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Abstract. In this paper, the existence result for homoclinic solutions of damped vibration

systems with sub-quadratic potential is obtained by linking theorem. The conditions in

this case are simple and more relaxed. Especially, no symmetry and no AR type conditions

imposed on the potential in proving the existence result are the novelties in the paper. Recent

results in the literature are generalized and significantly improved.

1. Introduction and main results

In this paper we mainly prove existence of homoclinic solutions for generic
damped vibration systems involving sub-linearities without symmetry. More
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precisely, we consider:

ü(t) +Bu̇(t)− L(t)u(t) +Wu(t, u(t)) = 0, ∀ t ∈ R, (DS)

where B is an antisymmetric N × N constant matrix, L ∈ C(R,RN2
) is a

symmetric matrix valued function and Wu(t, u) denotes the gradient of W (t, u)
with respect to u.

The damped vibration system is an extension of the following second order
Hamiltonian system:

ü(t)− L(t)u(t) +Wu(t, u(t)) = 0, ∀ t ∈ R, (HS)

this is a classical equation which can describe many mechanical systems, such
as a pendulum. With the aid of variational methods, in the last twenty more
years, the existence and multiplicity of homoclinic solutions of (HS) have been
intensively studied, see for instance [2, 3, 6-10, 12, 14, 17-20] and references
therein. Indeed the existence of homoclinic solutions for Hamiltonian systems
and their importance in the research of dynamical systems has been recognized
from Poincaré. According to the growth of W (t, u) near infinity with respect
to u, the existing literature usually distinguished between two situations for
(HS): the super-quadratic cases and the sub-quadratic cases. Compared with
the case where W (t, u) is super-quadratic, there is few literature available for
the case where W (t, u) is sub-quadratic. To the best of our knowledge, there is
only paper [6] dealt with the existence of homoclinic solutions for (HS) under
the condition that W (t, u) is of sub-quadratic growth as |u| → ∞ without
symmetry.

Recently, some of the existence and multiplicity results were obtained for
(DS) in [4, 5, 13, 16, 21, 22, 23]. In these papers, [13, 16, 23] dealt with the
cases where W (t, u) are super-quadratic, and the papers [4, 5, 21, 22] dealt
with the cases where W (t, u) are sub-quadratic. In [4], the authors proposed
assumptions for the potential function W (t, u) as following:

(L) L ∈ C(R,RN2
) is a symmetric matrix valued function and there exist

constants α > 1, β ≥ 0 such that

meas{t ∈ R : |t|−αL(t) < bIN} <∞, ∀ b > 0,

and
l(t) = inf

|u|=1
(L(t)u, u) ≥ −β, ∀ t ∈ R.

(AH1) W (t, u) ≥ 0, ∀(t, u) ∈ R × RN and there exist constants µ ∈ (0, 2)
and R1 > 0 such that

(Wu(t, u), u) ≤ µW (t, u), ∀ t ∈ R and |u| ≥ R1

and

(Wu(t, u), u) ≤ 2W (t, u), ∀ t ∈ R and |u| ≤ R1.
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(AH2) lim inf |u|→0
W (t,u)
|u|2 = ∞ uniformly for t ∈ R and there exists one

constant c1 > 0 such that

W (t, u) ≤ c1|u|, ∀ t ∈ R and |u| ≤ R1,

where R1 is the constant in (AH1).

(AH3) lim inf |u|→∞
W (t,u)
|u| ≥ d uniformly for t ∈ R, where d > 0 is a constant.

By using the variant fountain theorem established in [24], they proved the
following:

Theorem A. Suppose that (L), (AH1)−(AH3) and W (t, u) is even in u hold,
then (DS) possesses infinitely many nontrivial homoclinic orbits.

We emphasize that in order to use the variant fountain theorem to ensure
the existence of infinitely many homoclinic solutions, the symmetry and AR
type conditions have to be required as in Theorem A. If no symmetry, the
situation is very different and becomes very difficult, the reason is that it
seems to be hard to find path leading to the (PS) condition.

To the best of our knowledge, only in the two papers [5], [21], the au-
thors concern with the existence problem. In paper [21], the authors merely
consider a special sub-quadratic case where W (t, u) = a(t)|u|γ , 1 < γ < 2.
They obtained the existence of a nontrivial homoclinic solution for (DS) by
using a standard minimizing argument. We point out that the potential func-
tion W (t, u), as the authors remarked, is even and satisfies (Wu(t, u), u) ≤
γW (t, u), the so-called Ambrosetti-Rabinowitz type conditions in sub-quadratic
case. In order to meet the minimizing principle, the authors impose a con-
straint condition on the damped term. They presented the following hypothe-
ses:

(L1) L ∈ C(R,RN2
) is a symmetric and positive definite matrix for all t ∈ R

and there is a continuous function α : R → R such that α(t) > 0 for
all t ∈ R and (L(t)u, u) ≥ α(t)|u|2 and α(t) → +∞ as |t| → +∞;
and this condition implies that there is a constant β > 0 such that
(L(t)u, u) ≥ β|u|2 for all t ∈ R and u ∈ RN ;

(H1) W (t, u) = a(t)|u|γ , i.e., V (u) = |u|γ , where a : R→ R is a continuous

function such that a(t0) > 0 for some t0 ∈ R and a ∈ L
2

2−γ (R,R),
1 < γ < 2 is a constant;

(H2) B is an antisymmetric N × N constant matrix such that ‖B‖ <
√
β,

β is defined in (H1).

Under conditions (L1), (H1), (H2), they proved that system (DS) possesses at
least one nontrivial homoclinic solution.
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In paper [5], the authors investigated the existence of the so called fast
homoclinic solutions for the following damped vibration problems:

ü(t) + q(t)u̇(t)− L(t)u(t) +Wu(t, u(t)) = 0, ∀ t ∈ R,
by using the standard minimizing argument under condition that L(t) satisfies
(L2), that is L(t) is positive definite.

In the present paper, motivated by above mentioned papers [4, 5, 13, 16,
21, 22, 23], the main goal of the paper is to deal with the case where W (t, u)
is generic sub-quadratic and L(t) is not positive definite. More precisely, we
present the following assumptions:

(W ) W (t, u) ∈ C1(R×RN ,R), there exist constants c1 > 0, 1 ≤ γ ≤ µ < 2
and continuous functions a(t), b(t) such that

W (t, u) ≥ c1|u|µ, W (t, 0) ≡ 0, (1.1)

|Wu(t, u)| ≤ a(t)|u|γ−1 + b(t)|u|µ−1, ∀ (t, u) ∈ R× RN , (1.2)

where a(t), b(t) : R→ R+ satisfy a ∈ L
2

2−γ (R,R+), b ∈ L
2

2−µ (R,R+).

Now, we state our main result as follows.

Theorem 1.1. Suppose that (L) and (W ) are satisfied. Then (DS) possesses
at least one nontrivial homoclinic solution.

Compared with the conditions on W (t, u) in [4, 5, 21], our conditions are
simple and more relaxed. There is no symmetry imposed on W (t, u) in The-
orem 1.1, there are no any AR type conditions in sub-quadratic case in con-
dition (W ). Compared with the conditions in [4], [5], [21], we consider the
more generic cases for W (t, u) and L(t). It is worth mentioning that we do
not impose any constraint on damped term’s coefficient matrix B (see (H2) in
[21]). Therefore we extend the results in [4], [5], [21].

Theorem 1.1 is a new one even when B = 0 (referring [6], [20] and references
therein). In this paper we devote to get our solution in Theorem 1.1. We shall
apply the linking theorem introduced in [11] to get the result in Theorem
1.1. Since there is no symmetry and the potential is sub-quadratic, and the
associated energy functional in Theorem 1.1 is indefinite, i.e., unbounded from
below and from above, the main problem here is the handling of the Palais-
Smale sequences. When variational methods are used in studying dynamical
systems, properties (especially, boundedness and compactness) of Palais-Smale
sequences or Cerami sequences of the associated energy functional play always
a central role. The novelty of our paper is that we prove the boundedness of
the Palais-Smale sequences without any AR type conditions, which are crucial
for those in [4, 13, 16, 21, 22, 23]. We emphasize that the proof methods we
use are different than those adopted in [13, 16, 23], since the sub-quadratic
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case and the indefiniteness of the functional make the proof of boundedness of
a PS sequence fairly delicate to treat and new strategies must be found. The
proving method is very different from that used in [5].

The remainder of this paper is organized as follows. In section 2, some
preliminary results for the working space and variational setting associated
with (DS) are presented. In section 3, we give the proof of Theorem 1.1.

Throughout the paper, we denote by c or ci various positive constants which
may vary from line to line and are not essential to the problem.

2. Preliminary results

In this section, we describe some properties of the working space E and the
variational setting associated with (DS). Letting

H = H1(R,RN ) = {u ∈ L2(R,RN ) : u̇ ∈ L2(R,RN )},

then H is a Hilbert space with the inner product

〈u, v〉H =

∫
R

[(u̇(t), v̇(t)) + (u(t), v(t))]dt

and the corresponding norm ‖u‖2H = 〈u, v〉H , where (·, ·) denotes the inner

product in RN . Note that the embedding

H ↪→ Lp(R,RN )

is continuous for any p ∈ [2,+∞). Define an operator K : H → H by

〈Ku, v〉H =

∫
R

(Bu, v̇)dt

for all u, v ∈ H. Then K is self-adjoint on H since B = [bij ] is an antisymmet-
ricN×N constant matrix. Moreover, we denote byA the self-adjoint extension
of the operator −d2/dt2 + K + L(t) with domain D(A) ⊂ L2 ≡ L2(R,RN ).

Let E = D(|A|1/2), and define on E the inner product and norm by

〈u, v〉E = (|A|1/2u, |A|1/2v)2 + (u, v)2, ‖u‖2E = 〈u, u〉E ,

where (·, ·)2 as usual denotes the inner product on L2. Then E is a Hilbert
space. From the fact that C∞0 (R,RN ) is dense in E, then it is also easy

to verify that E is continuously embedded in H1(R,RN ). Moreover, Using
the proofs similar to Lemma 3.1 in [14] (see also [4], [13]), we can prove the
following important lemma.

Lemma 2.1. If L(t) satisfies (L), then E is compactly embedded in Lp ≡
Lp(R,RN ) for all 1 ≤ p ≤ +∞.
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By Lemma 2.1, we see that A possesses a compact resolvent. Therefore,
the spectrum σ(A) consists of only eigenvalues numbered in λ1 ≤ λ2 ≤ · · · →
+∞ (counted with multiplicity) and a corresponding system of eigenfunctions
{ej : j ∈ N}(Aej = λjej) forms an orthogonal basis in L2. Let

n− = ]{j|λj < 0}, n0 = ]{j|λj = 0}, n = n− + n0

and

E− = span{e1, · · · , en−}, E0 = span{en−+1, · · · , en}, E+ = span{en+1, · · · }.

Then E = E− ⊕ E0 ⊕ E+. We introduce on E the following inner product

〈u, v〉 = (|A|1/2u, |A|1/2v)2 + (u0, v0)2

and norm

‖u‖2 = 〈u, u〉,
where u, v ∈ E = E−⊕E0⊕E+ with u = u−+u0 +u+ and v = v−+ v0 + v+

correspondingly. Clearly the norms ‖·‖ and ‖·‖E are equivalent. Consequently,
for each p ∈ [1,+∞], there exists ηp > 0 such that

‖u‖p ≤ ηp‖u‖, ∀ u ∈ E, (2.1)

where ‖ · ‖p denotes the usual norm in Lp.

By (1.2), there exists constant c1 such that

W (t, u) ≤ c1(a(t)|u|γ + b(t)|u|µ), ∀ (t, u) ∈ R× RN . (2.2)

Define the functional Φ on E by

Φ(u) =
1

2

∫
R

[|u̇(t)|2 + (Bu(t), u̇(t)) + (L(t)u(t), u(t))]dt−
∫
R
W (t, u(t))dt.

Then

Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
R
W (t, u(t))dt, (2.3)

where u = u− + u0 + u+ ∈ E. Furthermore, define

Ψ(u) =

∫
R
W (t, u(t))dt.

By (2.2), we know that Φ and Ψ are both well defined.

Lemma 2.2. Let (L) and (W ) be satisfied. Then Ψ ∈ C1(E,R) and Ψ ′ : E →
E∗ is compact. Hence Φ ∈ C1(E,R). Moreover,

Ψ ′(u)v =

∫
R

(Wu(t, u), v)dt, (2.4)
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Φ′(u)v =

∫
R

[(u̇, v̇) + (Bu, v̇) + (L(t)u, v)− (Wu(t, u), v)]dt

= 〈u+, v+〉 − 〈u−, v−〉 −
∫
R

(Wu(t, u), v)dt

= 〈u+, v+〉 − 〈u−, v−〉 − Ψ ′(u)v (2.5)

for all u, v ∈ E = E−⊕E0⊕E+ with u = u−+u0 +u+ and v = v−+ v0 + v+

correspondingly and critical points of Φ on E are homoclinic solutions of (DS).

Proof. First, we show that Ψ is Gâteaux differentiable. For any given u ∈ E,
let us define linear functional J(u) on E as follows:

J(u)v =

∫
R

(Wu(t, u(t)), v(t))dt, ∀ v ∈ E.

We show that J(u) is bounded. For u ∈ E is given, for any v ∈ E, by (1.2)
and (2.1) we have

J(u)v =

∫
R

(Wu(t, u), v)dt ≤
∫
R

(a(t)|u|γ−1 + b(t)|u|µ−1)|v|dt

≤ ‖a‖ 2
2−γ
‖u‖γ−1

2 ‖v‖2 + ‖b‖ 2
2−µ
‖u‖µ−1

2 ‖v‖2

≤ c1[‖u‖γ−1 + ‖u‖µ−1]‖v‖ = c‖v‖.

Hence J(u) is bounded. By virtue of (1.2), for any ζ ∈ [0, 1], it is easy to check
that

|(Wu(t, u+ ζh), h)|
≤ |Wu(t, u+ ζh)| |h| ≤ [a(t)|u+ ζh|γ−1 + b(t)|u+ ζh|µ−1]|h|
≤ [a(t)|u|γ−1 + a(t)ζγ−1|h|γ−1 + b(t)|u|µ−1 + b(t)ζµ−1|h|µ−1]|h|
≤ [a(t)|u|γ−1|h|+ a(t)|h|γ + b(t)|u|µ−1|h|+ b(t)|h|µ]

for all t ∈ R, u, h ∈ RN . Therefore, for any u, h ∈ E, by the Mean Value
Theorem and Lebesgue Dominated Convergence Theorem, for any θ(t) ∈ [0, 1],
we have

lim
s→0

(Ψ(u+ s h)− Ψ(u))/s

= lim
s→0

∫
R

(Wu(t, u(t) + θ(t) s h(t)), h(t))dt

=

∫
R

(Wu(t, u(t)), h(t))dt

= J(u)h.

Then by definition, DΨ(u) = J(u) is the Gâteaux derivative of Ψ at u.
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Next, we verify that DΨ(u) is weakly continuous. Let uk ⇀ u in E, by
(1.2), there holds

|Wu(t, uk)−Wu(t, u)| ≤ [a(t)(|uk|γ−1 + |u|γ−1) + b(t)(|uk|µ−1 + |u|µ−1)],

which yields that

|(Wu(t, uk)−Wu(t, u), v)|
≤ [a(t)(|uk|γ−1 + |u|γ−1)|v|+ b(t)(|uk|µ−1 + |u|µ−1)|v|]
≤ [a(t)(|uk − u|γ−1|v|+ 2|u|γ−1|v|) + b(t)(|uk − u|µ−1|v|+ 2|u|µ−1|v|)].

Since, by Lemma 2.1, uk → u in L2(R,RN ), passing to a subsequence if
necessary, it can be assumed that

∞∑
k=1

‖uk − u‖2 < +∞,

this implies that uk(t)→ u(t) for almost every t ∈ R and∑∞
k=1 |uk − u| = ω(t) ∈ L2(R,R).

Therefore, we obtain

|(Wu(t, uk)−Wu(t, u), v)|
≤ c1[a(t)(|ω(t)|γ−1|v|+ |u|γ−1|v|) + b(t)(|ω(t)|µ−1|v|+ |u|µ−1|v|)]

and

|
∫
R

(Wu(t, uk)−Wu(t, u), v)dt|

≤ c1[‖a‖ 2
2−γ

(‖ω‖γ−1
2 ‖v‖2 + ‖u‖γ−1

2 ‖v‖2)

+ ‖b‖ 2
2−µ

(‖ω‖µ−1
2 ‖v‖2 + ‖u‖µ−1

2 ‖v‖2)]

≤ c[‖ω‖γ−1 + ‖u‖γ−1 + ‖ω‖µ−1 + ‖u‖µ−1]‖v‖.
Note that W ∈ C1(R × RN ,R) and (1.2), by the Lebesgue Dominated Con-
vergence Theorem and Theorem A.4 in [15], we have

‖DΨ(un)−DΨ(u)‖E∗ = sup
‖v‖=1

|(J(un)− J(u))v|

= sup
‖v‖=1

|
∫
R

(Wu(t, un(t))−Wu(t, u(t)), v(t))dt|

→ 0

as n → ∞. Hence DΨ(u) is weakly continuous. Therefore Ψ ∈ C1(E,R),
Ψ ′(u) = DΨ(u) = J(u) and (2.4) is verified. Furthermore, Ψ ′ is compact by
the weakly continuity of Ψ ′ since E is a Hilbert space. Due to the form of Φ,
(2.5) is also verified and Φ ∈ C1(E,R).
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Lastly, we check that nontrivial critical points of Φ on E are classical ho-
moclinic solutions of (DS). Note that C∞0 ≡ C∞0 (R,RN ) is dense in E. It is

well known that E ⊂ H1(R,RN ) ⊂ C(R,RN ). If u ∈ E is one critical point of
Φ, by (2.5), we have L(t)u−Wu(t, u) is the weak derivative of u̇+Bu. Since

L ∈ C(R,RN2
), W (·, u) ∈ C1(RN ,R), E ⊂ C(R,RN ), we see that u̇ + Bu is

continuous, which follows that u̇ is continuous and u ∈ C2(R,RN ), i.e., u is a
classical solution of (DS). Moreover, it is easy to check that u satisfies u̇→ 0
as |t| → +∞, because u̇ is continuous. �

3. Proofs of the main results

In this section we give the proof of our main result.

Proof of Theorem 1.1. Define that

f(u) = −Φ(u)

=

∫
R
W (t, u(t))dt− 1

2

∫
R

[|u̇(t)|2 + (Bu(t), u̇(t)) + (L(t)u(t), u(t))]dt,

for all u ∈ E. By Lemma 2.2, then f ∈ C1(E,R) and moreover,

f ′(u)v = Ψ ′(u)v + 〈u−, v−〉 − 〈u+, v+〉. (3.1)

Hence nontrivial critical points of f give rise to homoclinic solutions for (DS).
In the following we are looking for nontrivial critical points of f arguing step
by step.

Step 1. We show that f is anti-coercive on E+, i.e., f(u)→ −∞ as u ∈ E+

and ‖u‖ → ∞. In fact, by (2.1) and (2.2), for any u ∈ E+, we have

f(u) ≤ c1(‖a(t)‖ 2
2−γ
‖u‖γ2 + ‖b(t)‖ 2

2−µ
‖u‖µ2 )− 1

2
‖u‖2

≤ c(‖u‖γ + ‖u‖µ)− 1

2
‖u‖2

for some constant c > 0. Since γ ≤ µ < 2, above inequality implies that f(u)
is anti-coercive on E+.

Step 2. We claim that for any finite dimensional subspace X ⊂ E, there
exists ε = ε(X) > 0 such that

m({t ∈ R : |u(t)|µ ≥ ε ‖u‖µ}) ≥ ε, ∀ u ∈ X \ {0}, (3.2)

where m(·) denotes the Lebesgue measure in R.
If not, for any n ∈ N, there exists un ∈ X \ {0} such that

m

({
t ∈ R : |un(t)|µ ≥ 1

n
‖un‖µ

})
<

1

n
.
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Set vn(t) = un(t)/‖un‖ ∈ X \ {0}, then ‖vn(t)‖ = 1 and

m

({
t ∈ R : |vn(t)|µ ≥ 1

n

})
<

1

n
. (3.3)

Passing to a subsequence if necessary, we may assume that vn → v0 in X since
the unit sphere of X is compact. Evidently, ‖v0‖ = 1. By Lemma 2.1, we have
vn → v0 in L2(R,RN ) and the equivalence of the norms on X. Hence we have∫

R
|vn(t)− v0(t)|µdt ≤ ‖vn − v0‖µ2 → 0 as n→∞. (3.4)

It is easy to see that there exist ξ1, ξ2 > 0 such that

m({t ∈ R : |v0(t)|µ ≥ ξ1}) ≥ ξ2. (3.5)

In fact, if not, for any positive integer n, we have

m

({
t ∈ R : |v0(t)|µ ≥ 1

n

})
= 0.

It implies that∫
R
|v0(t)|µ+2dt ≤ 1

n
‖v0‖22 ≤

η2
2

n
‖v0‖2 =

η2
2

n
→ 0 as n→∞.

Hence v0 = 0, which is a contradiction proving (3.5).
Let

Ω0 = {t ∈ R : |v0(t)|µ ≥ ξ1}, Ωn =

{
t ∈ R : |vn(t)|µ < 1

n

}
and Ωc

n = R \ Ωn = {t ∈ R : |vn(t)|µ ≥ 1
n}. By (3.3) and (3.5), we have

m(Ωn ∩ Ω0) = m(Ω0 \ (Ωc
n ∩ Ω0))

≥ m(Ω0)−m(Ωc
n ∩ Ω0) ≥ ξ2 −

1

n

and ∫
R
|vn(t)− v0(t)|µdt ≥

∫
Ωn∩Ω0

|vn(t)− v0(t)|µdt

≥ 1

2µ

∫
Ωn∩Ω0

|v0(t)|µdt−
∫

Ωn∩Ω0

|vn(t)|µdt

≥
(

1

2µ
ξ1 −

1

n

)
m(Ωn ∩ Ω0)

≥
(

1

2µ
ξ1 −

1

n

) (
ξ2 −

1

n

)
→ 1

2µ
ξ1 ξ2 > 0
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as n→∞. This is in contradiction to (3.4). Therefore (3.2) holds.
For the ε given in (3.2), let

Ω(u) = {t ∈ R : |u(t)|µ ≥ ε‖u‖µ}, ∀ u ∈ X \ {0}.

Thus, for u ∈ X \ {0}, we have

Ψ(u) =

∫
R
W (t, u(t))dt

≥
∫
R
c1|u(t)|µdt ≥

∫
Ω(u)

c1|u(t)|µdt

≥ ε c1‖u‖µ m(Ω(u)) ≥ c1 ε
2 ‖u‖µ (3.6)

and

f(u) = Ψ(u) +
1

2
‖u−‖2 − 1

2
‖u+‖2

≥ c1 ε
2 ‖u‖µ +

1

2
‖u−‖2 − 1

2
‖u+‖2. (3.7)

Step 3. We claim that if {un} ⊂ E is a bounded sequence with f ′(un) → 0,
then {un} ⊂ E has a convergent subsequence.

By Lemma 2.2, passing to a subsequence if necessary, we can assume that
there exists a point u ∈ E such that {un} converges weakly to u in E and
‖Ψ ′(un)− Ψ ′(u)‖E∗ → 0 as n→∞. That is

u−n → u−, u0
n → u0, u+

n ⇀ u+ as n→∞

for un = u−n + u0
n + u+

n and u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+, since
E− ⊕ E0 is finite dimensional. Hence we have

‖u+
n − u+‖2

= (f ′(u)− f ′(un))(u+
n − u+) + (Ψ ′(un)− Ψ ′(u))(u+

n − u+)

≤ f ′(u)(u+
n − u+) + ‖f ′(un)‖E∗‖u+

n − u+‖
+ ‖Ψ ′(un)− Ψ ′(u)‖E∗‖u+

n − u+‖
→ 0 as n→∞.

This means that u+
n → u+ in E and proving the claim.

Step 4. f satisfies (PS). Let {un} ⊂ E such that {f(un)} is bounded and
f ′(un) → 0, we need to prove that {un} possesses a convergent subsequence.
By Step 3, we know that it is sufficient to verify that {un} is bounded in
E. Arguing indirectly, assume as a contradiction that ‖un‖ → ∞. Let un =
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u−n + u0
n + u+

n ∈ E = E− ⊕ E0 ⊕ E+, by f ′(un)→ 0 and (1.2), we have

‖u−n ‖ ≥ f ′(un)u−n =

∫
R

(Wu(t, un(t)), u−n (t))dt+ 〈u−n , u−n 〉

≥ ‖u−n ‖2 − c1‖un‖γ−1‖u−n ‖ − c2‖un‖µ−1‖u−n ‖.

Hence ‖u−n ‖ ≤ 1 + c‖un‖µ−1 which implies that ‖u−n ‖2 ≤ 1 + c‖un‖2µ−2 for n
large since ‖un‖ → ∞ and γ ≤ µ < 2. Note that 2µ− 2 < µ < 2, we have

lim
n→∞

‖u−n ‖2

‖un‖µ
= lim

n→∞

‖u−n ‖2

‖un‖2
= 0.

Similarly, we have

‖u+
n ‖ ≥ −f ′(un)u+

n = 〈u+
n , u

+
n 〉 −

∫
R(Wu(t, un(t)), u+

n (t))dt
≥ ‖u+

n ‖2 − c1‖un‖γ−1‖u+
n ‖ − c2‖un‖µ−1‖u+

n ‖

which implies that ‖u
+
n ‖2

‖un‖µ → 0 and ‖u
+
n ‖2

‖un‖2 → 0, hence

lim
n→∞

‖u0
n‖2

‖un‖2
= 1. (3.8)

Therefore, ‖u0
n‖ → ∞. Note that |f(un)| ≤ C and

f(un)

‖un‖µ
=

∫
R

W (t, un(t))

‖un‖µ
dt+

‖u−n ‖2 − ‖u+
n ‖2

2‖un‖µ
,

which with above formulas imply that

lim
n→∞

∫
R

W (t, un(t))

‖un‖µ
dt = 0.

Set vn = un
‖un‖ , then ‖vn‖ = 1 and ‖vn‖p ≤ ηp‖vn‖ = ηp for each p ∈ [1,∞].

Since E is a Hilbert space and ‖vn‖ = 1, passing to a subsequence, we can
set vn ⇀ v(weakly) in E, by Lemma 2.1, vn → v (strongly) in Lp(R,RN ) for
p ∈ [1,∞] and vn(t) → v(t) a.e. t ∈ R. Set Ω = {t ∈ R : v(t) 6= 0}. If
meas(Ω) > 0, then un(t)→∞ for a.e. t ∈ Ω. Then by (1.1) we have that∫

R

W (t, un(t))

‖un‖µ
dt ≥ c1‖vn‖µµ.

Consequently, we have

0 = lim
n→∞

∫
R

W (t, un(t))

‖un‖µ
dt

≥ lim
n→∞

(c1‖vn‖µµ) = c1‖v‖µµ = c1

∫
Ω
|v|µdt > 0,
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a contradiction. Hence meas(Ω) = 0 and v(t) = 0 a.e. t ∈ R, which implies
that

lim
n→∞

‖un‖22
‖un‖2

= ‖v(t)‖22 = 0. (3.9)

Now note that E = E−⊕E0⊕E+ is an orthogonal decomposition in L2(R,RN ),
we have

‖u0
n‖22 = (u0

n, un)2 ≤ ‖u0
n‖2‖un‖2,

which implies that ‖u0
n‖2 ≤ c‖un‖22, since E0 is finite dimensional. Both side

divided by ‖un‖2 and passing to limit, (3.8) and (3.9) imply that 1 ≤ 0, this
is a contradiction. The desired conclusion now follows.

Step 5. If E−⊕E0 = {0}, by Steps 1 and 2, it shows that f has a maximum
(> 0) which yields a homoclinic solution for (DS).

If E− ⊕ E0 6= {0}, take e = en+1 ∈ E+ and set X = E− ⊕ E0 ⊕ R e ⊂ E,
by (3.2)

f(u) ≥ c1ε
2 ‖u‖µ +

1

2
‖u−‖2 − 1

2
s2

≥ c1ε
2 sµ +

1

2
‖u−‖2 − 1

2
s2

for all u = u− + u0 + se ∈ X with s > 0. Therefore, there exist s0 > 0 small
and σ > 0 such that

f(u) ≥ σ, ∀ u ∈ Se ≡ E− ⊕ E0 ⊕ s0 e.

In addition, by Step 1, one can choose r > s0 large such that

f(u) ≤ 0, ∀ u ∈ E+ as ‖u‖ ≥ r.

Let Q = Br ∩ E+. Then Se and ∂Q link. By the linking theorem, f has a
critical point u such that f(u) ≥ σ which is a nontrivial homoclinic solution
for (DS). The proof is complete. �

Remark 3.1. Moreover, suppose that W (t, u) is even with respect to u ∈ RN ,
then f is even. From above Steps, f satisfies the assumptions of Lemma 2.4
in [6]. Therefore f possesses infinitely many (pairs) critical points which are
homoclinic solutions for (DS). Hence, we obtain infinitely many homoclinic
solutions for (DS) by using linking Theorem, do not use the variant fountain
theorem as usual as used in [4], genus argument used in [5] and [22].
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