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Abstract. In this paper, we give sufficient conditions of the hybrid viscosity approximation

method for zeros of m-accretive operators in Banach spaces E, which is introduced by Ceng

et al. in [4] (Theorem 3.2) when E is a uniformly convex and uniformly smooth Banach

space.

1. Introduction

Let E be a real Banach space, A : D(A) −→ 2E an accretive operator and
Jr the resolvent of A. We consider the problem of finding a zero of A, that is,
find p ∈ D(A) such that 0 ∈ A(p).

One popular method of solving equation 0 ∈ A(x) where A is a maximal
monotone operator in a Hilbert space H, is the proximal point algorithm.
The proximal point algorithm generates, for any starting point x0 = x ∈ E, a
sequence {xn} by the rule

xn+1 = Jrn(xn), for all n ∈ N, (1.1)

where {rn} is a sequence of positive real numbers. Some of them dealt with the
weak convergence of the sequence {xn} generated by (1.1) and others proved
strong convergence theorems by imposing assumptions on A. Note that, this
algorithm was first introduced by Martinet [8].
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Further, Rockafellar [10] posed an open question of whether the sequence
generated by (1.1) converges strongly or not. In 1991, Güler [6] gave an ex-
ample showing that Rockafellar’s proximal point algorithm does not converge
strongly. An example of the authors Bauschke, Matoušková and Reich [1]
also showed that the proximal algorithm only converges weakly but not in the
norm.

There are many authors who studied and extended the Rockafellar’s proxi-
mal point algorithm to find zeros of accretive operators. In 2012, Ceng et al.
introduced a new iterative method to find a zero of an m-accretive operator
[4]. They proved the following theorem:

Theorem 1.1. ([4]) Let E be a uniformly smooth Banach space, let A be an

m-accretive operator in E with C = A−1(0) 6= ∅ and let f : E −→ K = D(A)
be a contractive map. Assume that F : E −→ E is δ-strongly accretive and
λ-strictly pseudocontractive with δ + λ > 1. Given sequences {λn}, {µn} in
[0, 1], {αn}, {βn} in (0, 1] and {rn} ⊂ [ε,∞) for some ε > 0, suppose that
there hold the following conditions:

(i) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;

(ii) limn→∞
λnµn
βn

= 0;

(iii) {αn} ⊂ [a, b], with a, b ∈ (0, 1);
(iv)

∑∞
n=0 |αn+1−αn| <∞,

∑∞
n=0 |βn+1−βn| <∞,

∑∞
n=0 |λn+1−λn| <∞,∑∞

n=0 |µn+1 − µn| <∞ and
∑∞

n=0 |rn+1 − rn| <∞.

Then for any given point x0 ∈ E, the sequence {xn} generated by{
yn = αnxn + (1− αn)Jrnxn,

xn+1 = βnf(xn) + (1− βn)[Jrnyn − λnµnF (Jrnyn)], ∀n ≥ 0,
(1.2)

converges strongly to a zero point p of A, which is a unique solution of
VI∗(I − f, C), that is

〈(I − f)p, j(p− u)〉 ≤ 0, ∀u ∈ C.

The purpose of this paper is to show that if E is a uniformly convex and uni-
formly smooth, then the conditions i), ii) and iii) in Theorem 1.1 are sufficient
conditions to ensure the strong convergence of iterative (1.2).

2. Preliminaries

Let E be a real Banach space with norm ‖.‖ and let E∗ be its dual. The
value of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence

in E, then xn −→ x (resp. xn ⇀ x, xn
∗
⇀ x) will denote strong (resp. weak,

weak∗) convergence of the sequence {xn} to x.
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Let J denote the normalized duality mapping from E into 2E
∗

given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,
where 〈., .〉 denotes the generalized duality pairing. It is well known that if E∗

is strictly convex then J is single-valued. In the sequel, we shall denote the
single-valued normalized duallity mapping by j.

We always use SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = 1} and
Fix(T ) to denote the set of the fixed point of the mapping T : C ⊆ E −→ E,
i.e., Fix(T ) = {x ∈ C : T (x) = x}.

A Banach space E is said to be strictly convex if

x, y ∈ SE with x 6= y, implies that ‖(1− t)x+ ty‖ < 1 for all t ∈ (0, 1).

A Banach space E is said to be uniformly convex if for any ε ∈ (0, 2] the
inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε imply there exists a δ = δ(ε) ≥ 0
such that

‖x+ y‖
2

≤ 1− δ.
A Banach E is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x and y in SE . In this case, the norm of E is said to be Gâteaux
differentiable. It is said to be uniformly Fréchet differentiable (and E is called
uniformly smooth) if this limit is attained uniformly for all x and y in SE .

For an operator A : E −→ 2E , we define its domain, range and graph as
follows:

D(A) = {x ∈ E : Ax 6= ∅},
R(A) = ∪{Az : z ∈ D(A)}

and
G(A) = {(x, y) ∈ E × E : x ∈ D(A), y ∈ Ax},

respectively. The inverse A−1 of A is defined by

x ∈ A−1y, if and only if y ∈ Ax.
The operator A is said to be accretive if, for each x, y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that 〈u− v, j(x− y)〉 ≥ 0 for all u ∈ Ax and v ∈ Ay.
We denote by I the identity operator on E. An accretive operator A is said
to be maximal accretive if there is no proper accretive extension of A and
m-accretive if R(I + λA) = E for all λ > 0. If A is m-accretive, then it is
maximal accretive, but the converse is not true in general. If A is accretive,
then we can define, for each λ > 0, a nonexpansive single-valued mapping
Jλ : R(I + λA) −→ D(A) by

Jλ = (I + λA)−1,
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it is called the resolvent of A. An accretive A defined on a Banach space E is
said to satisfy the range condition if D(A) ⊂ R(I + λA) for all λ > 0, where

D(A) denotes the closure of the domain of A. We know that for an accretive
operator A which satisfies the range condition, A−1(0) = F (Jλ) for all λ > 0.
It’s easy to see that if A is m-accretive operator, then A satisfies the range
condition.

Recall that a mapping F : E −→ E is said to be δ-strongly accretive if for
each x, y ∈ E there exists j(x− y) ∈ J(x− y) such that

〈F (x)− F (y), j(x− y)〉 ≥ δ‖x− y‖2

for some δ ∈ (0, 1). A mapping F : E −→ E is said to be λ-strictly pseu-
docontractive [2] if for each x, y ∈ E there exists j(x − y) ∈ J(x − y) such
that

〈F (x)− F (y), j(x− y)〉 ≤ ‖x− y‖2 − λ‖x− y − (F (x)− F (y))‖
for some λ ∈ (0, 1) and F is said to be pseudocontractive if for each x, y ∈ E
there exists j(x− y) ∈ J(x− y) such that

〈F (x)− F (y), j(x− y)〉 ≤ ‖x− y‖2.
So, if F is a nonexpansive mapping, that is ‖F (x) − F (y)‖ ≤ ‖x − y‖ for all
x, y ∈ E, then F is a pseudocontractive mapping.

The following lemmas will be needed in the sequel for the proof of the main
results in this paper.

Lemma 2.1. ([3]) Let E be a real smooth Banach space and F : E −→ E be
a mapping. If F is δ-strongly accretive and λ- strictly pseudocontractive with
δ + λ > 1, then for any fixed number τ ∈ (0, 1], I − τF is contractive with

constant 1− τ

(
1−

√
1− δ
λ

)
.

Lemma 2.2. ([9]) Let E be a Banach space. For every x, y ∈ E, we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,
for all j(x+ y) ∈ J(x+ y).

Lemma 2.3. ([5]) Let A : D(A) ⊂ E −→ 2E be an accretive operator. Let
r, t > 0. If E is uniformly convex, then there exists a continuous, strictly
increasing and convex function ϕ : R+ −→ R+ with ϕ(0) = 0 so that

‖JAr x− JAr y‖2 ≤ ‖x− y‖2 − ϕ(‖(I − JAr )x− (I − JAr )y‖),
for all x, y ∈ R(I + rA) with max{‖x‖, ‖y‖} ≤ t.



On the strong convergence theorem 291

Lemma 2.4. ([7]) Let {sn} be a real sequence that does not decrease at infinity,
in the sense that there exists a subsequence {snk

} so that

snk
≤ snk+1, ∀k ≥ 0.

For every n > n0 define an integer sequence {τ(n)} as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then τ(n)→∞ as n→∞ for all n > n0,

max{sτ(n), sn} ≤ sτ(n)+1.

3. Main Results

We have the following theorem:

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space, let A be an m-accretive operator in E with C = A−1(0) 6= ∅ and let

f : E −→ K = D(A) be a contractive map with the contraction coefficient
β ∈ [0, 1). Assume that F : E −→ E is δ-strongly accretive and λ-strictly
pseudocontractive with δ + λ > 1. Given sequences {λn}, {µn} in [0, 1], {αn},
{βn} in (0, 1] and {rn} ⊂ [ε,∞) for some ε > 0, suppose that there hold the
following conditions:

(i) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;

(ii) limn→∞
λnµn
βn

= 0;

(iii) {αn} ⊂ [a, b], with a, b ∈ (0, 1);

Then for any given point x0 ∈ E, the sequence {xn} generated by{
yn = αnxn + (1− αn)Jrnxn,

xn+1 = βnf(xn) + (1− βn)[Jrnyn − λnµnF (Jrnyn)], ∀n ≥ 0,
(3.1)

converges strongly to a zero point p of A, which is a unique solution of
VI∗(I − f, C), that is

〈(I − f)p, j(p− u)〉 ≤ 0, ∀u ∈ C.

Proof. The first, we show that {xn} is bounded. Indeed, taking a fixed u ∈ C,
we have

‖yn − u‖ = ‖αnxn + (1− αn)Jrnxn − u‖
= ‖αn(xn − u) + (1− αn)(Jrnxn − u)‖
≤ αn‖xn − u‖+ (1− αn)‖Jrnxn − Jrnu‖
≤ ‖xn − u‖.
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So, from Lemma 2.1, we have

‖xn+1 − u‖
= ‖βnf(xn) + (1− βn)[Jrnyn − λnµnF (Jrnyn)]− u‖
≤ βn‖f(xn)− u‖+ (1− βn)‖λn(I − µnF )Jrnyn + (1− λn)Jrnyn − u‖
≤ βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn)[λn‖(I − µnF )Jrnyn − u‖+ (1− λn)‖Jrnyn − u‖]
≤ βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn)[λn‖(I − µnF )Jrnyn − (I − µnF )u‖
+ λnµn‖F (u)‖+ (1− λn)‖Jrnyn − u‖]
≤ βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn)

[
λn

(
1− µn

(
1−

√
1− δ
λ

))
‖Jrnyn − u‖

+ λnµn‖F (u)‖+ (1− λn)‖Jrnyn − u‖
]

= βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn)

[(
1− λnµn

(
1−

√
1− δ
λ

))
‖Jrnyn − u‖+ λnµn‖F (u)‖

]
≤ βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn) max

{
‖Jrnyn − u‖,

(
1−

√
1− δ
λ

)−1
‖F (u)‖

}
≤ βnβ‖xn − u‖+ βn‖f(u)− u‖

+ (1− βn) max

{
‖xn − u‖,

(
1−

√
1− δ
λ

)−1
‖F (u)‖

}
≤ βn‖f(u)− u‖

+ (1− (1− β)βn) max

{
‖xn − u‖,

(
1−

√
1− δ
λ

)−1
‖F (u)‖

}
≤ max

{
‖xn − u‖,

‖f(u)− u‖
1− β

,

(
1−

√
1− δ
λ

)−1
‖F (u)‖

}
.

By induction, we get

‖xn − u‖ ≤ max

{
‖x0 − u‖,

‖f(u)− u‖
1− β

,

(
1−

√
1− δ
λ

)−1
‖F (u)‖

}
, ∀n ≥ 0.

Thus, {xn} is bounded.



On the strong convergence theorem 293

Now, let p is a unique solution of VI∗(I − f, C), that is

〈(I − f)p, j(p− u)〉 ≤ 0, ∀u ∈ C,
from Lemma 2.2, we have

‖xn+1 − p‖2 ≤ (1− βn)2‖Jrnyn − p‖2 + 2βn〈f(xn)− p, j(xn+1 − p)〉
− 2(1− βn)λnµn〈F (Jrnyn), j(xn+1 − p)〉

= (1− βn)2‖yn − p‖2 + 2βn〈f(xn)− f(p), j(xn+1 − p)〉
+ 2βn〈f(p)− p, j(xn+1 − p)〉
− 2(1− βn)λnµn〈F (Jrnyn), j(xn+1 − p)〉
≤ (1− βn)2‖yn − p‖2 + βnβ(‖xn − p‖2 + ‖xn+1 − p‖2)

+ 2βn〈f(p)− p, j(xn+1 − p)〉
+ 2(1− βn)λnµn‖F (Jrnyn)‖.‖xn+1 − p‖.

Thus

‖xn+1 − p‖2 ≤
1

1− βnβ
(
(1− βn)2‖yn − p‖2 + βnβ‖xn − p‖2

)
+

2βn
1− βnβ

〈f(p)− p, j(xn+1 − p)〉

+
2λnµn

1− βnβ
‖F (Jrnyn)‖.‖xn+1 − p‖.

(3.2)

By Lemma 2.3, we have

‖yn − p‖2 = ‖αnxn + (1− αn)Jrnxn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖Jrnxn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖xn − p‖2

− (1− αn)ϕ(‖xn − Jrnxn‖)
≤ ‖xn − p‖2 − (1− b)ϕ(‖xn − Jrnxn‖).

(3.3)

From (3.2) and (3.3), we get

‖xn+1 − p‖2

≤ 1− (2− β)βn
1− βnβ

‖xn − p‖2 +
2βn

1− βnβ
〈f(p)− p, j(xn+1 − p)〉

+
M

1− β
β2n +

M

1− β
λnµn − (1− βn)2(1− b)ϕ(‖xn − Jrnxn‖),

where M > max{‖xn − p‖2, 2‖F (Jrnyn)‖.‖xn+1 − p‖}. We have the following
inequality

sn+1 ≤ (1− bn)sn + bncn − σn, (3.4)
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where sn = ‖xn − p‖2, bn =
2(1− β)βn

1− βnβ
,

cn =
M(1− ββn)

2(1− β)2

(
βn +

λnµn
βn

)
+

1

1− β
〈f(p)− p, j(xn+1 − p)〉,

and

σn = (1− βn)2(1− b)ϕ(‖xn − Jrnxn‖).

We will show that sn → 0 by considering two possible cases.

Case 1. {sn} is eventually decreasing, i.e., there exists N0 ≥ 0 such that {sn}
is decreasing for n ≥ N0 and thus {sn} must be convergent. It then follows
from (3.4) that

0 ≤ σn ≤ (sn − sn+1) + bn(cn − sn)→ 0,

which implies that

‖xn − Jrnxn‖ → 0. (3.5)

Now we show that

lim sup
n→∞

〈f(p)− p, j(xn − p)〉 ≤ 0. (3.6)

Indeed, puting xt,n = tf(xt,n) + (1 − t)[Jrnxt,n − θtF (Jrnxt,n)]. Then by
Theorem 3.1 in [4], xt,n converges strongly to a unique solution of VI∗(I−f, C),
as t→ 0. We have

xt,n − xn = t(f(xt,n)− xn) + (1− t)(Jrnxt,n − xn)− (1− t)θtF (Jrnxt,n).

So, by Lemma 2.2, we have

‖xt,n − xn‖2

≤ (1− t)2‖Jrnxt,n − xn‖2 + 2t〈f(xt,n)− xn, j(xt,n − xn)〉
− 2(1− t)θt〈F (Jrnxt,n), j(xt,n − xn)〉
≤ (1− t)2(‖Jrnxt,n − Jrnxn‖2 + ‖Jrnxn − xn‖2)

+ 2t〈f(xt,n)− xt,n, j(xt,n − xn)〉+ 2t‖xt,n − xn‖2

+ 2θt‖F (Jrnxt,n)‖.‖xt,n − xn‖
≤ (1 + t2)‖xt,n − xn‖2

+ ‖Jrnxn − xn‖(2‖xt,n − xn‖+ ‖Jrnxn − xn‖)
+ 2t〈f(xt,n)− xt,n, j(xt,n − xn)〉+ 2θt‖F (Jrnxt,n)‖.‖xt,n − xn‖.
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It follows that

〈f(xt,n)− xt,n, j(xt,n − xn)〉

≤ t

2
‖xt,n − xn‖2 +

1

2t
‖Jrnxn − xn‖(2‖xt,n − xn‖+ ‖Jrnxn − xn‖)

+
θt
t
‖F (Jrnxt,n)‖.‖xt,n − xn‖.

(3.7)

From (3.5) and in (3.7) letting n→∞, we obtain that

lim sup
n→∞

〈f(xt,n)− xt,n, j(xt,n − xn)〉

≤ t

2
lim sup
n→∞

‖xt,n − xn‖2 + lim sup
n→∞

θt
t
‖F (Jrnxt,n)‖.‖xt,n − xn‖

≤
(
t

2
+
θt
t

)
M1,

(3.8)

where M1 = max{supn{‖xt,n − xn‖2}, supn{‖F (Jrnxt,n)‖.‖xt,n − xn‖}} < ∞
for all t ∈ (0, a] (see [4], Theorem 3.1). Taking the lim sup as t → 0 in (3.8)
and by the duality map j is norm-to-norm uniformly continuous on bounded
sets, we obtain (3.6). We have

‖xn+1 − xn‖ ≤ ‖xn+1 − Jrnyn‖+ ‖Jrnyn − Jrnxn‖+ ‖xn − Jrnxn‖
≤ Kβn + ‖yn − xn‖+ ‖xn − Jrnxn‖
= Kβn + (1− αn)‖xn − Jrnxn‖+ ‖xn − Jrnxn‖
≤ Kβn + (2− a)‖xn − Jrnxn‖ → 0,

(3.9)

where K = supn{‖f(xn)‖+ ‖Jrnyn‖}+ F (Jrnyn)‖}. Thus,

‖xn+1 − xn‖ → 0. (3.10)

By (3.6) and the duality map j is uniformly norm-to-norm continuous on
bounded set, we get

lim sup
n→∞

〈f(p)− p, j(xn+1 − p)〉 ≤ 0. (3.11)

Now, from (3.4), we have

sn ≤
sn − sn+1

bn
+ cn.

Note that lim infn→∞
sn − sn+1

bn
= 0, because

∑∞
n=0 bn = ∞. Thus, from the

last inequality, we obtain that

lim
n→∞

sn ≤ lim inf
n→∞

(
sn − sn+1

bn
+ cn

)
≤ lim inf

n→∞

sn − sn+1

bn
+ lim sup

n→∞
cn ≤ 0.

So, {sn} converges to 0.
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Case 2. {sn} is not eventually decreasing. Hence, there exists a subsequence
{snk
} of {sn} such that snk

≤ snk+1 for all k ≥ 0. By Lemma 2.4, we can
define a subsequence {sτ(n)} such that

max{sτ(n), sn} ≤ sτ(n)+1, ∀n ≥ n0. (3.12)

From (3.4), we have

0 ≤ στ(n) ≤ bτ(n)(cτ(n) − sτ(n))→ 0, (3.13)

thus στ(n) → 0. By similar argument to Case 1, we get

lim sup
n→∞

〈f(p)− p, j(xτ(n)+1 − p)〉 ≤ 0,

or

lim sup
n→∞

cτ(n) ≤ 0.

By (3.13), lim supn→∞ sτ(n) ≤ 0, thus

lim
n→∞

sτ(n) = 0.

In a similar to (3.9), we have

‖xτ(n)+1 − xτ(n)‖ → 0.

Thus, by {xn} is bounded, we get

|sτ(n)+1 − sτ(n)| = |‖xτ(n)+1 − p‖2 − ‖xτ(n)+1 − p‖2|
≤ ‖xτ(n)+1 − xτ(n)‖(‖xτ(n)+1 − p‖+ ‖xτ(n)+1 − p‖)
→ 0.

Hence, |sτ(n)+1 − sτ(n)| → 0. From (3.12), for all n ≥ n0, we have

0 ≤ sn ≤ sτ(n)+1 = sτ(n) + (sτ(n)+1 − sτ(n))→ 0,

which implies that sn → 0. Consequently, we obtain sn → 0 in both cases,
that is xn → p. This completes the proof. �

Now, we have the following corollary:

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach
space, let A be an m-accretive operator in E with C = A−1(0) 6= ∅ and let

f : E −→ K = D(A) be a contractive map with the contraction coefficient
β ∈ [0, 1). Given sequences {αn}, {βn} in (0, 1] and {rn} ⊂ [ε,∞) for some
ε > 0, suppose that there hold the following conditions:

(i) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;
(ii) {αn} ⊂ [a, b], with a, b ∈ (0, 1).
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Then for any given point x0 ∈ E, the sequence {xn} generated by{
yn = αnxn + (1− αn)Jrnxn,

xn+1 = βnf(xn) + (1− βn)Jrnyn, ∀n ≥ 0,
(3.14)

converges strongly to a zero point p of A, which is a unique solution of
VI∗(I − f, C), that is

〈(I − f)p, j(p− u)〉 ≤ 0, ∀u ∈ C.

Proof. Applying Theorem 3.1 with λn = 0 or µn = 0 for all n, we get the
Corollary 3.2. �

4. Numerical test

Example 4.1. Consider the problem of finding an element

x∗ ∈ S = argminx∈R3Θ(x),

where Θ is defined by

Θ(x) = 〈Qx, x〉+ 〈B, x〉+ C, ∀x ∈ R3,

with

Q =

 1 1 −1
1 1 −1
−1 −1 1

 , B =
(
−4 −4 4

)
and C is any constant.

Since 52Θ = 2Q is positive semi-definite matrix, Θ is a convex function.
Hence, 5Θ is a maximal monotone operator in R3 and the above problem is
equivalent to the following problem:

Finding an element x∗ ∈ S = (5Θ)−1(0).
It is easy to show that

S = {(x1, x2, x3) ∈ R3 : x1 + x2 − x3 = 2}.

We can see that λn=µn=βn=
1√
n

, αn =
1

4
+

1

2
√
n

and rn = n for all n ≥ 1

satisfy all conditions in Theorem 3.1, but the conditions

∞∑
n=1

|rn+1 − rn| <∞,
∞∑
n=0

|αn+1 − αn| <∞,
∞∑
n=0

|βn+1 − βn| <∞,

∞∑
n=0

|λn+1 − λn| <∞,
∞∑
n=0

|µn+1 − µn| <∞

are not satisfied.
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Remark 4.2. The sequence {xn} generated by (3.1) converges strongly to a
zero point p of 5Θ, which is a unique solution of the following inequality

〈p− v, p− u〉 ≤ 0, ∀u ∈ C.

By the property of metric projection, we get that p = PSv = (−1, 1,−2),
where PC is the metric projection from R3 onto S.

Apply the iterative (3.1), with f(x) = v = (−2, 0,−1) and F (x) =
3

4
x(

δ =
3

4
and λ =

1

2

)
for all x ∈ R3, and x0 = (1, 0,−1), we have the following

figure of numerical results:

Figure 1. x1000 = (−0.994144, 0.960298, −1.937520)

Acknowledgments: This work is supported by Natural Science Fund of
Vietnam Ministry of Education and Training (No. B2016-TNA-26).

References
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