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Abstract. It is well known that nonlinear integral and differential equations create an
important branch of nonlinear analysis. A lot of nonlinear problems arising from areas of
the real world are generally represented with integral and differential equations. Especially,
integral and differential equations of fractional order play a very important role in modelling
of some problems in physics, mechanics and other fields in natural sciences. For instance,
these equations are used in describing of some problems in theory of neutron transport, the
theory of radioactive transfer, the kinetic theory of gases [18], the traffic theory and so on.

In this study, we examine the solvability of the following nonlinear integral equation of
fractional order in C[0, a] which is the space of real valued and continuous functions defined
on the interval [0, a]

x(t) = f (t, x(t)) +
(Tx) (t)

Γ (α)

∫ t

0

u(t, s, (Gx) (s))

(t− s)1−α
ds.

We present some sufficient conditions for existence of nondecreasing solutions of the above

equation. Then using a Darbo type fixed point theorem associated with the measure of

noncompactness we prove that this equation has at least one nondecreasing solution in

C[0, a] . Finally we give some examples to show that our result is applicable.

1. Introduction

Operator equations create a very important part of mathematical modelling
of nonlinear problems arising from the most areas of natural sciences such as
the theory of radioactive transfer, engineering, mechanics, physics, and so
on, [1, 18]. Especially, integral and differential equations of fractional order
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play a very important role in describing these problems. For example, some
problems in physics, mechanics and other fields can be described with the
help of integral and differential equations of fractional order. Some of these
problems are theory of neutron transport, the theory of radioactive transfer,
the kinetic theory of gases [18], the traffic theory and so on.

On the other hand the measure of noncompactness used in the paper allows
us not only to obtain the existence of solutions of the mentioned integral
equation but also to characterize those solutions in terms of monotonicity. In
this paper we will use a fixed point theorem of Darbo type associated with
measures of noncompactness as the main tool.

Banaś et al. dealt with the following equations,

x(t) = h(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(s, x(s))

(t− s)1−α
ds, t ∈ [0, 1] ,

x(t) = h(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = f(t, x(t))

(
p(t) +

1

Γ(α)

∫ t

0

u(t, s, (Gx)(s))

(t− s)1−α
ds

)
, t ∈ [0, 1] ,

in [3, 4, 5], respectively. Moreover Darwish et al. considered the following
equations,

x(t) = f(t) +
x(t)

Γ(α)

∫ t

0

u(t, x(t))

(t− s)1−α
ds, t ∈ [0, T ] ,

x(t) = f(t, x(t)) +
g(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

g(k(t, s))

(t− s)1−α
|x(s)| ds, t ∈ [0, 1] ,

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s), x(λx))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

k(t, s)u(t, s, x(s), x(λx))

(t− s)1−α
ds, t ∈ [0, 1] ,

x(t) = g(t, x(t)) +
(Tx)(t)

Γ(α)

∫ t

0

h(u(t, s))

(t− s)1−α
(Hx)(s)ds, t ∈ [0, 1] ,

x(t) = g(t, x(t)) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, (Hx)(s))

(t− s)1−α
ds, t ∈ [0, 1] ,

in [11]-[17], respectively.
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Also, in 2010 Blachandran et al. [2] and Olszowy [20], for t ∈ [0,∞) ,
discussed the following equations,

x(t) = g(t, x(α(t))) +
f(t, x(β(t)))

Γ(α)

∫ t

0

u(t, s, x(γ(s)))

(t− s)1−α
ds,

xi(t) = gi (t, x1(t), x2(t), · · · ) +

∫ t

0

ui(t, x1(τ), x2(τ), · · · )dτ
(t− τ)α

, i = 1, 2, · · ·

respectively.
On the other hand, the authors considered the following equation in [21]

and [8],

x(t) = g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0
u(t, s, x(γ(s)))ds, t ∈ [0, a] .

Then Özdemir and Çakan dealt with the following equations,

x(t) = g(t, x(α(t))) + f

(
t,

∫ ϕ(t)

0
u(t, s, x(γ(s)))ds, x(β(t))

)
,

x(t) = g(t, x(β1(t)), · · · , x(βs(t))) + f(t, x(ξ1(t)), · · · , x(ξm(t)))

×
∫ ϕ(t)

0
u(t, τ, x(γ1(τ)), · · · , x(γn(τ)))dτ (1.1)

for t∈ [0, a] in [9, 22], respectively and so on [10, 23].

In this paper, we will consider the equation

x(t) = f (t, x(t)) +
(Tx) (t)

Γ (α)

∫ t

0

u(t, s, (Gx) (s))

(t− s)1−α
ds (1.2)

for t ∈ [0, a] and 0 < α ≤ 1. We present some definitions and preliminary
results about the concept of measure of noncompactness and fractional inte-
gral equation in the next section. In the last section, we give our main results
concerning with the existence of nondecreasing and continuous solutions of in-
tegral equation (1.2) by applying a Darbo type fixed point theorem associated
with the measures of noncompactness defined by Banaś et al. [6] and [7] as
well as some examples to show that this result is applicable.

2. Definitions and auxiliary facts

Definition 2.1. ([19]) Let x ∈ C [a, b] and a < t < b, then

Iαa+x(t) =
1

Γ(α)

∫ t

a

x(s)

(t− s)1−α
ds, α ∈ (−∞,∞)
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is called the Riemann-Liouville fractional integral of order α, where symbol of
Γ denote the gamma function defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Let (E, ‖.‖) be an infinite dimensional Banach space with zero element θ.
We write B (x, r) to denote the closed ball centered at x with radius r and
especially, we write Br in case of x = θ. We write X and ConvX to denote the
closure and convex closure of X, respectively. Moreover, let ME indicate the
family of all nonempty bounded subsets of E and NE indicate its subfamily of
all relatively compact sets. Finally, the standard algebraic operations on sets
are denoted by λX and X + Y , respectively.

We use the following definition of the measure of noncompactness, given in
[6].

Definition 2.2. A mapping µ : ME → [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂
NE .

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(3) µ(X) = µ(X) = µ(ConvX).
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1] .
(5) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n =

1, 2, · · · ) and limn→∞ µ(Xn) = 0, then the intersection set ∩∞n=1Xn is
nonempty.

Theorem 2.3. ([6]) Let C be a nonempty, closed, bounded and convex subset
of the Banach space E and F : C → C be a continuous mapping. Assume that
there exists a constant k ∈ [0, 1) such that

µ(FX) ≤ kµ(X) (2.1)

for any nonempty subset X of C, where µ is a measure of noncompactness in
E. Then F has a fixed point in set C.

It is known that the family of all real valued and continuous functions
defined on interval [a, b] is a Banach space with the standard norm

‖x‖ = max {|x(t)| : t ∈ [a, b]} .

Let X a fixed subset of MC[a,b]. For ε > 0 and x ∈ X, we denote by ω(x, ε)
the modulus of continuity of function x defined by

ω(x, ε) = sup {|x(t1)− x(t2)| : t1, t2 ∈ [a, b] and |t1 − t2| ≤ ε} .
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Furthermore, let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup {ω(x, ε) : x ∈ X}

and

ω0(X) = lim
ε→0

ω(X, ε). (2.2)

Then, function ω0 is a measure of noncompactness in space C [a, b] ([6]).
For x ∈ X let us consider the following quantities

d(x) = sup {|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ [a, b] and t ≤ s} ,
i(x) = sup {|x(s)− x(t)| − [x(t)− x(s)] : t, s ∈ [a, b] and t ≤ s} .

The quantity d(x) represents the degree of decrease of the function x while
i(x) represents the degree of increase. Moreover, d(x) = 0 if and only if x is
nondecreasing on [a, b] and similarly i(x) = 0 if and only if x is nonincreasing
on [a, b]. Further, let us put

d(X) = sup {d(x) : x ∈ X} ,
i(X) = sup {i(x) : x ∈ X} .

Finally, let us denote

µd(X) = ω0(X) + d(X), (2.3)

µi(X) = ω0(X) + i(X).

The authors have shown in [7] that above functions µd(X) and µi(X) are
measures of noncompactness in the space C [a, b] .

3. Main Results

Throughout this section we denote by I the interval [0, a]. We study func-
tional integral equation (1.2) under the following conditions:

(a1) f : I × R+ → R+ is continuous and there exist nonnegative constant
k such that

|f(t, x)− f(t, y)| ≤ k |x− y|
for all t ∈ I and x, y ∈ R+. Also f is nondecreasing according to second
variable.

(a2) The function u : I × I × R+ → R+ is continuous and nondecreasing
according to first variable. Moreover there exists a functions h : R+ →
R+ which is nondecreasing on R+ such that the inequality

u(t, s, x) ≤ h(x)

holds for all t, s ∈ I and x ∈ R+.
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(a3) The operators T : C (I)→ C (I) and G : C (I)→ C (I) are continuous
and Tx, Gx are nonnegative functions for all x ∈ C (I) . Also there
exist functions b1, b2 : R+ → R+ which are nondecreasing on R+ such
that the inequalities

|(Tx)(t)| ≤ b1(‖x‖)
and

|(Gx)(t)| ≤ b2(‖x‖)
hold for all x ∈ C (I) and t ∈ I.

(a4) There exists a positive solution r0 of the inequality

kr +
b1(r)h (b2(r)) a

α

Γ (α+ 1)
+M ≤ r, (3.1)

where M is the positive constant such that |f(t, 0)| ≤M for all t ∈ I.
(a5) T satisfies Darbo condition on Br0 with respect to measure of noncom-

pactness µd given by (2.3) with nonnegative constant l. Also

k +
lh (b2(r0)) a

α

Γ (α+ 1)
< 1.

Theorem 3.1. Under assumptions (a1)-(a4), Eq.(1.2) has at least one solu-
tion x = x(t) which belongs to Br0 ⊂ C (I) .

Proof. Note that we will use Theorem 2.3 as our main tool. We define opera-
tors A, U and F as

(Ax)(t) = (Fx)(t) +
(Tx) (t)

Γ (α)
(Ux) (t)

and

(Ux) (t) =

∫ t

0

u(t, s, (Gx) (s))

(t− s)1−α
ds, (Fx)(t) = f (t, x(t))

for x ∈ C (I). By using the conditions of Theorem 3.1 we infer that Fx and
Ux are continuous on I. For any x ∈ Br0 , we have

|(Ax)(t)|

=

∣∣∣∣(Fx)(t) +
(Tx) (t)

Γ (α)
(Ux) (t)

∣∣∣∣
≤ |f (t, x(t))− f(t, 0)|+ |f(t, 0)|+ 1

Γ (α)
|(Tx) (t) (Ux) (t)|

≤ k |x (t)|+ 1

Γ (α)
|(Tx) (t) (Ux) (t)|+M

≤ k |x (t)|+ |(Tx) (t)|
Γ (α)

∫ t

0

|u(t, s, (Gx) (s))|
(t− s)1−α

ds+M
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≤ k |x (t)|+ |(Tx) (t)|
Γ (α)

∫ t

0

h (|(Gx) (s)|)
(t− s)1−α

ds+M

≤ k ‖x‖+
b1(‖x‖)
Γ (α)

∫ t

0

h (b2(‖x‖))
(t− s)1−α

ds+M

≤ kr0 +
b1(r0)h (b2(r0)) a

α

Γ (α+ 1)
+M

≤ r0. (3.2)

So, |(Ax)(t)| ≤ r0 for all t ∈ I and this implies that Ax ∈ Br0 . Now, we
prove that operator A : Br0 → Br0 is continuous. Let y be any fixed element
of Br0 . Since T and G are continuous on Br0 , for any ε > 0 and y, there
exist 0 < δ1(ε, y) < ε and 0 < δ2(ε, y) < ε such that ‖Tx− Ty‖ ≤ ε for
‖x− y‖ ≤ δ1(ε, y) and ‖Gx−Gy‖ ≤ ε for ‖x− y‖ ≤ δ2(ε, y). If we take
δ(ε, y) = min {δ1(ε, y), δ2(ε, y)} then, by using conditions of Theorem 3.1, we
obtain the following inequalities for ‖x− y‖ ≤ δ(ε, y).

|(Ax)(t)− (Ay)(t)|

=

∣∣∣∣(Fx)(t) +
(Tx) (t)

Γ (α)
(Ux) (t)−

(
(Fy)(t) +

(Ty) (t)

Γ (α)
(Uy) (t)

)∣∣∣∣
≤ k |x(t)− y(t)|+

∣∣∣∣(Tx) (t)

Γ (α)
(Ux) (t)− (Ty) (t)

Γ (α)
(Uy) (t)

∣∣∣∣
≤ k |x(t)− y(t)|+

∣∣∣∣(Tx) (t)

Γ (α)
(Ux) (t)− (Tx) (t)

Γ (α)
(Uy) (t)

∣∣∣∣
+

∣∣∣∣(Tx) (t)

Γ (α)
(Uy) (t)− (Ty) (t)

Γ (α)
(Uy) (t)

∣∣∣∣
≤ k |x(t)− y(t)|+ |(Tx) (t)|

Γ (α)

∫ t

0

|u(t, s, (Gx) (s))− u(t, s, (Gy) (s))|
(t− s)1−α

ds

+
|(Tx) (t)− (Ty) (t)|

Γ (α)

∫ t

0

|u(t, s, (Gy) (s))|
(t− s)1−α

ds

≤ k ‖x− y‖+
b1(‖x‖)
Γ (α)

∫ t

0

|u(t, s, (Gx) (s))− u(t, s, (Gy) (s))|
(t− s)1−α

ds

+
‖Tx− Ty‖

Γ (α)

∫ t

0

h (|(Gy) (s)|)
(t− s)1−α

ds

≤ kε+
b1(‖x‖)ωu3(I, ε)aα

Γ (α+ 1)
+
εh (b2(‖x‖)) aα

Γ (α+ 1)

≤ kε+
b1(r0)ωu3(I, ε)aα + εh (b2(r0)) a

α

Γ (α+ 1)
, (3.3)
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where

ωu3(I, ε) = sup {|u(t, s, x)− u(t, s, y)| : t, s ∈ I, x, y ∈ R and |x− y| ≤ ε}

such that R = [−‖GBr0‖ , ‖GBr0‖] . On the other hand, due to the fact that
the function u = u(t, s, x) is uniformly continuous on I × I ×R, we infer that
ωu3(I, ε) → 0 as ε → 0. Hence, above estimate (3.3) proves that operator F
is continuous on Br0 . Moreover, we show that operator F satisfies (2.1) on
Br0 with respect to measure of noncompactness µd. To do this, fix arbitrary
ε > 0. Let us consider x ∈ X and t1, t2 ∈ I with t2 ≤ t1 and |t1 − t2| ≤ ε, for
any nonempty subset X of Br0 ;

|(Ax)(t1)− (Ax)(t2)|

=

∣∣∣∣(Fx)(t1) +
(Tx) (t1)

Γ (α)
(Ux) (t1)−

(
(Fx)(t2) +

(Tx) (t2)

Γ (α)
(Ux) (t2)

)∣∣∣∣
≤ |(Fx)(t1)− (Fx)(t2)|+

∣∣∣∣(Tx) (t1)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t2)

∣∣∣∣
≤ ω (Fx, ε) +

∣∣∣∣(Tx) (t1)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t2)

∣∣∣∣
≤ ω (Fx, ε) +

∣∣∣∣(Tx) (t1)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t1)

∣∣∣∣
+

∣∣∣∣(Tx) (t2)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t2)

∣∣∣∣
≤ ω (Fx, ε) +

|(Tx) (t1)− (Tx) (t2)|
Γ (α)

∫ t1

0

|u(t1, s, (Gx) (s))|
(t1 − s)1−α

ds

+
|(Tx) (t2)|

Γ (α)
|(Ux) (t1)− (Ux) (t2)|

≤ ω (Fx, ε) +
|(Tx) (t1)− (Tx) (t2)|

Γ (α)

∫ t1

0

|u(t1, s, (Gx) (s))|
(t1 − s)1−α

ds

+
|(Tx) (t2)|

Γ (α)

∫ t2

0

∣∣∣∣u(t1, s, (Gx) (s))

(t1 − s)1−α
− u(t2, s, (Gx) (s))

(t2 − s)1−α

∣∣∣∣ ds
+
|(Tx) (t2)|

Γ (α)

∫ t1

t2

|u(t1, s, (Gx) (s))|
(t1 − s)1−α

ds

≤ ω (Fx, ε) +
|(Tx) (t1)− (Tx) (t2)|

Γ (α)

∫ t1

0

|u(t1, s, (Gx) (s))|
(t1 − s)1−α

ds

+
|(Tx) (t2)|

Γ (α)

∫ t2

0

∣∣∣∣u(t1, s, (Gx) (s))

(t1 − s)1−α
− u(t1, s, (Gx) (s))

(t2 − s)1−α

∣∣∣∣ ds
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+
|(Tx) (t2)|

Γ (α)

∫ t2

0

∣∣∣∣u(t1, s, (Gx) (s))

(t2 − s)1−α
− u(t2, s, (Gx) (s))

(t2 − s)1−α

∣∣∣∣ ds
+
|(Tx) (t2)|

Γ (α)

∫ t1

t2

|u(t1, s, (Gx) (s))|
(t1 − s)1−α

ds

≤ ω (Fx, ε) +
ω (Tx, ε)

Γ (α)

∫ t1

0

h (|(Gx) (s)|)
(t1 − s)1−α

ds

+
b1(‖x‖)
Γ (α)

∫ t2

0
|u(t1, s, (Gx) (s))|

(
1

(t2 − s)1−α
− 1

(t1 − s)1−α

)
ds

+
b1(‖x‖)
Γ (α)

∫ t2

0

|u(t1, s, (Gx) (s))− u(t2, s, (Gx) (s))|
(t2 − s)1−α

ds

+
b1(‖x‖)
Γ (α)

∫ t1

t2

h (|(Gx) (s)|)
(t1 − s)1−α

ds

≤ ω (Fx, ε) +
ω (Tx, ε)h (b2(r0)) a

α

Γ (α+ 1)

+
b1(r0)h (b2(r0)) [(t1 − t2)α − (tα1 − tα2 )]

Γ (α+ 1)

+
b1(r0)ωu1 (I, ε) aα

Γ (α+ 1)
+
b1(r0)h (b2(r0)) (t1 − t2)α

Γ (α+ 1)

≤ ω (Fx, ε) +
ω (Tx, ε)h (b2(r0)) a

α

Γ (α+ 1)

+
b1(r0)

Γ (α+ 1)
{2h (b2(r0)) ε

α + ωu1 (I, ε) aα} (3.4)

where

ωu1(I, ε)

= sup {|u(t1, s, x)− u(t2, s, x)| : t1, t2, s ∈ I, x ∈ R and |t1 − t2| ≤ ε} .

Thus, by using above estimate (3.4) , we get

ω(AX, ε) ≤ ω (FX, ε) +
ω (TX, ε)h (b2(r0)) a

α

Γ (α+ 1)

+
b1(r0)

Γ (α+ 1)
{2h (b2(r0)) ε

α + ωu1 (I, ε) aα} .

We obtain that ωu1(I, ε) → 0 as ε → 0 because of the fact that function u is
uniformly continuous on sets I × I ×R . So, we conclude

ω0(AX) ≤ ω0 (FX) +
h (b2(r0)) a

α

Γ (α+ 1)
ω0 (TX) . (3.5)
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On the other hand, we show that F satisfies inequality (2.1) according to
measure of noncompactness µd with constant k on Br0 . To do this, let us
consider x ∈ X and t1, t2 ∈ I with t2 ≤ t1 for any nonempty subset X of Br0 .
Then we have

|(Fx)(t1)− (Fx)(t2)| − [(Fx)(t1)− (Fx)(t2)]

=
|(Fx)(t1)−(Fx)(t2)|
|x (t1)−x (t2)|

|x (t1)−x (t2)|−
[(Fx)(t1)−(Fx)(t2)]

[x (t1)−x (t2)]
[x (t1)−x (t2)]

= (|x (t1)− x (t2)| − [x (t1)− x (t2)])
|(Fx)(t1)− (Fx)(t2)|
|x (t1)− x (t2)|

≤ d (x)
k |x (t1)− x (t2)|
|x (t1)− x (t2)|

= kd (x) .

Taking supremum with respect to x over the set X, we obtain

d (FX) ≤ kd (X) .

Also we get

(Ux) (t1)− (Ux) (t2)

=

∫ t1

0

u(t1, s, (Gx) (s))

(t1 − s)1−α
ds−

∫ t2

0

u(t2, s, (Gx) (s))

(t2 − s)1−α
ds

=

∫ t2

0

u(t1, s, (Gx) (s))

(t1 − s)1−α
ds−

∫ t2

0

u(t2, s, (Gx) (s))

(t2 − s)1−α
ds+

∫ t1

t2

u(t1, s, (Gx) (s))

(t1 − s)1−α
ds

+

∫ t2

0

u(t1, s, (Gx) (s))

(t2 − s)1−α
ds−

∫ t2

0

u(t1, s, (Gx) (s))

(t2 − s)1−α
ds

≥ m
{∫ t2

0

1

(t1 − s)1−α
ds−

∫ t2

0

1

(t2 − s)1−α
ds+

∫ t1

t2

1

(t1 − s)1−α
ds

}
+

∫ t2

0

u(t1, s, (Gx) (s))− u(t2, s, (Gx) (s))

(t2 − s)1−α
ds

= m
tα1 − tα2
α

+

∫ t2

0

u(t1, s, (Gx) (s))− u(t2, s, (Gx) (s))

(t2 − s)1−α
ds,

where
m = min {u (t, s, x) : t, s ∈ I and x ∈ R} .

Taking into account that the function t→ u(t, s, (Gx) (s)) is nondecreasing on
I, we conclude

(Ux) (t1)− (Ux) (t2) ≥ 0

and so
d (UX) = 0. (3.6)
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Now, let us consider the degree of decrease of the function Ax on I for any
x ∈ X ⊂ Br0 . To do this let us choose any elements t1, t2 ∈ I with t2 ≤ t1.
Then using (3.2) and (3.6) we can write

|(Ax)(t1)− (Ax)(t2)| − [(Ax)(t1)− (Ax)(t2)]

=

∣∣∣∣(Fx)(t1) +
(Tx) (t1)

Γ (α)
(Ux) (t1)−

(
(Fx)(t2) +

(Tx) (t2)

Γ (α)
(Ux) (t2)

)∣∣∣∣
−
[
(Fx)(t1) +

(Tx) (t1)

Γ (α)
(Ux) (t1)−

(
(Fx)(t2) +

(Tx) (t2)

Γ (α)
(Ux) (t2)

)]
≤ |(Fx)(t1)− (Fx)(t2)| − [(Fx)(t1)− (Fx)(t2)]

+

∣∣∣∣(Tx) (t1)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t1)

∣∣∣∣
+

∣∣∣∣(Tx) (t2)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t2)

∣∣∣∣
−
[

(Tx) (t1)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t1)

]
−
[

(Tx) (t2)

Γ (α)
(Ux) (t1)−

(Tx) (t2)

Γ (α)
(Ux) (t2)

]
= |(Fx)(t1)− (Fx)(t2)| − [(Fx)(t1)− (Fx)(t2)]

+
1

Γ (α)
(|(Tx) (t1)− (Tx) (t2)| − [(Tx) (t1)− (Tx) (t2)]) (Ux) (t1)

+ (|(Ux) (t1)− (Ux) (t2)| − [(Ux) (t1)− (Ux) (t2)])
(Tx) (t2)

Γ (α)

≤ d (Fx) +
(Ux) (t1)

Γ (α)
d (Tx) + d (Ux)

(Tx) (t2)

Γ (α)

≤ d (Fx) +
h (b2(r0)) a

α

Γ (α+ 1)
d (Tx) +

b1(r0)

Γ (α)
d (Ux)

= d (Fx) +
h (b2(r0)) a

α

Γ (α+ 1)
d (Tx) . (3.7)

Taking supremum with respect to x over the set X, we obtain from (3.7)

d (AX) ≤ d (FX) +
h (b2(r0)) a

α

Γ (α+ 1)
d (TX) . (3.8)

If we consider (3.5) , (3.8) and condition (a5) , we obtain

µd (AX) ≤ µd (FX) +
h (b2(r0)) a

α

Γ (α+ 1)
µd (TX)
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≤
(
k +

lh (b2(r0)) a
α

Γ (α+ 1)

)
µd (X)

So operator A is a contraction on ball Br0 with respect to measure of noncom-
pactness µd. Thus, nonlinear functional integral equation (1.2) has at least one
nonnegative solution in Br0 ⊂ C (I) . Finally, we prove that these solutions
are nondecreasing on I. Let D = {x ∈ Br0 : Ax = x} then A (D) = D. Since
D is nonempty subset of Br0 , we write

µd (AD) = µd (D) ≤
(
k +

lh (b2(r0)) a
α

Γ (α+ 1)

)
µd (D) . (3.9)

Taking (3.9) into account, we can write µd(D) = 0. This means that for every
x ∈ D, d(x) = 0 and so x is nondecreasing on I. This completes the proof. �

4. Examples

Example 4.1. Consider the following nonlinear functional integral equation
(given in [16]) in C [0, 1] :

x(t) =
tx (t)

1 + t2
+

t∫
0

|x (s)| ds

2Γ
(
1
2

) ∫ t

0

ln
(
1 +
√
t+ s

)
√
t− s

 s∫
0

τx2 (τ) dτ

 ds. (4.1)

Put

f(t, x) =
tx (t)

1 + t2
, (Tx) (t) =

1

2

t∫
0

|x (s)| ds,

u(t, s, x) = ln
(
1 +
√
t+ s

)
x, (Gx) (s) =

s∫
0

τx2 (τ) dτ,

h (x) = ln
(

1 +
√

2
)
x

and

a = 1, α =
1

2
, k =

1

2
, M =

1

10
and l = 0.

Since

|u(t, s, x)| ≤ ln
(
1 +
√
t+ s

)
‖x‖



On monotonic solutions of some nonlinear fractional integral equations 271

for all t, s ∈ [0, 1] and x ∈ R+. Also,

|(Tx) (t)| =
1

2

t∫
0

|x (s)| ds ≤ ‖x‖
2
,

|(Gx) (s)| =

s∫
0

τx2 (τ) dτ ≤ ‖x‖
2

2

satisfy for all x ∈ C [0, 1] . So b1 and b2 can be choosen as b1 (x) = x/2 and
b2 (x) = x2/2.

It is easy to verify that any number 0.204236 ≤ r0 ≤ 1.30491 satisfies the
inequality

r

2
+

ln
(
1 +
√

2
)
r3

2Γ
(
3
2

) +
1

10
≤ r,

which is equivalent to (3.1) for Eq.(4.1). On the other hand it is easy to
verify that the other assumptions of Theorem 3.1 hold. Therefore, Theorem
3.1 guarantees that Eq.(4.1) has at least one nonnegative and nondecreasing
solution x = x(t) ∈ Br0 ⊂ C [0, 1] for any fixed r0 such that 0.204236 ≤ r0 ≤
1.30491.

Example 4.2. Consider the following functional integral equation in C
[
0, π2

]
x(t) =

x (t)

10
sin

(
1

1 + t

)
+

ex(t)

16Γ
(
3
2

) ∫ t

0

(
ln
(
1 +
√
t+ s

)
+
∫ s
0 |sinx(τ)| dτ

)
√
t− s

ds. (4.2)

For this equation, we have

f(t, x) =
x (t)

10
sin

(
1

1 + t

)
, (Tx) (t) =

ex(t)

16
,

u(t, s, x) = ln
(
1 +
√
t+ s

)
+ x, (Gx) (s) =

∫ s

0
|sinx(τ)| dτ,

and

b1 (x) =
ex

16
, b2 (x) =

πx

2
, h (x) = ln

(
1 +
√
π
)

+ x.

Also,

a =
π

2
, α =

1

2
and k = M =

1

10
.
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Inequality (3.1) is equivalent to

r

10
+
er
(
ln (1 +

√
π) + πr

2

)√
π
2

16Γ
(
3
2

) +
1

10
≤ r.

It is easy to verify that r0 = 1/2 satisfies the above inequality and T satisfies
Darbo condition on Br0 with respect to measure of noncompactness µd with

l = e
3
2 /16. Moreover

1

10
+
e

3
2

(
ln (1 +

√
π) + π

4

)√
π
2

16Γ
(
3
2

) < 1.

On the other hand it is clear that the other assumptions of Theorem 3.1 hold.
Therefore, Theorem 3.1 guarantees that Eq.(4.2) has at least one nonnegative
and nondecreasing solution x = x(t) ∈ B 1

2
⊂ C

[
0, π2

]
.
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