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Abstract. In this paper, we prove some fixed point theorems for contractive type conditions

in the setting of complex valued b-metric spaces. Our results extend and generalize some

previous works from the existing literature.

1. Introduction

Fixed point theory plays a very significant role in the development of non-
linear analysis. In this area, the first important result was proved by Banach in
1922 for contraction mapping in complete metric space, known as the Banach
contraction principle [4].

There are many generalizations of the Banach contraction principle specially
in metric spaces, for example, b-metric space, cone metric space, rectangular
metric space, cone rectangular metric space, rectangular b-metric space, cone
b-metric space etc (see, [1, 3, 5, 6, 7, 8, 9, 10]).

In 1989, Bakhtin [3] introduced the concept of b-metric space as a gen-
eralization of metric spaces. He proved the contraction mapping principle
in b-metric spaces that generalized the famous contraction principle in met-
ric spaces. Czerwik used the concept of b-metric space and generalized the
renowned Banach fixed point theorem in b-metric spaces (see, [6, 7]).

In 2011, Azam et al. [2] introduced the concept of complex valued met-
ric space and established some fixed point results for mappings satisfying a
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rational inequality. Complex-valued metric space is useful in many branches
of mathematics, including algebraic geometry, number theory, applied mathe-
matics; as well as in physics, including hydrodynamics, thermodynamics, me-
chanical engineering and electrical engineering, for some details, see ([13, 14]).

Recently, Rao et al. [12] introduced the concept of complex valued b-metric
space which is more general than the notion of well known complex valued
metric space and proved some common fixed point results.

In this paper, we establish some fixed point theorems for contractive type
conditions in the framework of complex valued b-metric spaces.

2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It follows that
z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii), or (iii) is
satisfied and we will write z1 ≺ z2 if only (iii) is satisfied. Notice that

(c1) 0 . z1 � z2 ⇒ |z1| < |z2|,
(c2) z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3,
(c3) If a, b ∈ R and a ≤ b then az - bz for all z ∈ C.

The following definition is recently introduced by Rao et al. [12].

Definition 2.1. ([12]) Let X be a nonempty set and let s ≥ 1 be a given
real number. A function d : X ×X → C is called a complex valued b-metric
(CVbM) if the following conditions are satisfied:

(CV bM1) 0 - d(x, y) and d(x, y) = 0 ⇔ x = y for all x, y ∈ X;
(CV bM2) d(x, y) = d(y, x) for all x, y ∈ X;
(CV bM3) d(x, y) - s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

The pair (X, d) is called a complex valued b-metric space.

Example 2.2. ([12]) Let X = [0, 1]. Define the mapping d : X ×X → C by
d(x, y) = |x− y|2 + i|x− y|2 for all x, y ∈ X. Then (X, d) is a complex valued
b-metric space with s = 2.

Definition 2.3. Let (X, d) be a complex valued b-metric space.
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(1) A point x ∈ X is called an interior point of a subset A ⊆ X whenever
there exists 0 ≺ r ∈ C such that B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

(2) A point x ∈ X is called a limit of A whenever for every 0 ≺ r ∈ C
such that B(x, r) ∩

(
A− {x}

)
6= ∅.

(3) The set A is called open whenever each element of A is an interior
point of A. A subset B is called closed whenever each limit point of
B belongs to B.

(4) A sub-basis for a Hausdorff topology τ on X is a family F := {B(x, r) :
x ∈ X, 0 ≺ r}.

Definition 2.4. ([12]) Let (X, d) be a complex valued b-metric space. Let
{xn} be a sequence in X and x ∈ X. Then

(i) {xn} is called convergent, if for every c ∈ C, with 0 ≺ c there exists
n0 ∈ N such that for all n > n0, d(xn, x) ≺ c. Also, {xn} converges to
x (written as, xn → x or limn→∞ xn = x) and x is the limit of {xn}.

(ii) {xn} is called a Cauchy sequence in X, if for every c ∈ C, with 0 ≺ c
there exists n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c. If every
Cauchy sequence converges in X, then X is called a complete complex
valued b-metric space.

Lemma 2.5. ([12]) Let (X, d) be a complex valued b-metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if limn→∞ |d(xn, x)|
= 0.

Lemma 2.6. ([12]) Let (X, d) be a complex valued b-metric space and let
{xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if
limn→∞ |d(xn, xn+m)| = 0.

3. Main results

In this section we shall prove some fixed point theorems for contractive type
conditions in the framework of complex valued b-metric spaces.

Theorem 3.1. Let (X, d) be a complete complex valued b-metric space with the
coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies the condition:

d(Tx, Ty) - β max
{
d(x, y),

d(x, Tx), d(y, Ty)

1 + d(x, y)
,
d(x, Tx), d(y, Ty)

1 + d(Tx, Ty)

}
(3.1)

for all x, y ∈ X, where β ∈ [0, 1) is a constant with sβ < 1. Then T has a
unique fixed point in X.
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Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where
xn = Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (3.1), we have

d(xn, xn+1) = d(Txn−1, Txn)

- β max
{
d(xn−1, xn),

d(xn−1, Txn−1), d(xn, Txn)

1 + d(xn−1, xn)
,

d(xn−1, Txn−1), d(xn, Txn)

1 + d(Txn−1, Txn)

}
= β max

{
d(xn−1, xn),

d(xn−1, xn), d(xn, xn+1)

1 + d(xn−1, xn)
,

d(xn−1, xn), d(xn, xn+1)

1 + d(xn, xn+1)

}
- β max

{
d(xn−1, xn), d(xn, xn+1)

}
. (3.2)

If max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1), then from (3.2), we have

d(xn, xn+1) - β d(xn, xn+1)

≺ 1

s
d(xn, xn+1)

≺ d(xn, xn+1), (3.3)

which is a contradiction. Hence

max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn−1, xn),

so from (3.2), we have

d(xn, xn+1) - β d(xn−1, xn). (3.4)

By induction, we have

d(xn, xn+1) - β d(xn−1, xn) - β2 d(xn−2, xn−1) - · · ·
- βn d(x0, x1). (3.5)

Let m,n ≥ 1 and m > n, we have

d(xn, xm) - s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

- sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)
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- sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

- [sβn + s2βn+1 + s3βn+2 + · · ·+ smβn+m−1]d(x1, x0)

= sβn[1 + sβ + s2β2 + s3β3 + · · ·+ (sβ)m−1]d(x1, x0)

-
[ sβn

1− sβ

]
d(x1, x0)

and so

|d(xn, xm)| ≤
[ sβn

1− sβ

]
|d(x1, x0)| → 0 as m,n→∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there
exists u ∈ X such that xn → u as n → ∞. It follows that u = Tu, otherwise
d(u, Tu) = z > 0 and we would then have

z - sd(u, xn+1) + sd(xn+1, Tu)

= sd(u, xn+1) + sd(Tu, Txn)

- sd(u, xn+1) + sβ max
{
d(u, xn),

d(u, Tu), d(xn, Txn)

1 + d(u, xn)
,

d(u, Tu), d(xn, Txn)

1 + d(Tu, Txn)

}
= sd(u, xn+1) + sβ max

{
d(u, xn),

d(u, Tu), d(xn, xn+1)

1 + d(u, xn)
,

d(u, Tu), d(xn, xn+1)

1 + d(Tu, xn+1)

}
.

This implies that

|z| ≤ s|d(u, xn+1)|+ sβ max
{
|d(u, xn)|, |z|, |d(xn, xn+1)|

1 + |d(u, xn)|
,

|z|, |d(xn, xn+1)|
1 + |d(Tu, xn+1)|

}
.

Letting n→∞, it follows that

|z| ≤ 0,

which is a contradiction and so |z| = 0, that is, u = Tu.
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To prove the uniqueness of fixed point of T , assume that u∗ is another fixed
point of T , that is, Tu∗ = u∗ such that u 6= u∗. Then

d(u, u∗) = d(Tu, Tu∗)

- β max
{
d(u, u∗),

d(u, Tu), d(u∗, Tu∗)

1 + d(u, u∗)
,
d(u, Tu), d(u∗, Tu∗)

1 + d(Tu, Tu∗)

}
= β max

{
d(u, u∗),

d(u, u), d(u∗, u∗)

1 + d(u, u∗)
,
d(u, u), d(u∗, u∗)

1 + d(u, u∗)

}
= β max

{
d(u, u∗), 0, 0

}
- β d(u, u∗),

so that |d(u, u∗)| ≤ β |d(u, u∗)| < |d(u, u∗)|, since 0 < β < 1, which is a
contradiction and hence d(u, u∗) = 0. Thus u = u∗. This shows the uniqueness
of fixed point of T . This completes the proof. �

If max
{
d(x, y), d(x,Tx),d(y,Ty)1+d(x,y) , d(x,Tx),d(y,Ty)1+d(Tx,Ty)

}
= d(x, y), then from Theorem

3.1, we have the following result as corollary.

Corollary 3.2. Let (X, d) be a complete complex valued b-metric space (CVbMS)
with the coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies:

d(Tx, Ty) - β d(x, y)

for all x, y ∈ X, where β ∈ [0, 1) is a constant with sβ < 1. Then T has a
unique fixed point in X.

Remark 3.3. Corollary 3.2 extends well known Banach contraction principle
from complete metric space to that setting of complete complex valued b-
metric space considered in this paper.

Corollary 3.4. Let (X, d) be a complete complex valued b-metric space (CVbMS)
with the coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies (for
fixed n):

d(Tnx, Tny) - β max
{
d(x, y),

d(x, Tnx), d(y, Tny)

1 + d(x, y)
,
d(x, Tnx), d(y, Tny)

1 + d(Tnx, Tny)

}
for all x, y ∈ X, where β ∈ [0, 1) is a constant with sβ < 1. Then T has a
unique fixed point in X.
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Proof. By Theorem 3.1, there exists q ∈ X such that Tnq = q. Then

d(Tq, q) = d(TTnq, Tnq) = d(TnTq, Tnq)

- β max
{
d(Tq, q),

d(Tq, TnTq), d(q, Tnq)

1 + d(Tq, q)
,
d(Tq, TnTq), d(q, Tnq)

1 + d(TnTq, Tnq)

}
= β max

{
d(Tq, q),

d(Tq, TTnq), d(q, Tnq)

1 + d(Tq, q)
,
d(Tq, TTnq), d(q, Tnq)

1 + d(TTnq, Tnq)

}
= β max

{
d(Tq, q),

d(Tq, Tq), d(q, q)

1 + d(Tq, q)
,
d(Tq, Tq), d(q, q)

1 + d(Tq, q)

}
= β max

{
d(Tq, q), 0, 0

}
- β d(Tq, q)

so that |d(Tq, q)| ≤ β |d(Tq, q)| < |d(Tq, q)|, since 0 < β < 1, which is a
contradiction and hence d(Tq, q) = 0. Thus Tq = q. This shows that T has a
unique fixed point in X. This completes the proof. �

Theorem 3.5. Let (X, d) be a complete complex valued b-metric space with the
coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies the condition:

d(Tx, Ty) - α1 d(x, y) + α2 d(x, Tx) + α3 d(y, Ty) (3.6)

for all x, y ∈ X, where α1, α2, α3 ∈ [0, 1) are constants with sα1+sα2+α3 < 1.
Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be any arbitrary point. We define the iterative sequence
{xn} such that xn = Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From
(3.6), we have

d(xn, xn+1) = d(Txn−1, Txn)

- α1 d(xn−1, xn) + α2 d(xn−1, Txn−1) + α3 d(xn, Txn)

= α1 d(xn−1, xn) + α2 d(xn−1, xn) + α3 d(xn, xn+1)

= (α1 + α2) d(xn−1, xn) + α3 d(xn, xn+1). (3.7)

This implies that

d(xn, xn+1) -
(α1 + α2

1− α3

)
d(xn−1, xn)

= θ d(xn−1, xn), (3.8)

where θ =
(
α1+α2
1−α3

)
. As sα1+sα2+α3 < 1, this implies that θ =

(
α1+α2
1−α3

)
< 1

s ,

that is, 0 < sθ < 1. By induction, we have

d(xn+1, xn+2) - θ d(xn, xn+1) - · · · - θn+1d(x0, x1). (3.9)
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Let m,n ≥ 1 and m > n, we have

d(xn, xm) - s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

- sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

- sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

- [sθn + s2θn+1 + s3θn+2 + · · ·+ smθn+m−1]d(x1, x0)

= sθn[1 + sθ + s2θ2 + s3θ3 + · · ·+ (sθ)m−1]d(x1, x0)

-
[ sθn

1− sθ

]
d(x1, x0).

and so

|d(xn, xm)| ≤
[ sθn

1− sθ

]
|d(x1, x0)| → 0 as m,n→∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there
exists v ∈ X such that xn → v as n → ∞. It follows that v = Tv, otherwise
d(v, Tv) = z > 0 and we would then have

z - sd(v, xn+1) + sd(xn+1, T v)

= sd(v, xn+1) + sd(Tv, Txn)

- sd(v, xn+1) + α1 d(v, xn) + α2 d(v, Tv) + α3 d(xn, Txn)

= sd(v, xn+1) + α1 d(v, xn) + α2 d(v, Tv) + α3 d(xn, xn+1).

This implies that

|z| ≤ s|d(v, xn+1)|+ α1 |d(v, xn)|+ α2 |z|+ α3 |d(xn, xn+1)|.

Letting n→∞, it follows that

|z| ≤ α2 |z|
≤ (sα1 + sα2 + α3)|z|
< |z|,

which is a contradiction and so |z| = 0, that is, v = Tv.
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To prove the uniqueness of fixed point of T , assume that v1 is another fixed
point of T , that is, Tv1 = v1 such that v 6= v1. Then

d(v, v1) = d(Tv, Tv1)

- α1 d(v, v1) + α2 d(v, Tv) + α3 d(v1, T v1)

= α1 d(v, v1) + α2 d(v, v) + α3 d(v1, v1)

= α1 d(v, v1)

so that |d(v, v1)| ≤ α1 |d(v, v1)| < |d(v, v1)|, since 0 < α1 < 1, which is a
contradiction and hence d(v, v1) = 0. Thus v = v1. This shows that T has a
unique fixed point in X. This completes the proof. �

Corollary 3.6. Let (X, d) be a complete complex valued b-metric space (CVbMS)
with the coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies (for
fixed n):

d(Tnx, Tny) - α1 d(x, y) + α2 d(x, Tnx) + α3 d(y, Tny)

for all x, y ∈ X, where α1, α2, α3 ∈ [0, 1) are constants with sα1+sα2+α3 < 1.
Then T has a unique fixed point in X.

Proof. By Theorem 3.5, there exists w ∈ X such that Tnw = w. The rest of
the proof follows from Corollary 3.4. This completes the proof. �

If we put α1 = 0 and α2 = α3 = λ in Theorem 3.5, then we have the
following result as corollary.

Corollary 3.7. Let (X, d) be a complete complex valued b-metric space (CVbMS)
with the coefficient s ≥ 1. Suppose that the mapping T : X → X satisfies:

d(Tx, Ty) - λ [d(x, Tx) + d(y, Ty)]

for all x, y ∈ X, where λ ∈ [0, 1) is a constant with λ < 1
s+1 . Then T has a

unique fixed point in X.

Remark 3.8. Corollary 3.7 extends Kannan contraction [11] from complete
metric space to that setting of complete complex valued b-metric space con-
sidered in this paper.

Finally, we give examples in support of Theorem 3.1 and 3.5.

Example 3.9. Let X = {0, 12 , 2} and partial order ′ -′ is defined as x - y iff
x ≥ y. Let the complex valued b-metric be given as

d(x, y) = |x− y|2(1 + i) for x, y ∈ X.
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Let s = 2 and T : X → X be defined as follows:

T (0) = 0, T (
1

2
) = 0, T (2) =

1

2
.

Case I. Take x = 1
2 , y = 0, T (0) = 0 and T (12) = 0 in Theorem 3.1, then we

have

d(Tx, Ty) = 0 ≤ β max
{1 + i

4
, 0, 0

}
= β.

1 + i

4
.

This implies that β ≥ 0. If we take 0 < β < 1
2 , we get 0 < sβ < 1, then all

the conditions of Theorem 3.1 are satisfied and of course 0 is the unique fixed
point of T .

Case II. Take x = 2, y = 1
2 , T (2) = 1

2 and T (12) = 0 in Theorem 3.1, then we
have

d(Tx, Ty) =
1 + i

4
≤ β max

{9(1 + i)

4
,
81 + 117i

500
,
36 + 45i

82

}
= β.

9(1 + i)

4
.

This implies that β ≥ 1
9 . If we take 1

9 ≤ β < 1
2 , we get 0 < sβ < 1, then all

the conditions of Theorem 3.1 are satisfied and of course 0 is the unique fixed
point of T .

Case III. Take x = 2, y = 0, T (2) = 1
2 and T (0) = 0 in Theorem 3.1, then

we have

d(Tx, Ty) =
1 + i

4
≤ β max

{
4(1 + i), 0, 0

}
= β.4(1 + i).

This implies that β ≥ 1
16 . If we take 1

16 ≤ β < 1
2 , we get 0 < sβ < 1, then all

the conditions of Theorem 3.1 are satisfied and of course 0 is the unique fixed
point of T .

Example 3.10. Let X = {0, 12 , 2} and partial order ′ -′ is defined as x - y
iff x ≥ y. Let the complex valued b-metric be given as

d(x, y) = |x− y|2(1 + i) for x, y ∈ X.
Let s = 2 and T : X → X be defined as follows:

T (0) = 0, T (
1

2
) = 0, T (2) =

1

2
.

Case I. Take x = 1
2 , y = 0, T (0) = 0 and T (12) = 0 in Theorem 3.5, then we

have

d(Tx, Ty) = 0 ≤ α1.
1 + i

4
+ α2.

1 + i

4
+ α3.0.

This implies that α1 + α2 ≥ 0. If we take α1 = α2 = 1
7 , and 0 ≤ α3 ≤ 2

7 , then
all the conditions of Theorem 3.5 are satisfied and of course 0 is the unique
fixed point of T .
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Case II. Take x = 2, y = 1
2 , T (2) = 1

2 and T (12) = 0 in Theorem 3.5, then we
have

d(Tx, Ty) =
1 + i

4
≤ α1.

9(1 + i)

4
+ α2.

9(1 + i)

4
+ α3.

1 + i

4
.

This implies that 9α1 + 9α2 + α3 ≥ 1. If we take α1 = α2 = α3 = 1
18 , then all

the conditions of Theorem 3.5 are satisfied and of course 0 is the unique fixed
point of T .

Case III. Take x = 2, y = 0, T (2) = 1
2 and T (0) = 0 in Theorem 3.5, then

we have

d(Tx, Ty) =
1 + i

4
≤ α1.4(1 + i) + α2.

9(1 + i)

4
+ α3.0.

This implies that 16α1 + 9α2 ≥ 1. If we take α1 = α2 = 1
24 , and 0 ≤ α3 ≤ 19

24 ,
then all the conditions of Theorem 3.5 are satisfied and of course 0 is the
unique fixed point of T .

4. Conclusion

In this paper, we prove some fixed point theorems for contractive type
conditions in the setting of complex-valued b-metric spaces and give some
examples in support of our results. Our results extend and generalize several
results from the current existing literature.
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