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Abstract. We investigate an optimal treatment strategies with mathematical population

model of HIV-1 infection dynamics. We establish the existence of an optimal control for this

model and provide necessary conditions for the optimal treatment. Pontryagin’s maximum

principle is used to characterize these optimal controls, and the optimality system is derived.

The optimal treatment strategy is obtained by solving the corresponding optimality system

numerically. For the numerical simulation, we propose a new algorithm based on the Euler

forward and backward difference approximation.

1. Introduction

Several drugs that substantially decrease morbidity and mortality in HIV-
infected patients have been developed in the last few years. A number of
researchers have searched for optimal treatment strategies that can decrease
virus mutations, pharmaceutical side effects, and complex and expensive med-
ication burdens. The structured model of HIV-1 dynamics has three state
variables: T (t) which represents the number of uninfected CD4+T cells at
time t; T ∗(t) which represents the number of infected CD4+T cells at time t;
and V (t) which represents the number of virus particles at time t. The main
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target cell of HIV is the CD4+T helper cells. Now, we here introduce the con-
trol term η represents the effectiveness of the reverse transcriptase inhibitors
(RTI), which block new infection. Hence, the equation become as follows,

dT

dt
= λ− dT (t) + rT (t)

(
1− T (t)

K

)
− (1− η)βT (t)V (t)

1 + αT
,

dT ∗

dt
=

(1− η)βT (t− τ)V (t− τ)

1 + αT
− δT ∗(t),

dV

dt
= NδT ∗(t)− cV (t). (1.1)

λ represents the rate at which new T cells are created from sources, r is the
maximum proliferation rate of target cells. K is the T cell population density
at which proliferation shuts off. Parameter d and δ are death rate of the T
cells and infective cells (T ∗), βT (t)V (t) is the incidence of HIV-1 infection
for CD4+T cells, each infected CD4+T cell is assumed to be produce N
virus particles during its life time, including any of its daughter cells and c
is the clearance rate constant of virions. α is the parameter that measure
the inhibitory effect and the intracellular delay, τ represents the time needed
for infected cells to produce virions after viral entry. Thus the infection rate,
β, is reduced to (1 − η)β, where 0 ≤ ηmin ≤ η ≤ ηmax < 1. Here ηmin and
ηmax represent minimal and maximal drug efficacy, respectively. when τ > 0,
the solution of the system (1.1) are defined in [1, 2] by the following initial
conditions:

T (θ) = φ1(θ), T ∗(θ) = φ2(θ), V (θ) = φ3(θ);

φ1(θ) ≥ 0, φ2(θ) ≥ 0, φ3(θ) ≥ 0, θ ∈ [−τ, 0]. (1.2)

System (1.1) has to be analyzed with the initial conditions φ = (φ1, φ2, φ3)
defined in the space C+

Ω = {φ ∈ C([−τ, 0],R3
+) : φ1(θ) = T (θ), φ2(θ) =

T ∗(θ), φ3(θ) = V (θ)}, where T (θ) > 0, T ∗(θ) > 0, V (θ) > 0, θ ∈ C([−τ, 0],R3
+);

is the Banach space of continuous functions and is a mapping from [−τ, 0] to
R3

+, where
R3

+ = {(T, T ∗, V ) : T, T ∗, V > 0}.
It can be shown that all solutions of the system (1.1) in C+

Ω . Thus, C+
Ω is

positively invariant and it is sufficient to consider solutions in C+
Ω . From [3]

standard existence and uniqueness results hold for system (1.1) in C+
Ω .

2. An optimal control problem

In this section, we formulate an optimal control problem together with
HIV-1 infection model (1.1) to derive the optimal treatment strategies. We
minimize not only the virus population but also the systemic cost of drug
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treatment. The cost of the treatment comes from both the actual treatment
cost and the severity of the unintended side effects of the drugs. Therefore,
our main objective is to optimize the functional as follows,

max J(η) =

tf∫
0

(
T (t) + V (t)−

(
Bη
2

[η(t)]2
))

dt, (2.1)

where Bη is the weight constants to balance the quantity of virus particles
and the control function, our control function η represents the drug (RTI)
effectiveness satisfying 0 ≤ ηmin ≤ η ≤ ηmax < 1. The control class is chosen
to be the measurable functions defined on [0, tf ], with the initial condition
0 ≤ ηmin ≤ η ≤ ηmax < 1. In other words, we are seeking optimal control η∗

such that

max J(η∗) = max {J(η) : η is Lebesque-integrable on [0, tf ] with values

∈W = [ηmin, ηmax]}

2.1. Existence of an optimal control. The approach to solve an optimal
control problem is to first prove the existence of an optimal control and then
characterize the optimal control by using the optimality system. We now prove
that there exists an optimal control that minimizes the objective functional
(2.1) subject to the HIV-1 dynamical model. The existence of an optimal
control can be obtained by using a result from Fleming and Rishel [4] and by
Lukes in [5].

Theorem 2.1. There exists an optimal control η∗ ∈W such that

J(η∗) = max
η∈W

J(η). (2.2)

According to [4], the solution exists if the following hypotheses are met:

(1) The set of controls and corresponding state variables is non-empty.
(2) The admissible control set W is closed and convex.
(3) The right-hand side of the state system is bounded by a linear combi-

nation of the state and control variables.
(4) There exists constants h1, h2 > 0 and β > 1 such that the integrand

L(T, T ∗, V, η) of the objective functional satisfies

L(T, T ∗, V, η) ≤ h2 − h1(|η|2),

of the objective functional is a concave on W .

Proof. In order to verify the conditions, we should first prove the existence
of the solution for the system (1.1), Since βT

1+αT < β and by neglecting the
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negative terms in the model, we have

dT (t)

dt
< λ+ rT,

dT ∗(t)

dt
< (1− η)βV (t− τ),

dV (t)

dt
< NδT ∗. (2.3)

System (2.3), can be written in the matrix form as follows,

 T (t)
T ∗(t)
V (t)

′ <
r 0 0

0 0 0
0 Nδ 0

 T (t)
T ∗(t)
V (t)

+

0 0 0
0 0 (1− η)β
0 0 0

 T (t− τ)
T ∗(t− τ)
V (t− τ)

 , (2.4)

where ′ = d
dt . This system is linear in finite time with bounded coefficients.

Then the solutions of this linear system are uniformly bounded. Therefore,
the solution of the non-linear system (2.1) is bounded and exists by [5]. Hence
the condition (1) is satisfied.

Secondly, we note that W is closed and convex by definition. For the third
condition, the right hand side of system (1.1) is continuous, since the denom-
inators of all fractions from the right hand side of this system consist solely
of positive entities. Note that the integrand of our objective functional is
concave. Also we have the last condition needed

L(T, T ∗, V, η) ≤ h2 − h1(|η|2),

where h2 depends on the upper bound on T and V and h1 > 0 since Bη > 0.
This completes the proof. �

2.2. Optimality conditions. In this section, we establish the necessary con-
ditions for the optimal solution of the optimization problem (1.1), we use
Pontrygian’s minimum (maximum) principle is derived by

H = T (t) + V (t)−
(
Bη
2

[η(t)]2
)

+ λ1
dT (t)

dt
+ λ2

dT ∗(t)

dt
+ λ3

dV (t)

dt
(2.5)

and λi, i = (1, 2, 3) are the adjoint variables that satisfy

λ′1(t) = −∂H
∂T

(t)− χ[0,tf−τ ](t)
∂H

∂Tτ
(t+ τ); λ1(tf ) = 0,

λ′2(t) = − ∂H
∂T ∗

(t); λ2(tf ) = 0,

λ′3(t) = −∂H
∂V

(t)− χ[0,tf−τ ](t)
∂H

∂Vτ
(t+ τ); λ3(tf ) = 0. (2.6)

Here χ[0,tf−τ ] denotes the indicator function of the interval [0, tf − τ ] and
defined by

χ[0,tf−τ ] =

{
1, t ∈ [0, tf − τ ],
0, otherwise.

(2.7)
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To minimize the Hamiltonian functional, the Pontryagian’s minimum principle
[6] is used. Thus, we arrive at the following theorem.

Theorem 2.2. Given an optimal control η∗ and solutions of the corresponding
state system (1.1), there exist adjoint variable λi for i = 1, 2, 3 satisfy the
following:

λ′1(t) = −
(

1 + λ1

(
−d+ r − 2rT ∗

K
− (1− η)βV ∗

(1 + αT ∗)2

)
+λ2(t+ τ)χ[0,tf−τ ]

(1− η)βV ∗

(1 + αT ∗)2

)
,

λ′2(t) = − (λ2(−δ) + λ3(Nδ)) ,

λ′3(t) = −
(

1+λ1
(1−η)βT ∗

(1+αT ∗)
+λ3(−V )+λ2(t+τ)χ[0,tf−τ ]

(1−η)βT ∗

(1+αT ∗)

)
(2.8)

with transversality conditions

λi(tf ) = 0; i = 1, 2, 3. (2.9)

and the optimal control

η∗ = min

(
1,max

(
0,

1

Bη

(
λ1

βT ∗V ∗

1 + αT ∗
− λ2

βT ∗(t−τ)V ∗(t−τ)

1+αT ∗(t−τ)

)))
. (2.10)

Proof. The optimal control η∗ can be solved from the optimality condition(
∂H
∂η (t)

)
= 0, By using the handedness of the control set W , it is easy to

obtain η∗ is in the form of (2.10). �

3. Numerical calculations

In this section, we give a numerical method to solve the optimality system
(2.8), (2.9) and (2.10) are present the results. The optimal system is solved
numerically and the results are presented graphically. Our findings leading to
the approximation of the optimal controls (2.8-2.10) are carried out using the
forward Euler method for the state system and backward difference approx-
imation for the adjoint system. We assume that the step size h, such that
τ = mh and tf − t0 = nh, where (m, b) ∈ N2. We define the state, adjoint and
control variables at the mesh points. An initial guess is given for the control
η which is then updated continuously untill the objective functional satisfies
the conditions. However, there are several major problems to overcome when
solving delay differential equations.

The different variables (cell populations and control functions) in the ob-
jective functional given in (2.1) have different scales. Hence they are balanced
by choosing weight constants Bη = 1 and 2 in the objective functional given
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in (2.1). The numerical results for the optimal problem are obtained by using
the parameter values given in Table 1 ([7]).

By using the Theorem 2.2, for τ = 3, the state equation (1.1) as follows:

dT

dt
= 5− 0.01T (t) + 0.5T (t)

(
1− T (t)

1200

)
− (1− η)0.0002T (t)V (t)

1 + 0.01T
,

dT ∗

dt
=

(1− η)0.0002T (t− τ)V (t− τ)

1 + 0.01T
− 1T ∗(t),

dV

dt
= 800T ∗(t)− 5V (t), (3.1)

and using the parameter values from Table I, we obtain the optimal control
variable η = 0.5 was followed from (2.10).

Table I. Parameters and Values
Parameter Units Scaling values

λ day−1mm−3 5
d day−1 0.01
r day−1 0.5
K mm3day−1 1200
β mm−3 0.0002
δ day−1 1
N mm3day−1 800
c day−1 5
τ day−1 3

The graph from simulating the model, given below, help to compare the
uninfected cells, the infected cells, and the viral load for using with no control
and minimal level of control variables with the help of weight factor constants.
Each control strategy can be calculated within 10 days.
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Figs: From figure (1)-(3) shows the simulation of the system (2.8)-(2.10) with RTI,

using these initial conditions T (0) = 30, T ∗(0) = 400, V (0) = 600, with Bη = 1 for

τ = 3.

Using the Table I values, we have noticed that the growth of uninfected cell
decreased to a large level. In order to determine, under what level of control
variable, the target cell of CD4+T cell has not to be infected may shown from
the following figures. From the above figures (1)-(3) represent with using no
control variable, since the growth of uninfected cell is decreasing the large level.
For using the small level of control variable, the growth of the uninfected cells
maintained a level of the growth. It may shown from the following figures.
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Figs: Figure (4)-(6) shows the simulation of the system (2.8)-(2.10) with RTI, us-

ing these initial conditions T (0) = 30, T ∗(0) = 400, V (0) = 600, withBη = 1 for τ = 3.

From the figures (4)-(6), we noticed that the small level of desirable con-
trol variable η = 0.5 can be easily control the growth rate of uninfected cells,
infected cells and minimize the viral load. Based on the above simulation, we
showed that small level of treatments, the CD4+T population grows signifi-
cantly which improves the quality of life of the patient.

4. Conclusion

Firstly, we given a delay mathematical model with control that describe
HIV infection of CD4+T cells during therapy. Hence, we presented an optimal
therapy in order to minimize the cost of treatment, reduce the viral load, and
improve immune response. For the comparison study of both without control
and with control, the small level of control may lead to block new infection
and prevent viral production by using drug therapy with minimum side effects.
Our numerical results show that the optimal treatment strategies reduce viral
load and increase the uninfected CD4+T cell count after two days of therapy
intervention.
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[6] L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and
control variables subject to mixed control-state constraints, Opt. Cont. Appl. & Meth.,
30 (2009), 341–365.

[7] X. Zhou, X. Song and X. Shi, A differential equation model of HIV infection of CD4+T
cells with cure rate, J. Math. Anal. Appl., 342 (2008), 1342–1355.


