.1. ([5]) In an S-metric space, we have S(x,z,y) = S(y,y, ).

Definition 1.2. ([7]) Let (X, S) be an S-metric space and A C X.

(1) If for every x € X there exists r > 0 such that Bs(x,r) C A, then the
subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists » > 0 such that
S(z,x,y) <r for all z,y € A.

(3) A sequence {z,} in X convergents to x if and only if S(xy,, zp, ) — 0
as n — o0o. That is for each € > 0, there exists ng € N such that for

each n > ng, S(xyn, Ty, z) < € and we denote by lim z, = z.
n—oo

(4) Sequence {z,} in X is called a Cauchy sequence if for each ¢ > 0,
there exists ng € N such that for each n,m > ng, S(xn, Tn, zm) < €.

(5) The S-metric space (X,S) is said to be complete if every Cauchy se-
quence is convergent.

(6) Let 7 be the of all A C X which z € A if and only if there exists r > 0
such that Bg(z,7) C A. Then 7 is a topology on X.

Lemma 1.2. ([7]) Let (X,S) be an S-metric space. If there exist sequence
{zn}, {yn} such that lim z, =x and lim y, =y, then
n—-—ao0 n—-ao0

lim S(xn,Tn,yn) = S(z,z,y).

n—aoo
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Lemma 1.3. ([2]) Let (X, S) be an S-metric space. Then
S(z,x,2) <25z, x,y) + S(y,y, 2)
and
S(z,x,2) <28(x,z,y) + S(2, 2,y)
forall x,y,z € X.

Following we give our definitions and examples of Sp-metric spaces.

Definition 1.3. Let X be a nonempty set and b > 1 be a given real number.
Suppose that a mapping S : X3 — [0, 00) satisfies:

(Spl) 0 < S(z,y,2) for all z,y,z € X with x # y # z,

(Sp2) S(z,y,2) =0if x =y = z,

(Se3) S(z,y,2) < b(S(z,x,a)+ S(y,y,a)+ S(z,2,a)) for all z,y,z,a € X.
Then S is called a Sy-metric and the pair (X, S) is called a Sy-metric space.

It should be noted that, the class of Sp-metric spaces is effectively larger
than that of S-metric spaces. Indeed each S-metric space is a Sp-metric space
with b= 1.

Following example shows that a Sp-metric on X need not be a S-metric on
X.

Example 1.2. Let (X, S) be a S-metric space and Si(z,y,2) = S(z,vy, 2)P,
where p > 1 is a real number. Note that S, is a Sy-metric with b = 22(p—1)
Obviously, S, satisfies condition (Sp1), (Sp2) of Definition 1.3, so it suffice to
show (S3) holds. If 1 < p < 0o, then the convexity of the function f(z) = aP,
(x > 0) implies that (a +b)P < 2P~1(aP 4+ bP). Thus, for each x,y,2,a € X, we
obtain

S(z,y,2)

S(z,y,2)’
([S(z,z,a) + S(y,y,a)] + S(z,2,a))P
2P ([S(z, z,a) + S(y,y,a)]P + S(z, 2, a)P)
2P (2P~ Y(S(z, z,a)P + S(y,y,a)P) + S(z, z,a)P)
22(p_1)(5($, z,a)? + S(y,y,a)P) + 2P 71S(2, 2, a)P
22(p71)(S(x,x,a)p + S(y,y,a)? + S(z,z,a)P)
22(”_1)(5*(30, z,a) + Si(y,y,a) + S«(z, z,a))
S0, Sy is a Sp-metric with b = 22(p—1)

Also in the above example, (X, S,) is not necessarily a S-metric space. For

example, let X =R, S.(2,y,2) = (ly + z — 22|+ |y — 2[)? is a Sp-metric on R,
with p =2, b= 22C"Y =4, for all z,y, z € R. But it is not a S-metric on R.

(AN VAN VAN VANRN VAN VAN
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7
To see this, let t =3, y=5,2=7,a= 3 Hence, we get
S.(3,5,7) = (5+7—6|+|5—7)° =8 =64,

7 71\? .,
<3+2 6M3 2‘) ,

7
2
S 55Z = 5+Z—10+5—Z 2—32—9
* 772 - 2 2 - — Y
7 7
2

7 2
([r+g-1af+r-3|) ==

7 7 7
$59S*<3,3,2> +S*(5,5,2> +S*<7,7,2>.

Now we present some definitions and propositions in Sp-metric space.

Definition 1.4. Let (X, S) be a Sp-metric space. Then, for x € X, r > 0
we defined the open ball Bg(z,r) and closed ball Bg[z,r] with center x and
radius r as follows respectively:

Bs(z,r) = {ye X :S(y,y,x) <r},
Bglz,r] = {ye X :S(y,y,z) <r}.

Example 1.3. Let X = R. Denote S(z,y,2) = (ly + 2 —2z| + |y — 2|)? is a
Sp-metric on R with b = 222=1 =4 for all z,y, z € R. Thus

Bs(1,2) = {yeR:S(y,y,1) <2}
= {yGR:]y—1\<\/§}

2
= {yER:l—\f<y<l+\é§}
()

Lemma 1.4. In an Sy-metric space, we have
S(z,z,y) < bS(y,y,x)
and
S(y,y,x) < bS(x,2,y).
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Proof. By third condition of Sp-metric, we have
S(x,z,y) < b2S(x,z,x)+ S(y,y,x))
= bS(y,y, )

and similarly

S(y,y,r) < b(25(y,y,y) + S(z,2,y))

= bS(z,x,y).
O
Lemma 1.5. Let (X, S) be an Sy-metric space. Then
S(z,z,z) <208(z,z,y) + bS(2, 2,y)
and
S(x,x,2) < 2bS(x,x,y) + b*S(y,y, 2).
Proof. By third condition of Sp-metric, we have
S(x,xz,z) < b(S(x,z,y)+ S(z,z,y) +5(z,2,9))
= 2bS(z,x,y) +bS(z, 2,y)
and
S(x,z,z) < b(S(z,z,y)+ S(z,z,y) + S(2,2,y))
< b(25(z,7,y) +05(y,y, 2))
= 2bS(x,x,y) + b2S(y,y, 2).
g

Definition 1.5. Let (X,S) be a Sp-metric space. A sequence {z,} in X is
said to be:

(1) Sp-Cauchy sequence if, for each £ > 0, there exists ng € N such that
S(xp, T, Tm) < € for each m,n > ng.

(2) Sp-convergent to a point x € X if, for each £ > 0, there exists a positive
integer ng such that S(x,,x,,z) < e or S(x,z,x,) < € for all n > ng

and we denote by lim =z, = x.
n—aoo

Definition 1.6. A Sp-metric space (X,S) is called complete if every Sp-
Cauchy sequence is Sp-convergent in X.

Definition 1.7. ([3]) Let X be a nonempty set. Then we say that the map-
pings F': XxX — X and g : X — X are commutative if gF' (z,y) = F(gz, gy).
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Definition 1.8. ([3]) An element (x,y) € X xX is called a coupled coincidence
point of the mappings F': X x X — X and g : X — X if F(x,y) = g and

F(y,z) = gy.

Definition 1.9. Let (X,S) and (X’,S5’) be Sp-metric spaces and let f :
(X,S) — (X', 5") be a function. Then f is said to be continuous at a point
a € X if and only if for every sequence x,, in X, S(z,,xn,a) — 0 implies
S"(f(zn), f(xn), f(a)) = 0. A function f is continuous at X if and only if it
is continuous at all a € X.

Definition 1.10. ([1]) An element (z,y) € X x X is called a coupled fixed
point of a mapping F : X x X — X if F(z,y) =2z and F(y,z) = y.

2. COMMON FIXED POINT RESULTS

Let ® denote the class of all functions ¢ : R™ — R™ such that ¢ is increasing,
continuous, ¢(t) < & for all ¢ > 0 and ¢(0) = 0.
It is easy to see that for every ¢ € ®, we can choose 0 < k < % such that
¢(t) < kt. For example ¢(t) = kt for k € (0, 3).

We start our work by proving the following two crucial lemmas.

Lemma 2.1. Let (X,S) be a Sy-metric space with b > 1 and suppose that
{zn} is a Sp-convergent to x, then we have

1
=S(z,z,y) < liminfS(2,, z,,y) < limsupS(wn, Tn,y) < b25’(x,x,y).

b2 n—>00 n—soo

In particular, if © =y, then we have lim S(x,,x,,y) = 0.
n——oo

Proof. Using the condition (S33) of Definition 1.3 in (X, 5), it is easy to see
that

S(Tn, Tn,y) < 2bS(p, Ty, x) + bQS(x, z,y)

and .

b—ZS(x,:ﬂ,y) < 28(zp, T, x) + S(Tn, Tn,Y).
Taking the upper limit as n — oo in the first inequality and the lower limit as
n — oo in the second inequality we obtain the desired result. O

Lemma 2.2. Let (X,S) be a Sy-metric space. Let F : X x X — X and
g: X — X be two functions such that

S(F(z,y), F(u,v), F(z,w)) < ¢(S(g9, gu, gz) + S(gy, gv, gw)) (2.1)
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for some ¢ € ® and for all z,y, z,w,u,v € X. Assume that (z,y) is a coupled
coincidence point of the mappings F' and g. Then

F(x,y) =gz =gy = F(y,x).

Proof. Since (x,y) is a coupled coincidence point of the mappings F' and g,
we have gr = F(z,y) and gy = F(y,x). Assume gz # gy. Then by (2.1), we
get

S(F(x,y), F(z,y), F(y,x))
o(S(9z, gz, 9y) + S(9y, 9y, 9z)).

S(gx, gz, gy)

IN

Also by (2.1), we have

S(gy, 9y, 9) S(F(y,x), F(y, ), F(z,y))

< #(S(g9y,9y,97) + S(gz, gz, gy))-

Therefore

S(gx, gz, gy) + S(gy, 9y, 9x) < 2¢6(S(gz, gz, gy) + S(9y, gy, gx))-
Since ¢(t) < %, we get

S(gx, gz, 9y) + S(gy, 9y, 9x) < S(gx, 9=, gy) + S(g9y, 9y, 9),

which is a contradiction. So gx = gy, and hence

F(x,y) = gx = gy = F(y,x).

The following is the main result of this section.

Theorem 2.1. Let (X, S) be a complete Sy-metric space. Let F : X x X — X
and g : X — X be two functions such that

S(F(2,9), F(u,0), F(z,w)) < 150(8(g2, gu,02) + S(gy,g0,00)) (2.2

for all x,y,z,w,u,v € X. Assume that F' and g satisfy the following condi-
tions:

(1) F(X x X) C g(X),

(2) g(X) is complete, and

(3) g is continuous and commutes with F'.
If € ®, then there is a unique x in X such that gx = F(x,x) = x.

Proof. Let xg,yo € X. Since F(X x X ) C g(X), we can choose z1,y; € X such
that gz = F(xo,y0) and gy1 = F(yo,70). Again since F'(X x X) C g(X),
we can choose xo,y2 € X such that gzo = F(x1,y1) and gya = F(y1,21).
Continuing this process, we can construct two sequences (x,) and (y,) in X
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such that grp+1 = F(zpn,yn) and gyp+1 = F(yn,zn). For n € NU{0}, by
(2.2) we have

S(gxn—1,9Tn—1,9%y)
= S(F(xn—% yn—2)7 F(xn—Qa yn—2)7 F(I'n_l, yn—l))
1
< b§¢(S(gxn_z,gxn_z,gxn_1) + S(9Yn—2, 9Yn—2, 9Yn—1))-
Similarly by (2.2) we have

S(9Yn—1, 9Yn—1, 9Yn)
= S(F(yn—%xn—2)aF(yn—Qaxn—2)aF<yn—1;xn—1)>

1
< 13005 (9Yn—2, 9Yn-2, gyn—1) + S(92n-2, 9¥n-2, gn-1))-
Hence, we have
Qp = S(g$n_1, gmn—lvgxn) + S(gyn—h 9Yn—1, gyn)

2

< b§¢(5(9xn—2,gxn—2,gmn—1) + S(9Yyn—2, 9Yn—2, GYn—1))
2

= b§¢(an—1)

holds for all n € N. Thus, we get 0 < k < % such that

2 2k 2k

b3¢(an—1) < ?an—l < —ap—1 = qan—1,

an < b

for g = %. Hence we have

<% < < %n
an_ban_l_ S\ ap.

Let m,n € N with m > n. By Axioms (S33) of Definition 1.3 of Sp-metric
spaces, we have

S(9%n-1, 9Tn-1, 9Tm) + S(9Yn—1, 9Yn—1, gYm)

< b(25(9Tn—1,9%Tn-1,9%n) + S(gTm, §Tm, gTs))
+0(25(9Yn—15 9Yn—1, 9Yn) + S(9Ym> 9Ym> 9Yn))

= 2b(S(g$n_1, gTn—1, gxn) + S(gyn—hgyn—lygyn))

+ 0(S(9Zm, 9Tm, gTn) + S(9Ym> 9Ym, GYn))
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S 2(1)&” + bzan—‘rl + b3an+2 4+t bmfnam_l + bminam)
< 2(bg"ag + b2q" ag + -+ + b "¢ Lag + b " g™ag)
< 2(bq"ao(1 +bg + b*¢* + - --))

2bq™ ag 0,

1—bq

since bg = 2k < 1. Thus (gz,) and (gy,) are Sp-Cauchy in g(X). Since g(X)
is complete, we get (gx,) and (gy,) are Sp-convergent to some z € X and
y € X respectively. Since g is continuous, we have (ggz,) is Sp-convergent to
gz and (ggy,) is Sp-convergent to gy. Also, since g and F' are commute, we
have

99%n+1 = 9(F(2n,yn)) = F (920, 9yn)
and

99Yn+1 = 9(F (Yn, n)) = F(gyn, gn).
Thus

S(997n+1, 99Tn+1, F(2,y)) = S(F(92n, gyn), F(9Tn, gyn), F'(2,y))

1
< b§¢(5(ggxn,ggxn,gw) + S(99Yn, 99Yn: 9Y))-

Taking limsup, and using the Lemma 2.1, we get that

n—aoo

1 .
=59(9z, gz, F(2,y)) < lmsupS(F(gzn, gyn), F(92n, gyn), F(z,y))

b n—aoo

IN

, 1
lim Supbfgsb(S (99%n, 99Tn, 9) + S(99Yn> 99Yn, 9Y))

n—m—oo
1
< bf3¢(bZ(S(gw,gw, gz) + S(9y, 9y, gy)) = 0.

Hence gx = F(x,y). Similarly, we may show that gy = F(y,z). By Lemma
2.2, (z,y) is coupled fixed point of the mappings F' and g. So

gr = F(z,y) = F(y,r) = gy.

Thus, using the Lemma 2.1, we have

1 .
*S(QZ}LIT,QI) < llmsupS(g$n+1,gxn+1,g$)

b2 n—»o0
= hmsupS(F(xn,yn),F(:L‘n,yn),F(x,y))
n—>o00
i 1
< hm_s>up@¢(5 (92n, 9n, 92) + S(9Yn, 9Yn> )
1
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Hence, we get
1
S(x,2,92) < £ 6(0(S(2, 2, 92) + S(y, y, 99)))-
Similarly, we may show that
1
Sy, 9y) < 30(0(5(y, v, 9y) + 5(2, x, gz))).
Thus

2
S(z,x,g7) + S(y,y,9y) < 5<Z>(b(5(3:,x,g:v)+S(y,yvgy)))
< 2kS(z,z,97) + S(y,y, 9y)-

A

Since 2k < 1, the last inequality happened only if S(x, z, gz) = 0 and S(y,y, gy) =
0. Hence x = gz and y = gy. Thus we get

gr = F(x,z) = x.
To prove the uniqueness, let z € X with z # z such that

z=gz=F(z,2).

Then
S(z,z,z) = S(F(x,x),F(z,z),F(z,2))
1
1
< b—32kS(:L‘,:U,z) < 2kS(x,x, 2).
Since 2k < 1, we get S(z,z,z) < S(x,z, z), which is a contradiction. Thus F’
and g have a unique common fixed point. O

Corollary 2.1. Let (X,S) be a Sp-metric space. Let F: X x X — X and
g: X — X be two functions such that

S(F(,9), F(w.), F(w,0) < 35(S(g7, 97,00) + S(aw,0,9v)) (23

for all x,y,u,v € X. Assume F and g satisfy the following conditions:
(1) F(X x X) C g(X),
(2) g(X) is complete, and
(3) g is continuous and commutes with F'.

If k € (0,3), then there is a unique  in X such that g = F(z,z) = z.

Proof. Follows from Theorem 2.1, by taking z = u, v = w and ¢(t) = kt. O
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Corollary 2.2. Let (X, S) be a complete Sy-metric space. Let F: X x X — X
be a mapping such that

k

S(E(z,y), Fz,y), F(u,0)) < (5@, z,u) +5(y,9,v))

S

for all x,y,u,v € X. If k € [0, %), then there is a unique x in X such that
F(z,x) ==x.

Now, we introduce some examples of our theorem.

Example 2.1. Let X = [0,1]. Define S : X? — R by

S(z,y,2) = (Jy + 2 — 22| + |y — 2|)°
for all x,y,z € X. Then (X,S) is a complete Sp-metric space with b = 4,
according to Example 1.1. Define a map F : X x X — X by F(z,y) =

x Y ‘ oz
198 + 550 for z,y € X. Also, define g : X — X by g(z) = 1 for x € X and

o(t) = 3 for t € RT. We have

S(F(z,y), F(u,v), F(z,w))
= (|F(u,v) + F(z,w) = 2F (2,y)| + |F (u,v) = F(z,w)|)?

u+v+z+w 2x Qer’uJr
128 256 128 256 128 256 128 ° 256 128 256

L|u—|—z—2gc\—|—L|v—|—w—2 |+L\u—z|+i|v—w| i
128 256 I 18 256

1 1 2
58(\%2—214+|u—Z|)+f(|v+w—2y|+|v—w|)

256
2
ofi-3 ;-3
1))

i

4 4 64
oz, 2
4 4 642

2
= 78(9‘7:’9”792) + @S(gyvgvmgw)

u oz voow 2y

it "

.
474 4

< 555 (S(g2, gu, 92) + S(gy, gv, gw))

1 S(gz, gu, gz) + S(gy, gv, gw)
64 4
1

[\V]

= —6(S(gz, gu, 92) + S(gy, gv, gw))



228

S. Sedghi and A. Gholidahneh

holds for all z,y.u,v,z,w € X. It is easy to see that F' and g satisfy all the
hypothesis of Theorem 2.1. Thus F' and g have a unique common fixed point.
Here F'(0,0) = g(0) = 0.

1]
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