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Abstract. In this paper, we give sufficient conditions of the hybrid viscosity approximation
method for zeros of m-accretive operators in Banach spaces E, which is introduced by Ceng
et al. in [4] (Theorem 3.2) when E is a uniformly convex and uniformly smooth Banach

space.

1. INTRODUCTION

Let E be a real Banach space, A: D(A) — 2F an accretive operator and
J the resolvent of A. We consider the problem of finding a zero of A, that is,
find p € D(A) such that 0 € A(p).

One popular method of solving equation 0 € A(x) where A is a maximal
monotone operator in a Hilbert space H, is the proximal point algorithm.
The proximal point algorithm generates, for any starting point xo =x € F, a
sequence {z,} by the rule

Tny1 = Jp, (zp), for all n € N, (1.1)

where {r,} is a sequence of positive real numbers. Some of them dealt with the
weak convergence of the sequence {z,} generated by (1.1) and others proved
strong convergence theorems by imposing assumptions on A. Note that, this
algorithm was first introduced by Martinet [8].
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Further, Rockafellar [10] posed an open question of whether the sequence
generated by (1.1) converges strongly or not. In 1991, Giiler [6] gave an ex-
ample showing that Rockafellar’s proximal point algorithm does not converge
strongly. An example of the authors Bauschke, Matouskova and Reich [1]
also showed that the proximal algorithm only converges weakly but not in the
norm.

There are many authors who studied and extended the Rockafellar’s proxi-
mal point algorithm to find zeros of accretive operators. In 2012, Ceng et al.
introduced a new iterative method to find a zero of an m-accretive operator
[4]. They proved the following theorem:

Theorem 1.1. ([4]) Let E be a uniformly smooth Banach space, let A be an
m-accretive operator in E with C = A71(0) # 0 and let f : E — K = D(A)
be a contractive map. Assume that F : E — E is §-strongly accretive and
A-strictly pseudocontractive with 6 + X > 1. Given sequences {\,}, {pn} in
[0,1], {an}, {Bn} in (0,1] and {r,} C [g,00) for some ¢ > 0, suppose that
there hold the following conditions:

(i) limp—o0 B =0 and Y7 Bn = 00;

A
(i) Timy_yoe ~2 = 0;
n
(iii) {an} C [a,b], with a,b € (0,1);
(iv) Doz lomt1—an| <00, D707 o |Bny1—PBul <00, 3207 [Ant1—Anl < 00,
S50 ltims1 — tin] < 50 @1 5% [rst — Tl < 50,

Then for any given point xo € E, the sequence {x,} generated by

1.2
xn+1 - 5nf(xn> + (1 - ﬁn)[fjrnyn - )\n,UJnF(Jrnyn)]; VTL Z 07 ( )

converges strongly to a zero point p of A, which is a unique solution of

V(I — f,C), that is

{yn = QpTy + (1 - an)Jrnxrw

(I—=f)p.j(p—wu)) <0, VueC.

The purpose of this paper is to show that if ' is a uniformly convex and uni-
formly smooth, then the conditions i), ii) and iii) in Theorem 1.1 are sufficient
conditions to ensure the strong convergence of iterative (1.2).

2. PRELIMINARIES

Let E be a real Banach space with norm ||.|| and let E* be its dual. The
value of f € E* at x € E will be denoted by (z, f). When {z,} is a sequence
in £, then z,, — z (resp. =, — z, z, X x) will denote strong (resp. weak,
weak*) convergence of the sequence {z,} to x.
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Let J denote the normalized duality mapping from E into 27" given by
J(@)={f € E*: (z.f) = ||* = | f|*}, V& € E,

where (., .) denotes the generalized duality pairing. It is well known that if E*
is strictly convex then J is single-valued. In the sequel, we shall denote the
single-valued normalized duallity mapping by j.

We always use Sg to denote the unit sphere Sp = {x € E: ||z| = 1} and
Fiz(T) to denote the set of the fixed point of the mapping T: C C E — E,
ie., Fiz(T)={zx e C: T(z) =z}

A Banach space E is said to be strictly convex if

z,y € Sg with z # y, implies that ||(1 —t)x +ty|| < 1 for all t € (0,1).

A Banach space E is said to be uniformly convex if for any ¢ € (0,2] the
inequalities [|z]| <1, [|y|| <1, |z —y|| > € imply there exists a § = d(¢) > 0

such that || |
r+y
= 2R <L1-6.
5 <

A Banach E is said to be smooth provided the limit

-zt iyl

t—0 t
exists for each x and y in Sg. In this case, the norm of F is said to be Gateaux
differentiable. It is said to be uniformly Fréchet differentiable (and F is called
uniformly smooth) if this limit is attained uniformly for all x and y in Sg.

For an operator A : E — 2F_ we define its domain, range and graph as

follows:

D(A)={z e E: Az # 0},
R(A) =U{Az: ze€ D(A)}
and
G(A) ={(z,y) e EXE: z € D(A), y € Ax},
respectively. The inverse A~! of A is defined by
z € Ay, if and only if y € Ax.

The operator A is said to be accretive if, for each z,y € D(A), there exists
j(x —y) € J(z —y) such that (u —v,j(z —y)) > 0 for all u € Az and v € Ay.
We denote by I the identity operator on E. An accretive operator A is said
to be maximal accretive if there is no proper accretive extension of A and
m-accretive if R(I + AA) = E for all A > 0. If A is m-accretive, then it is
maximal accretive, but the converse is not true in general. If A is accretive,
then we can define, for each A > 0, a nonexpansive single-valued mapping
Jy: R(I+XA) — D(A) by

J=(T+24)7Y
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it is called the resolvent of A. An accretive A defined on a Banach space F is
said to satisfy the range condition if D(A) C R(I + AA) for all A > 0, where
D(A) denotes the closure of the domain of A. We know that for an accretive
operator A which satisfies the range condition, A=1(0) = F(Jy) for all A > 0.
It’s easy to see that if A is m-accretive operator, then A satisfies the range
condition.

Recall that a mapping F': E — F is said to be J-strongly accretive if for
each z,y € E there exists j(z —y) € J(z — y) such that

(F(a) = F(y),j(x —y)) > 8|le -y
for some 0 € (0,1). A mapping F': E — F is said to be A-strictly pseu-

docontractive [2] if for each x,y € E there exists j(x — y) € J(x — y) such
that

(F(x) = F(y),j(z =) <llz —y|* = Az —y — (F(z) - F(y))|
for some A € (0,1) and F is said to be pseudocontractive if for each z,y € F
there exists j(z —y) € J(z — y) such that

(F(z) = Fy).j(z —y)) <z —y|*.
So, if F' is a nonexpansive mapping, that is ||F(z) — F(y)|| < ||z — y|| for all
x,y € E, then F is a pseudocontractive mapping.

The following lemmas will be needed in the sequel for the proof of the main
results in this paper.

Lemma 2.1. ([3]) Let E be a real smooth Banach space and F: E — E be
a mapping. If F is §-strongly accretive and \- strictly pseudocontractive with
0+ A > 1, then for any fized number T € (0,1], I — 7F is contractive with

1-96
constant 1 — 1 (1 Vo

Lemma 2.2. ([9]) Let E be a Banach space. For every x,y € E, we have
lz +yl* < llel® +2(y, 5(z +y)),
for all j(x +y) € J(x +y).

Lemma 2.3. ([5]) Let A: D(A) C E — 2F be an accretive operator. Let
r,t > 0. If E is uniformly convex, then there exists a continuous, strictly
increasing and convex function ¢ : RT — RT with ¢(0) = 0 so that

1Tz = T2yl < o = yll* = (I = Iz = (1 = Jh)yl),
for all x,y € R(I + rA) with max{||z||, ||y]|} < t.
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Lemma 2.4. ([7]) Let {s,} be a real sequence that does not decrease at infinity,
in the sense that there exists a subsequence {sy, } so that

Sny, < Spy+1, Vk > 0.
For every n > ng define an integer sequence {T(n)} as
T(n) =max{ng <k <n: sg < Ski1}-
Then T7(n) — 0o as n — oo for all n > nyg,

max{s‘r(n)7 Sn} < Sr(n)+1-

3. MAIN RESULTS

We have the following theorem:

Theorem 3.1. Let E be a uniformly convexr and uniformly smooth Banach
space, let A be an m-accretive operator in E with C = A71(0) # 0 and let

f: E — K = D(A) be a contractive map with the contraction coefficient
B € [0,1). Assume that F : E — FE is d-strongly accretive and \-strictly
pseudocontractive with 6 + X > 1. Given sequences {\,}, {pn} in [0,1], {an},
{Bn} in (0,1] and {r,} C [g,00) for some e > 0, suppose that there hold the
following conditions:

(i) limp—o0 B =0 and Y7 Bn = 00;

A
(i) limy_yo0 2™ = 0;
n

(iii) {an} C [a,b], with a,b € (0,1);

Then for any given point xg € E, the sequence {x,} generated by

{yn = QnpTy + (1 — Oén)Jrnxna (31)

Tpp1 = Bnf(zn) + (1 = Bu)[Jrnyn — Antin F (Jr,yn)], V1 >0,

converges strongly to a zero point p of A, which is a unique solution of

V(I — f,C), that is
(I=f)p,jlp—wu)) <0, YueC.

Proof. The first, we show that {x,} is bounded. Indeed, taking a fixed u € C,
we have

lyn — ull = lanzn + (1 — an)Jr, zn — ul
= [lan(zn —u) + (1 — an)(Jr, zn — u)|
< apllzn — uH + (1 = an)[| 20 — T ul|

< lzn — ul|.



292 T. M. Tuyen

So, from Lemma 2.1, we have

[0t — ull

= 1Bnf(@n) + (1 = Bp)[Jrn¥n — AnpinF (Jr, yn)] — ul|

< Bullf(zn) —ull + (1 = B) AT — pnF) Jryn + (1 = M) Jr, Y — |
+ (1= Bn) Ml = pn F) ey yn — ull + (1 = M) | T yn — ull]
+ (1= Bp) Ml = pn )y yn — (I = pn F)ul|
+ Antin [ F ()| + (1 = Ap) | r, yn — ul]]

0= 80) o (1= (1 252) )

# Al ]+ (2= M) =
= BuBllz — ull + Bl Fu) v
0= 8| (1= i (1= 552) )W =l a0
< BuBllea — ul + Bl Fu) v
—_s\ !
= gy max {1 —al, (122 50) Ir@I
< BuBllea — ull + Bull £ ) v
—o\ !
+ 0= gmax fflen —ul (1= 152) 1Fn}
< Bl #(u) — ul
1-6

1
#- = g max o~ (11 5%) IF@I
- 1-6\"
< e { o —ull IO, (1 L) Py .
By induction, we get
1
_ 1-5

o =l < mac{ -, L9221, (1 - A) P, oo
Thus, {z,} is bounded.
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Now, let p is a unique solution of VI*(I — f, '), that is
(L= fp,j(p—u)) <0, Vu € C,
from Lemma 2.2, we have
|2n1 = 2l < (1= B)? [T yn = pII* + 280 (f(20) =, j (@011 — p))
= 2(1 = Bu) Anpin(F (Jr,yn), §(Tns1 — p))
=(1- ﬁn)2 |[Yn — p||2 + 260 (f(zn) — f(P); j(Tn+1 — D))
+ 260 (f(p) — P, j(Tn+1 — D))
= 2(1 = Bu) Anpin(F (Jr,yn), §(Tns1 — p))
< (1= 52)%lyn = pI? + BuBlzn = pI? + l2ns1 — plI?)
+ 260 (f(p) — P, j(Tn+1 — D))
+2(1 = Bu) Anpinl[F (T yn) |- |2ns1 = p-

Thus

lnss = I < 75 (1= Bl = Pl + BuBllen — i)

28,
1-— /Bn/B
2>\n#n
- Bnﬁ
By Lemma 2.3, we have
lyn *pH2 = lanzy + (1 — an)Jr, on *sz
< apl|zn — pH2 + (1 — an)[|Jrp, 20 — p”2
< apllzn — plI*> + (1 = an)llzn — pl? (3.3)
— (= an)e(llzn — Jr2nll)
<l = plI> = (1 = 0)(|zn — Jr,zal)-
From (3.2) and (3.3), we get

+ (f(p) = p,j(®n+1 —p)) (3.2)

+ IE (T yn) - |2nga = pll-

Hxn-‘rl _p||2
<155 ol + =55 U®) ~pilEn - p)
M M
T g0 T T g i — (L= B (L= D)o — Tl

where M > max{||z,, — p||%, 2||F(Jr, yn)|-|Tns1 — p||}. We have the following
inequality
Spt1 < (1 - bn)sn + bpcp — on, (34)
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M(1— n )‘n n 1 .

and
on=(1— ﬁn)Q(l = b)p(|zn — Jr,znll)-
We will show that s,, — 0 by considering two possible cases.

Case 1. {s,} is eventually decreasing, i.e., there exists Ny > 0 such that {s,}
is decreasing for n > Ny and thus {s,} must be convergent. It then follows
from (3.4) that

0<o,< (Sn - 5n+1) + bn(cn - Sn) — 0,

which implies that
X — Jr, zn|| — O. (3.5)

Now we show that

limsup(f (p) — p, j(zn —p)) <O0. (3.6)

n—oo

Indeed, puting xt, = tf(zen) + (1 — ¢)[Jr, 2t — O F(Jr,2ep)]. Then by
Theorem 3.1 in [4], x¢,, converges strongly to a unique solution of VI*(I— f, C),
as t — 0. We have

Tpp — Tp =t(f(xrpn) —xn) + (L= t)(Jp,2en — Tn) — (L — )0 F (Jr, Tt ).
So, by Lemma 2.2, we have

[zt — anQ
< (L= 2yt — zall® + 260f (2e0) = Tns 4 (@0 — 20))
= 2(1 = )0 F (Jr,Tt0), J (Tt — Tn))
<(@1- t)2(”*]rn$t,n - JrnfﬂnHQ + | Jr2n — $n||2)
+ 26(f(en) — Tem, J (B0 — Tn)) + 2t 240 — 20|
+ 204 || F (Jy, e )| |2tn — @0l
< (L+ 1)zt — @nll?
+ [ rnzn = 2n||llztn — 2ol + | T, 20 — 20 l])
+ 2t<f(xt,n) - l’t,mj(fvt,n — Tn)) + 29tHF(Jrn$t,n)H-||xt,n — Zn|l.
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It follows that
<f($t,n) - mt,n7j(mt,n - zn»

t 1
< Sllwem — J:nHQ + 5 Jrn 20 — 2l 2|20 — 20l + (| 20 — 2nl]) )
2t (3.7)

0
+ ?”F(Jrnxt,n)”-nxt,n — an].
From (3.5) and in (3.7) letting n — oo, we obtain that

lim sup(f(x¢n) — T, J(Ten — Tn))
n—oo

t . . 0
< —limsup ||zt , — anz + lim sup —tHF(Jrn:ct,n)H.me — Ty || (3.8)
2 pooco n—oo b

t 6

<=4+ =M

< (2 + t) 1s
where My = max{sup, {2 — @nl*}, sup, {| F (Jr,2ep) |- |2t — 20 [}} < 00
for all ¢t € (0,a] (see [4], Theorem 3.1). Taking the limsup as ¢ — 0 in (3.8)
and by the duality map j is norm-to-norm uniformly continuous on bounded
sets, we obtain (3.6). We have

1 = 2all < l2nt1 = Troynll + [T yn — T @nll + llan — Jr, 20|
< KB+ |lyn — znll + llzn — Jr,znll

3.9
— KB+ (1 an)lln — Jnynll + llen — Iyl (3.9)
< KBp+ (2—a)||zn — Jp,xn|| — 0,
where K = supy {[l/(en)]| + 7. gall} + F(Joy)[}. Thus,
|Znt1 — znl| = 0. (3.10)

By (3.6) and the duality map j is uniformly norm-to-norm continuous on
bounded set, we get
limsup(f(p) — p, j(zn+1 — p)) <O0. (3.11)

n—oo
Now, from (3.4), we have
Sp — 8
n < n n+1
bn
Sp = Sp+1 _

b
last inequality, we obtain tﬁat

+ cp.

Note that liminf,, ..o 0, because »_° b, = co. Thus, from the

lim s, <liminf <Sn—bSn+1 =+ cn) < lim inf Sn—bﬁ + limsup ¢, < 0.

n—00 n—00 n n—00 n n—00

So, {sn} converges to 0.
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Case 2. {s,} is not eventually decreasing. Hence, there exists a subsequence
{sn,} of {s,} such that s,, < s,, 41 for all £ > 0. By Lemma 2.4, we can

define a subsequence {s.(,)} such that

max{s;(n), Sn} < Sr(n)+1, V1 > No.
From (3.4), we have

0 < o7(n) < brwy(Crm) = S7(m) = 0,

thus o(,) — 0. By similar argument to Case 1, we get

lim sup(f(p) — paj('r‘r(n)Jrl —-p)) <0,

n—oo

or

lim sup ¢;(,,) < 0.

n—oo

By (3.13), limsup,,_, o, S7(n) < 0, thus

lim S.,.(n) =0.
n—00

In a similar to (3.9), we have
Hx‘r(n)Jrl — Tr(n) H — 0.

Thus, by {z,} is bounded, we get

|5T(n)+1 - ST(n)| = |||~"3T(n)+1 —p||2 - ||93r(n)+1 —p\|2|

(3.12)

(3.13)

< Nzrmy+1 = Tr@) lUTr )41 = Pl + |Z7()+1 — PlI)

— 0.

Hence, [s;(n)41 — Sr(n)| — 0. From (3.12), for all n > ng, we have

0<s, < Sr(n)+1 = Sr(n) + (Sr(n)Jrl - ST(n)) — 0,

which implies that s, — 0. Consequently, we obtain s,, — 0 in both cases,

that is x,, — p. This completes the proof.

Now, we have the following corollary:

g

Corollary 3.2. Let E be a uniformly conver and uniformly smooth Banach
space, let A be an m-accretive operator in E with C = A71(0) # 0 and let

f: E — K = D(A) be a contractive map with the contraction coefficient
p € 10,1). Given sequences {an}, {fn} in (0,1] and {r,} C [g,00) for some

e > 0, suppose that there hold the following conditions:

(i) limp—o0 B =0 and Y7 Bn = 00;
(i) {an} C [a,b], with a,b € (0,1).
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Then for any given point o € E, the sequence {x,} generated by

Tn+l = /an(xn) + (1 - 5n)=]rnyn7 Vn > 0,

converges strongly to a zero point p of A, which is a unique solution of
V(I — f,C), that is

n — Qndn 1- n)Jdrpdn,
{y anZy + (1 — o)y, (3.14)

(I = fp,i(p—u)) <0, Yu e C.

Proof. Applying Theorem 3.1 with A, = 0 or u, = 0 for all n, we get the
Corollary 3.2. O

4. NUMERICAL TEST
Example 4.1. Consider the problem of finding an element
z* € S = argmin,ps0(x),
where © is defined by
O(x) = (Qx,x) + (B,z) + C, Vx € R?,

with

1 1 -1

Q=11 1 -1}, B= (—4 —4 4) and C is any constant.
-1 -1 1

Since 720 = 2Q is positive semi-definite matrix, © is a convex function.
Hence, 7O is a maximal monotone operator in R3 and the above problem is
equivalent to the following problem:
Finding an element z* € S = (70)~1(0).
It is easy to show that
S ={(z1,z2,23) € R3: 21+ 20— a3 = 2}.
1 1 1

We can see that An:un:ﬂn:77 Q= 1_{_2\/7;

satisfy all conditions in Theorem 3.1, but the conditions

and r, =nforalln>1

) [eS) 9
Z ‘rn—l—l - Tn’ < 00, Z |an+1 - an‘ < 00, Z ’Bn—i—l - /Bn‘ < 00,
n=1 n=0 n=0

(0.) o
Z\)\nﬂ—/\n! < o9, Z|Un+1_,un‘ <0
n=0 n=0

are not satisfied.
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Remark 4.2. The sequence {z,} generated by (3.1) converges strongly to a
zero point p of 7O, which is a unique solution of the following inequality

(p—v,p—u) <0, YueC.
By the property of metric projection, we get that p = Psv = (—1,1,-2),
where Pg is the metric projection from R? onto S.

Apply the iterative (3.1), with f(z) = v = (-2,0,—-1) and F(z) = Zm

1
<5 = % and A = 2) for all z € R?, and 2° = (1,0, —1), we have the following

figure of numerical results:

- | -
|- : h

osko S ......... S ........ ........ R R :

xn

ask- ........ ........ ......... ........ ......... ........ ....... _

—_— .
T e — : :
— - e e

1 | 1 i 1 1 1 i
0 100 200 300 400 500 GO vOooo 800 900 1000
Murnber of interations

FIGURE 1. 209 = (—0.994144, 0.960298, —1.937520)
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