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Abstract. In this article by using the concept of c-distances in a cone metric space we

extend, generalize and improve the corresponding results of Fadail et al.[8] and some others,

under the continuity condition for maps. In the last section we give an examples in support

of our results.

1. Introduction

The Banach contraction principle [4] states that if (X, d) is a complete
metric space and T : X → X is a contraction mapping, then T has a unique
fixed point. This principle has been generalized by considering contractive
mappings on many different metric spaces. In 2007, Huang and Zhang [11] first
introduced the concept of cone metric spaces and they established and proved
the existence of fixed point theorems which is an extension of the Banach’s
contraction mapping principle in to cone metric spaces. Cone metric spaces
is a generalized version of metric spaces, where each pair of points is assigned
to a member of a real Banach space over the cone. Afterward, many authors
have generalized and studied fixed point theorems in cone metric spaces (see
[1], [2], [3], [12], [16], [20]).
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Recently, Wang and Guo [25] introduced the concept of c-distance in a cone
metric spaces (also see [5]) and proved some fixed point theorems in ordered
cone metric spaces. This was cone version of w-distance of Kada et al.[14].
Then several authors have proved fixed point theorems for c-distance in cone
metric spaces (see [8], [9], [10], [22], [23]).

Following are the statements of theorems proved by Fadail et al.[8] by using
c-distance in cone metric spaces;

Theorem 1.1. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a mapping and suppose that there exists
mapping k : X → [0, 1) such that the following hold:

(a) k(fx) ≤ k(x) for all x ∈ X,
(b) q(fx, fy) � k(x)q(x, y) for all x, y ∈ X.

Then f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.

Theorem 1.2. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, l, r : X → [0, 1) such that the following hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X,
(b) (k + l + r)(x) < 1 for all x ∈ X,
(c) q(fx, fy) � k(x)q(x, y) + l(x)q(x, fx) + r(x)q(y, fy) for all x, y ∈ X.

Then f has a fixed point x∗ in X and for any x ∈ X, iterative sequence {fnx}
converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point is
unique.

Theorem 1.3. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a mapping and suppose that there exists
mapping k, l, r : X → [0, 1) such that the following hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X,
(b) (2k + l + r)(x) < 1 for all x ∈ X,
(c) (1− r(x))q(fx, fy) � k(x)q(x, fy) + l(x)q(x, fx) for all x, y ∈ X.

Then f has a fixed point x∗ in X and for any x ∈ X, iterative sequence {fnx}
converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point is
unique.

The purpose of this paper is to extend and generalize some results on c-
distance in cone metric spaces.
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2. Preliminaries

The following definitions and results will be needed in the sequel. Through-
out this paper we assume R as a set of real numbers and N as a set of natural
numbers.

Definition 2.1. ([11]) Let E be a real Banach space and θ denote to the zero
element in E. A cone P is the subset of E such that

(i) P is closed, non empty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0; x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊆ E, we define a partial ordering � with respect to P by
x � y if and only if y − x ∈ P . We write x ≺ y to indicate that x � y but
x 6= y, while x � y will stand for y − x ∈ intP , intP denotes the interior of
P .

Definition 2.2. ([11]) The cone P is called normal if there is a number K > 0
such that for all x, y ∈ E, θ � x � y implies ||x|| ≤ K||y||. The least positive
number satisfying above is called the normal constant of P .

In the following we always suppose E is a Banach Space, P is a cone in E
with intP 6= φ and � is partial ordering with respect to P .

Definition 2.3. ([11]) Let X be a non empty set. Suppose the mapping
d : X ×X → E satisfies:

(i) If θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.4. Let E = R2 and P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R2

and suppose that d : X ×X → E is defined by d(x, y) = d((x1, x2), (y1, y2)) =
(|x1 − y1| + |x2 − y2|, αmax{|x1 − y1|, |x2 − y2|}) where α ≥ 0 is a constant.
Then (X, d) is a cone metric space. It is easy to see that d is a cone metric,
and hence (X, d) becomes a cone metric space over (E,P ). Also, we have P
is a solid and normal cone where the normal constant K = 1.

Definition 2.5. ([11]) Let (X, d) be a cone metric space, let {xn} be a se-
quence in X and x ∈ X.

(1) For all c ∈ E with θ � c, if there exists a positive integer N such that
d(xn, x) � c for all n > N , then {xn} is said to be convergent and
{xn} converges to x (i.e. limn→∞ xn = x or xn → x as n→∞).
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(2) for all c ∈ E with θ � c, if there exists a positive integer N such
that for all n,m > N , d(xn, xm) � c, then {xn} is called a Cauchy
sequence in X.

(3) If every Cauchy sequence in X is convergent in X then (X, d) is called
a complete cone metric space.

Lemma 2.6. ([13])

(1) If E be a real Banach space with a cone P and a � λa where a ∈ P
and 0 ≤ λ < 1, then a = θ.

(2) If c ∈ intP , θ � an and an → θ, then there exists a positive integer N
such that an � c for all n ≥ N .

Next, we give the notion of c-distance on a cone metric space (X, d) of Wang
and Guo in [25], which is a generalization of w-distance of Kada et al. [14]
and some properties.

Definition 2.7. ([25]) Let (X, d) be a cone metric space. A function q :
X ×X → E is called a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,
(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,
(q3) for each x ∈ X and n ≥ 1 if q(x, yn) � u for some u = ux ∈ P , then

q(x, y) � u whenever {yn} is a sequence in X converging to a point
y ∈ X,

(q4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that
q(z, x)� e and q(z, y)� e imply d(x, y)� c.

Example 2.8. ([25]) Let E = R and P = {x ∈ E : x ≥ 0}, X = [0,∞)
and define a mapping d : X ×X → E is defined by d(x, y) = |x − y|, for all
x, y ∈ X. Then (X, d) is a cone metric space. Define a mapping q : X×X → E
by q(x, y) = y for all x, y ∈ X. Then q is a c-distance on X.

Example 2.9. ([25]) Let (X, d) be a cone metric space and P be a normal
cone. Define a mapping q : X ×X → E by q(x, y) = d(u, y) for all x, y ∈ X,
where u is a fixed point in X. Then q is c-distance.

Lemma 2.10. ([25]) Let (X, d) be a cone metric space and q be a c-distance
on X. Let {xn} and {yn} be a sequences in X and x, y, z ∈ X. Suppose that
{un} is a sequence in P converging to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.
(2) If q(xn, yn) � un and q(xn, z) � un then {yn} converges to z.
(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.
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(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 2.11. ([25])

(1) If q(x, y) = q(y, x) does not necessarily for all x, y ∈ X.
(2) If q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Now we are ready to state and prove our main results.

3. Main Results

Theorem 3.1. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, l : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x) for all x ∈ X;
(b) (k + 2l)(x) < 1 for all x ∈ X;
(c) q(fx, fy) � k(x)q(x, y) + l(x)[q(fx, y) + q(fy, x)] for all x, y ∈ X.

Then the map f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, · · · , xn+1 = fxn =
fn+1x0. Then we have

q(xn, xn+1) = q(fxn−1, fxn)

� k(xn−1)q(xn−1, xn) + l(xn−1)[q(fxn−1, xn) + q(fxn, xn−1)]

= k(fxn−2)q(xn−1, xn) + l(fxn−2)[q(xn+1, xn−1)]

� k(xn−2)q(xn−1, xn) + l(xn−2)[q(xn−1, xn) + q(xn, xn+1)],

continuing in this manner we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + l(x0)q(xn−1, xn) + l(x0)q(xn, xn+1)

and hence

q(xn, xn+1) �
k(x0) + l(x0)

1− l(x0)
q(xn−1, xn)

= hq(xn−1, xn) � h2q(xn−2, xn−1) � · · · � hnq(x0, x1),

where h = k(x0)+l(x0)
1−l(x0)

< 1. Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

� (hn(x0) + hn+1(x0) + · · ·+ hm−1(x0))q(x0, x1)

� hn(x0)

1− h(x0)
q(x0, x1).
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Thus, Lemma 2.10 (3) shows that {xn} is a Cauchy sequence in X. Since
X is complete, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Since f
is continuous, then x∗ = limn→∞ xn+1 = limn→∞ f(xn) = f(limn→∞ xn) =
f(x∗). Therefore x∗ is a fixed point of f . Suppose that v = fv, then

q(v, v) = q(fv, fv)

� k(x0)q(v, v) + l(x0)[q(fv, v) + q(fv, v)]

= (k + 2l)(x0)q(v, v, ).

Since (k+ 2l)(x0) < 1, Lemma 2.6 (1) shows that q(v, v) = θ. Finally, suppose
there is another fixed point y∗ of f , then we have,

q(x∗, y∗) = q(fx∗, fy∗)

� k(x∗)q(x∗, y∗) + l(x∗)[q(fx∗, y∗) + q(fy∗, x∗)]

= k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, y∗) + q(y∗, x∗)]

= (k + 2l)(x∗)q(x∗, y∗).

Since (k + 2l)(x∗) < 1, Lemma 2.6 (1) shows that q(x∗, y∗) = θ and also we
have q(x∗, x∗) = θ, hence by Lemma 2.10 (1), x∗ = y∗. Therefore the fixed
point is unique. �

Corollary 3.2. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, l : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x) for all x ∈ X;
(b) (k + 2l)(x) < 1 for all x ∈ X;
(c) q(fx, fy) � k(x)q(x, y) + l(x)[q(x, fx) + q(y, fy)] for all x, y ∈ X.

Then the map f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.

Theorem 3.3. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, l, r : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X;
(b) (k + 2l + 2r)(x) < 1 for all x ∈ X;
(c) q(fx, fy) � k(x)q(x, y) + l(x)[q(x, fy) + q(y, fx)] + r(x)[q(x, fx) +

q(y, fy)] for all x, y ∈ X.
Then the map f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.
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Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, · · · , xn+1 = fxn =
fn+1x0. Then we have,

q(xn, xn+1) = q(fxn−1, fxn)

� k(xn−1)q(xn−1, xn) + l(xn−1)[q(xn−1, fxn) + q(xn, fxn−1)]

+ r(xn−1)[q(xn−1, fxn−1) + q(xn, fxn)]

= k(fxn−2)q(xn−1, xn) + l(fxn−2)[q(xn−1, xn+1) + q(xn, xn)]

+ r(fxn−2)[q(xn−1, xn) + q(xn, xn+1)]

� k(xn−2)q(xn−1, xn) + l(xn−2)[q(xn−1, xn) + q(xn, xn+1)]

+ r(xn−2)[q(xn−1, xn) + q(xn, xn+1)],

continuing in this manner we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + l(x0)[q(xn−1, xn) + q(xn, xn+1)]

+ r(x0)[q(xn−1, xn) + q(xn, xn+1)]

and hence

q(xn, xn+1) �
k(x0) + l(x0) + r(x0)

1− l(x0)− r(x0)
q(xn−1, xn)

= hq(xn−1, xn)

� h2q(xn−2, xn−1) � · · · � hnq(x0, x1),

where h = k(x0)+l(x0)+r(x0)
1−l(x0)−r(x0)

< 1. Let m > n ≥ 1. Then it follows that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

� (hn(x0) + hn+1(x0) + · · ·+ hm−1(x0))q(x0, x1)

� hn(x0)

1− h(x0)
q(x0, x1).

Thus, Lemma 2.10 (3) shows that {xn} is a Cauchy sequence in X. Since
X is complete, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Since f
is continuous, then x∗ = limn→∞ xn+1 = limn→∞ f(xn) = f(limn→∞ xn) =
f(x∗). Therefore x∗ is a fixed point of f . Suppose that v = fv, then

q(v, v) = q(fv, fv)

� k(x0)q(v, v) + l(x0)[q(v, fv) + q(v, fv)]

+ r(x0)[q(v, fv) + q(v, fv)]

= (k + 2l + 2r)(x0)q(v, v).
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Since (k + 2l + 2r)(x0) < 1, Lemma 2.6 (1) shows that q(v, v) = θ. Finally,
suppose there is another fixed point y∗ of f , then we have,

q(x∗, y∗) = q(fx∗, fy∗)

� k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, fy∗) + q(y∗, fx∗)]

+ r(x∗)[q(x∗, fx∗) + q(y∗, fy∗)]

= k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, y∗) + q(y∗, x∗)]

+ r(x∗)[q(x∗, x∗) + q(y∗, y∗)]

= (k + 2l)(x∗)q(x∗, y∗)

� (k + 2l + 2r)(x∗)q(x∗, y∗).

Since (k + 2l + 2r)(x∗) < 1, Lemma 2.6 (1) shows that q(x∗, y∗) = θ and also
we have q(x∗, x∗) = θ, hence by Lemma 2.10 (1), x∗ = y∗. Therefore the fixed
point is unique. �

Corollary 3.4. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, l, r : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X;
(b) (k + 2l + 2r)(x) < 1 for all x ∈ X;
(c) q(fx, fy) � k(x)q(x, y) + l(x)[q(x, fx) + q(x, fy)] + r(x)[q(y, fx) +

q(y, fy)] for all x, y ∈ X.
Then the map f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.

Theorem 3.5. Let (X, d) be a complete cone metric space and q be a c-
distance on X. Let f : X → X be a continuous mapping and suppose that
there exists mapping k, r, l, t : X → [0, 1) such that the following conditions
hold:

(a) k(fx) ≤ k(x), r(fx) ≤ r(x), l(fx) ≤ l(x), t(fx) ≤ t(x) for all x ∈ X;
(b) (k + r + l + 2t)(x) < 1 for all x ∈ X;
(c) q(fx, fy) � k(x)q(x, y) + r(x)q(fx, x) + l(x)q(fy, y) + t(x)[q(fx, y) +

q(fy, x)] for all x, y ∈ X.
Then the map f has a fixed point x∗ in X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If v = fv, then q(v, v) = θ. The fixed point
is unique.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, · · · , xn+1 = fxn =
fn+1x0. Then we have,
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q(xn, xn+1) = q(fxn−1, fxn)

� k(xn−1)q(xn−1, xn) + r(xn−1)q(fxn−1, xn−1)

+ l(xn−1)q(fxn, xn) + t(xn−1)[q(fxn−1, xn) + q(fxn, xn−1)]

= k(fxn−2)q(xn−1, xn) + r(fxn−2)q(xn, xn−1)

+ l(fxn−2)q(xn+1, xn) + t(fxn−2)[q(xn, xn) + q(xn+1, xn−1)]

� k(xn−2)q(xn−1, xn) + r(xn−2)q(xn−1, xn)

+ l(xn−2)q(xn, xn+1) + t(xn−2)[q(xn−1, xn) + q(xn, xn+1)],

continuing in this manner we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + r(x0)q(xn−1, xn) + l(x0)q(xn, xn+1)

+ t(x0)[q(xn−1, xn) + q(xn, xn+1)],

and hence,

q(xn, xn+1) �
k(x0) + r(x0) + t(x0)

1− l(x0)− t(x0)
q(xn−1, xn)

= hq(xn−1, xn)

� h2q(xn−2, xn−1) � · · · � hnq(x0, x1),

where h = k(x0)+r(x0)+t(x0)
1−l(x0)−t(x0)

< 1. Let m > n ≥ 1. Then it follows that,

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

� (hn(x0) + hn+1(x0) + · · ·+ hm−1(x0))q(x0, x1)

� hn(x0)

1− h(x0)
q(x0, x1).

Thus, Lemma 2.10 (3) shows that {xn} is a Cauchy sequence in X. Since
X is complete, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Since f
is continuous, then x∗ = limn→∞ xn+1 = limn→∞ f(xn) = f(limn→∞ xn) =
f(x∗). Therefore x∗ is a fixed point of f . Suppose that v = fv, then,

q(v, v) = q(fv, fv)

� k(x0)q(v, v) + r(x0)q(fv, v) + l(x0)q(fv, v)

+ t(x0)[q(fv, v) + q(fv, v)]

= (k + r + l + 2t)(x0)q(v, v).

Since (k + r + l + 2t)(x0) < 1, Lemma 2.6 (1) shows that q(v, v) = θ. Finally,
suppose there is another fixed point y∗ of f , then we have,
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q(x∗, y∗) = q(fx∗, fy∗)

� k(x∗)q(x∗, y∗) + r(x∗)q(fx∗, x∗) + l(x∗)q(fy∗, y∗)

+ t(x∗)[q(fx∗, y∗) + q(fy∗, x∗)]

= k(x∗)q(x∗, y∗) + r(x∗)q(x∗, x∗) + l(x∗)q(y∗, y∗)

+ t(x∗)[q(x∗, y∗) + q(y∗, x∗)]

= (k + 2t)(x∗)q(x∗, y∗)

� (k + r + l + 2t)(x∗)q(x∗, y∗).

Since (k + r + l + 2t)(x∗) < 1, Lemma 2.6 (1) shows that q(x∗, y∗) = θ and
also we have q(x∗, x∗) = θ, hence by Lemma 2.10 (1), x∗ = y∗. Therefore, the
fixed point is unique. �

Example 3.6. Let E = R and P = {x ∈ E, x ≥ 0}. Let X = [0, 1] and
define a mapping d : X ×X → E by d(x, y) = |x − y| for all x, y ∈ X. Then
(X, d) is a complete cone metric space. Define a mapping q : X × X → E
by q(x, y) = 2d(x, y) for all x, y ∈ X. Then q is c-distance. In fact, (q1)-(q3)
are immediate. Let c ∈ E with 0 � c and put e = c

2 . If q(z, x) � e and
q(z, y)� e, then we have

d(x, y) ≤ 2d(x, y) = 2|x− y|
≤ 2|x− z|+ 2|z − y|
= q(z, x) + q(z, y)� e+ e = c.

This shows that (q4) holds. Therefore q is the c-distance. Let f : X → X

defined by f(x) = x2

16 for all x ∈ X. Take mappings k, r, l, t : X → [0, 1) by

k(x) =
x+ 1

16
, r(x) =

2x+ 3

16
, l(x) =

3x+ 2

16
, t(x) =

x

16

for all x ∈ X. Observe that

(i) k(fx) =
(
x2

16 + 1
)
/16 = 1

16

(
x2

16 + 1
)
≤ 1

16(x+ 1) = k(x) for all x ∈ X,

(ii) t(fx) =
(
x2

16

)
/16 = 1

16

(
x2

16

)
≤ 1

16(x) = t(x) for all x ∈ X,

(iii) r(fx) =
(
2
(
x2

16

)
+ 3

)
/16 = 1

16

(
2x2

16 + 3
)
≤ 1

16(2x + 3) = r(x) for all
x ∈ X,

(iv) l(fx) =
(
3
(
x2

16

)
+ 2

)
/16 = 1

16

(
3x2

16 + 2
)
≤ 1

16(3x + 2) = l(x) for all
x ∈ X,

(v) (k + r + l + 2t)(x) =
(
x+1
16

)
+

(
2x+3
16

)
+

(
3x+2
16

)
+ 2

(
x
16

)
=

(
8x+6
16

)
< 1

for all x ∈ X,
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(vi) for all x, y ∈ X, we have

q(fx, fy) = 2
∣∣x2
16
− y2

16

∣∣
� 2|x+ y||x− y|

16
=

(x+ y

16

)
2|x− y|

�
(x+ 1

16

)
2|x− y| = k(x)q(x, y)

� k(x)q(x, y) + r(x)q(fx, x) + l(x)q(fy, y)

+ t(x)[q(fx, y) + q(fy, x)].

Therefore, all the conditions of Theorem 3.5 are satisfied. Hence f has a
unique fixed point x = 0 with q(0, 0) = 0.

4. Conclusion

In this attempt, we prove some fixed point results in cone metric spaces.
These results generalizes and improves the recent results of Fadail et al. [8]
in the sense that in our results, we employing c-distance and in contractive
conditions, replacing the constants with functions, which extend the further
scope of our results. In the last section of the paper, an example is given to
support the presented results.

Acknowledgments: The authors are thankful to the learned referee for
his/her deep observations and their suggestions which greatly helped us to
improve the paper significantly.
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and cone metric fixed point results, Appl. Math. Letter, 24(3) (2011), 370–374.
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