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Abstract. Using the notion of the H−monotonicity (also referred to as H−maximal mono-

tonicity in literature), the solvability of a system of nonlinear variational inclusion problems

involving cocoercively monotone mappings (that unifies most of the existing notions relat-

ing to the strong monotonicity and beyond) based on the resolvent operator technique is

explored. The obtained results are general in nature.

1. Introduction

Recently, Verma [8] examined the convergence of averaging techniques for
relaxation algorithms and for their specializations as projection methods and
auxiliary problem principle in the context of solving a class of variational in-
equalities involving cocoercively monotone mappings. There is a vast literature
on globally convergent schemes for variational inequalities involving strongly
monotone mappings. The notion of cocoercively monotone mappings is weaker
and more inclusive than cocoercive and strongly monotone mappings.

Fang and Huang [1, 2] introduced the notion of the H−monotonicity in the
context of solving some nonlinear inclusion systems. This notion impacted
greatly the theory of maximal monotone mappings in several domains of ap-
plications. More importantly, H−maximal monotonicity can also be applied
to first-order evolution equations based on the Yosida approximation. For
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more details on evolution equations as well as evolution inclusions, we rec-
ommend [9, 12]. In this communication, our aim is to generalize variational
inclusion systems [2] to the case of cocoercively monotone mappings in Hilbert
spaces. Moreover, the solvability for our system of nonlinear variational in-
clusions involving cocoercively monotone mappings is based on the resolvent
operator technique. The obtained results seem to be general in nature and
do have a wide range of applications, especially to optimization and control
theory, and management and decision sciences.

Let X be a real Hilbert space with the norm ‖ · ‖ and the inner product
〈·, ·〉.
Definition 1.1.([1]) Let H : X → X and M : X → 2X be any mappings on
X. The map M is said to be H−maximal monotone if:

(i) M is monotone.
(ii) (H + ρM)(X) = X for ρ > 0.

Note that if H is strictly monotone and M is H−monotone, then M is
maximal monotone. Let the resolvent operator Jρ

H ,M : X → X be defined by

Jρ
H ,M (u) = (H + ρM)−1(u)∀u ∈ X.

Definition 1.2. Let T,A : X → X be any mappings on X. The map T is
said to be

(i) (r)−strongly monotone if there is a positive constant r such that

〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2 ∀x, y ∈ X.

(ii) (m)−relaxed monotone if there is a positive constant m such that

〈T (x)− T (y), x− y〉 ≥ −m‖x− y‖2 ∀x, y ∈ X.

(iii) (γ, r)-relaxed cocoercive if there exist constants γ, r > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2 + r‖x− y‖2 ∀x, y ∈ X.

(iv) (γ)−relaxed cocoercive if there exists a constant γ > 0 such that

〈T (x)− T (y), x− y〉 ≥ (−γ)‖T (x)− T (y)‖2 ∀x, y ∈ X.

(v) (r)−strongly monotone (with respect to A) if there is a positive con-
stant r such that

〈T (x)− T (y), A(x)−A(y)〉 ≥ r‖x− y‖2 ∀x, y ∈ X.

(vi) (m)−relaxed monotone (with respect to A) if there is a positive con-
stant m such that

〈T (x)− T (y), A(x)−A(y)〉 ≥ −m‖x− y‖2 ∀x, y ∈ X.
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(vii) (γ, r)-relaxed cocoercive (with respect to A) if there exist constants
γ, r > 0 such that

〈T (x)− T (y), A(x)−A(y)〉 ≥ (−γ)‖T (x)− T (y)‖2 + r‖x− y‖2 ∀x, y ∈ X.

(viii) (γ)−relaxed cocoercive (with respect to A) if there exists a constant
γ > 0 such that

〈T (x)− T (y), A(x)−A(y)〉 ≥ (−γ)‖T (x)− T (y)‖2 ∀x, y ∈ X.

Definition 1.3. Let T,A : X → X be any mappings on X. The map T is
said to be:

(i) (γ)−cocoercive if there exists a constant γ > 0 such that

〈T (x)− T (y), x− y〉 ≥ γ‖T (x)− T (y)‖2 ∀ x, y ∈ X.

(ii) (γ)−cocoercive (with respect to A) if there exists a constant γ > 0
such that

〈T (x)− T (y), A(x)−A(y)〉 ≥ γ‖T (x)− T (y)‖2 ∀ x, y ∈ X.

Definition 1.4.([8]) Let T, A : X → X be any mappings on X. The map T
is said to be:

(i) (a, b, c)−cocoercively monotone if there exist positive constants a, b, c >
0 such that

〈T (x)− T (y), x− y〉 ≥ a‖T (x)− T (y)‖2 − b‖x− y‖2 + c‖x− y‖2 ∀x, y ∈ X.

(ii) (a, b, c)−cocoercively monotone (with respect to A) if there exist pos-
itive constants a, b, c > 0 such that

〈T (x)−T (y), A(x)−A(y)〉 ≥ a‖T (x)−T (y)‖2−b‖x−y‖2+c‖x−y‖2 ∀x, y ∈ X.

Lemma 1.1.([1]) Let H :X → X be (r)−strongly monotone and M : X → 2X

be H-monotone. Then the resolvent operator Jρ
H ,M : X → X is (1

r )−Lipschitz
continuous for r > 0.

2. Nonlinear variational inclusion system

Next, let X1 and X2 be two real Hilbert spaces. Let M : X1 → 2X1

and N : X2 → 2X2 be nonlinear mappings. Let S : X1 × X2 → X1 and
T : X1 × X2 → X2 be any two mappings. Then the problem of finding
(a, b) ∈ X1 ×X2 such that

0 ∈ S(a, b) + M(a), (1)

0 ∈ T (a, b) + N(b), (2)
is called the system of nonlinear variational inclusion (abbreviated SNVI)
problems.
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Lemma 2.1.([1]) Let X1 and X2 be two real Hilbert spaces. Let H1 : X1 → X1

and H2 : X2 → X2 be strictly monotone, M : X1 → 2X1 be H1−monotone and
N : X2 → 2X2 be H2−monotone. Let S : X1×X2 → X1 and T : X1×X2 → X2

be any two mappings. Then a given element (a, b) ∈ X1 ×X2 is a solution to
the SNV I (1)− (2) problem iff (a, b) satisfies

a = Jρ
H1 ,M (H1 (a)− ρS(a, b)), (3)

b = Jη
H2 ,N (H2 (b)− ηT (a, b)), (4)

where ρ, η > 0.

Theorem 2.1. Let X1 and X2 be two real Hilbert spaces. Let H1 : X1 →
X1 be (r1) − strongly monotone and (α1) − Lipschitz continuous, and H2 :
X2 → X2 be (r2)− strongly monotone and (α2)− Lipschitz continuous. Let
M : X1 → 2X1 be H1−monotone and N : X2 → 2X2 be H2−monotone. Let
S : X1 × X2 → X1 be such that S(., y) is (a1, b1, c1)−cocoercively monotone
(with respect to H1 ) and (µ)− Lipschitz continuous in the first variable, and
S(x, .) is (ν) − Lipschitz continuous in the second variable for all (x, y) ∈
X1×X2. Let T : X1×X2 → X2 be such that T (u, .) is (a2, b2, c2)− cocoercively
monotone (with respect to H2 ) and (β) − Lipschitz continuous in the second
variable, and T (., v) is (τ)− Lipschitz continuous in the first variable for all
(u, v) ∈ X1 × X2. If, in addition, there exist positive constants ρ and η such
that

r2

√
α2

1 + 2ρ(b1 − c1) + (ρ2 − 2ρa1)µ2 + r1ητ < r1r2,

r1

√
α2

2 + 2ρ(b2 − c2) + (η2 − 2ηa2)β2 + r2ρν < r1r2,

where ρ2 − 2ρa1 > 0 and η2 − 2ρa2 > 0, then the SNV I (1)− (2) problem has
a unique solution.

Proof. Let us define mappings S∗(a, b) and T ∗(a, b), respectively, by

S∗(a, b) = Jρ
H1 ,M [H1 (a)− ρS(a, b)]

and

T ∗(a, b) = Jη
H2 ,N [H2 (b)− ηT (a, b)].

Then for any elements (u, v), (w, x) ∈ X1×X2, we have from Lemma 1.1 that

‖S∗(u, v)− S∗(w, x)‖ ≤ 1
r1
‖H1 (u)−H1 (w)− ρ[S(u, v)− S(w, v)]‖

+
ρ

r1
‖S(w, v)− S(w, x)‖
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Next, we estimate

‖H1(u)−H1(w)− ρ[S(u, v)− S(w, v)]‖2

= ‖H1(u)−H1(w)‖2 − 2ρ〈H1(u)−H1(w), S(u, v)− S(w, v)〉
+ρ2‖S(u, v)− S(w, v)]‖2

≤ ‖H1(u)−H1(w)‖2 + ρ2‖S(u, v)− S(w, v)]‖2

−2ρa1‖S(u, v)− S(w, v)‖2 + 2ρ(b1 − c1)‖u− w‖2

≤ α2
1‖u− w‖2 + (ρ2 − 2ρa1)‖S(u, v)− S(w, v)‖2 + 2ρ(b1 − c1)‖u− w‖2

= [α2
1 + 2ρ(b1 − c1) + (ρ2 − 2ρa1)µ2]‖u− w‖2,

where ρ2 − 2ρa1 > 0. Thus, we have

‖S∗(u, v)− S∗(w, x)‖ ≤ 1
r1

√
α2

1 + 2ρ(b1 − c1) + (ρ2 − 2ρa1)µ2‖u− w‖

+
ρν

r1
‖v − x‖.

Similarly, we obtain

‖T ∗(u, v)− T ∗(w, x)‖ ≤ 1
r2
‖H2 (v)−H2 (x)− η[T (u, v)− T (u, x)]‖

+
η

r2
‖T (u, x)− T (w, x)‖

≤ 1
r2

√
(α2

2 + 2ρ(b2 − c2) + (η2 − 2ηa2)β2)‖v − x‖

+
ητ

r2
‖u− w‖.

It follows from the above arguments that

‖S∗(u, v)− S∗(w, x)‖+ ‖T ∗(u, v)− T ∗(w, x)‖
≤ 1

r1
[
√

α2
1 + 2ρ(b1 − c1) + (ρ2 − 2ρa1)µ2‖u− w‖+

ρν

r1
‖v − x‖]

+
1
r2

[
√

α2
2 + 2ρ(b2 − c2) + (η2 − 2ηa2)β2‖v − x‖+

ητ

r2
‖u− w‖]

≤ max{ 1
r1

√
α2

1 − 2ρr + ρ2µ2 + 2ργµ2 +
ητ

r2
,

1
r2

√
α2

2 − 2ηs + η2β2 + 2ηλβ2 +
ρν

r1
} · (‖u− w‖+ ‖v − x‖).

Set

k = max{ 1
r1

√
α2

1 + 2ρ(b1 − c1) + (ρ2 − 2ρa1)µ2 +
ητ

r2
,

1
r2

√
α2

2 − 2ηs + η2β2 + 2ηλβ2 +
ρν

r1
}.
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Next, we define the norm ‖(u, v)‖∗ by

‖(u, v)‖∗ = (‖u‖+ ‖v‖ )∀(u, v) ∈ X1 ×X2.

Clearly, X1 × X2 is a Banach space with the norm ‖(u, v)‖∗. We define a
mapping U : X1 ×X2 → X1 ×X2 by

U(u, v) = (S∗(u, v), T ∗(u, v))∀ (u, v) ∈ X1 ×X2.

Since 0 < k < 1, it follows that

‖U(u, v)− U(w, x)‖∗ ≤ k‖(u, v)− (w, x)‖∗.
Hence, U is a contraction. This implies that there exists a unique element
(a, b) ∈ X1 ×X2 such that

U(a, b) = (a, b),
which means,

a = Jρ
H1 ,M (H1 (a)− ρS(a, b)),

b = Jη
H2 ,N (H2 (b)− ηT (a, b)),

where ρ, η > 0. ¤

For b1 = c1 and b2 = c2 in Theorem 2.1, we have

Theorem 2.2. Let X1 and X2 be two real Hilbert spaces. Let H1 : X1 →
X1 be (r1) − strongly monotone and (α1) − Lipschitz continuous, and H2 :
X2 → X2 be (r2)− strongly monotone and (α2)− Lipschitz continuous. Let
M : X1 → 2X1 be H1−monotone and N : X2 → 2X2 be H2−monotone.
Let S : X1 × X2 → X1 be such that S(., y) is (a1)−cocoercive (with respect
to H1 ) and (µ) − Lipschitz continuous in the first variable, and S(x, .) is
(ν) − Lipschitz continuous in the second variable for all (x, y) ∈ X1 × X2.
Let T : X1 × X2 → X2 be such that T (u, .) is (a2)− cocoercive (with respect
to H2 ) and (β) − Lipschitz continuous in the second variable, and T (., v) is
(τ)−Lipschitz continuous in the first variable for all (u, v) ∈ X1 ×X2. If, in
addition, there exist positive constants ρ and η such that

r2

√
α2

1 + (ρ2 − 2ρa1)µ2 + r1ητ < r1r2,

r1

√
α2

2 + (η2 − 2ηa2)β2 + r2ρν < r1r2,

where ρ2 − 2ρa1 > 0 and η2 − 2ρa2 > 0, then the SNV I (1)− (2) problem has
a unique solution.

For a1 = a2 = b1 = b2 = 0 in Theorem 1, we have

Theorem 2.3.([2]) Let X1 and X2 be two real Hilbert spaces. Let H1 : X1 →
X1 be (r1) − strongly monotone and (α1) − Lipschitz continuous, and H2 :
X2 → X2 be (r2)− strongly monotone and (α2)− Lipschitz continuous. Let
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M : X1 → 2X1 be H1−monotone and N : X2 → 2X2 be H2−monotone. Let
S : X1×X2 → X1 be such that S(., y) is (c1)−strongly monotone (with respect
to H1 ) and (µ) − Lipschitz continuous in the first variable, and S(x, .) is
(ν)−Lipschitz continuous in the second variable for all (x, y) ∈ X1×X2. Let
T : X1×X2 → X2 be such that T (u, .) is (c2)−strongly monotone (with respect
to H2 ) and (β) − Lipschitz continuous in the second variable, and T (., v) is
(τ)−Lipschitz continuous in the first variable for all (u, v) ∈ X1 ×X2. If, in
addition, there exist positive constants ρ and η such that

r2

√
α2

1 − 2ρc1 + ρ2µ2 + r1ητ < r1r2,

r1

√
α2

2 − 2ρc2 + η2β2 + r2ρν < r1r2,

then the SNV I (1)− (2) problem has a unique solution.
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