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Abstract. In this paper, the concept of generalized vector B-variational inequality problems
are introduced and are studied their existence theorems. The concept of pre b-n-invex func-
tion and generalized T-(n, 0, p)-B-invex are introduced and are used to prove the existence

theorems of generalized vector B-variational inequality problems.

1. INTRODUCTION

In 1964, the variational inequality problem (VIP) was introduced by Stam-
pacchia [13]. To develop the VIP in vector spaces, Gianessi ([10], 1980) has
introduced the vector variational inequality problems and has studied its ex-
istence theorems in finite dimensional vector spaces R"™. The theory of vari-
ational inequalities is applied to study various types of problems arises in
physical sciences, engineering branches, economics, optimization etc. The vari-
ational inequality problems studied by Stampacchia [13] is defined as follows.
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Let K be nonempty closed and convex subset of a reflexive real Banach
space X with dual X* and T : K — X* a nonlinear map. Let the value of
f € X* at x € X be denoted by (f,z). The Variational Inequality Problem
(VIP) is to:

find zg € K such that for all x € K,

(T'(x0),x — x0) > 0. (VIP)

Earlier convexity property of a function has played an important role to study
various types of results in optimization theory. Many significant results have
been derived under convexity assumption. In 1981, Hanson [11] used the
concept of generalized convex function as invex function in the place of convex
and concave as follows: the differentiable function f from R™ to R is invex if
there exists a vector valued function n(z,u) € R" such that

f(@) = f(u) > V' f(u)(n(z,w))

for all x,u € R", where V’f(u) stands for the transpose of the gradient of f
at u € R". But later Craven [6] coined the name as invex (invariant convex)
function if any function f is satisfying the above equation and studied many
duality theorems for functional programs using the functions. In 1988, Weir
and Mond [14] have introduced the concept of n-invex set, pre-invex functions
and have studied the multiple objective optimization problems. Inspired by
the work of Hanson [11], the researchers have defined generalized variational
inequalities replacing x — y by n(z,y) and have shown various useful existence
theorems.

1.1. Definition of the Problems. For simplicity, we recall the following
terminologies given by Behera and Das [3]. Let (Y, P) be an ordered topo-
logical vector space equipped with a closed convex pointed cone P such that
intP # @. Let y € Y. Then

(a) y ¢ —intP if and only if y >p 0;

)
) y ¢ intP if and only if y <p 0;
d) y € —intP if and only if y <p 0;
) y—2z¢ —intP if and only if y — 2 >p 0 (i.e., y >p 2);
) y—z¢intP if and only if y — 2 <p 0 (i.e., y <p 2);

(9) y—2z ¢ (—intPJintP) if and only if y — 2 =p 0, (i.e., y =p 2).
Throughout this paper, the domain and functions are defined as follows. Let
X be a topological vector space, K be any subset of X and (Y, P) be an
ordered topological vector space equipped with a closed convex pointed cone
P such that intP # &. Let L(X,Y") be the set of continuous linear functionals
from X toY andn: K x K — X and 0 : K x K — Y be the vector valued
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functions. Let T': K — L(X,Y) be any operator. Let p € R be any real
number.
We consider the following generalized vector variational inequalities.

(i) The generalized primal vector variational inequality problems is to:
find w € K such that for all x € K,

(T(u),n(x,u)) + pb(x,u) ¢ —intP. (GPVVIP)

(ii) The generalized dual vector variational inequality problems is to:
find u € K such that for all x € K,

(T'(x),n(u,x)) + pd(u,z) ¢ —intP. (GDVVIP)

(iii) The generalized primal vector B-variational inequality problems is to:
find v € K such that for all z € K, b(u,z) > 0 and
b(u, x) [(T(u),n(z,u)) + pd(z,u)] ¢ —intP. (GPVVIP,)
(iv) The generalized dual vector B-variational inequality problems is to:
find u € K such that for all x € K, b(x,u) < 0 and

b(z,u) (T(x),n(u,x)) + pb(u, z)| ¢ intP. (GDVVIPy)

Remark 1.1. (1) Let FF: K - Y. If p =1, b(z,u) =1 for all z,u € K and
O(z,u) = F(x) — F(u), then (GPVVIP) coincides the F-GVIP studied by
Behera and Das [3].

(2) Let £ : K — L(X,Y). If p = 1, b(z,u) = 1 for all z,u € K and
O(z,u) = ({(u),n(x,u)), then (GPVVIP) coincides the generalized nonlin-
ear variational inequality problems studied by Das and Kodamasingh [9].

2. n-SEMIINVEX SET, (b,7)-SEMIPREINVEX FUNCTION
AND (b,7)-MONOTONE FUNCTION

In fact, preinvexity is a generalization of invexity for nondifferentiable func-
tion. In 1992, Yang and Chen [15] presented a wide class of generalized convex
set and functions, called vy-semiconnected set and semipreinvex functions as
follows.

Definition 2.1. ([15]) Let K be a nonempty subset of R".

(1) K is to satisfy v-semiconnected property, if for all z,y € K and t €
[0, 1], there exists a vector path function

v: K x K x[0,1] - R"

such that
y+ty(z,y,t) € K.
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(2) Assume that the set K satisfies v-semiconnected property. A real
valued function F': K — R is said to be semipreinvexr with respect to
v if for all z,y € K and t € [0, 1],
Fy+ty(z,y,t) < (1= t)F(y) + tF ()
holds and
lim¢ t) =0.
it (2,9, 1)

Let
B= {b : X x X x[0,1] = R | b(z,u) = lim b(z,u,N), |b(z,u)| < oo}
A—0t
+ @.

For our need, we define y-semiinver set and (b;y)-semipreinvex as follows.

Definition 2.2. A set K C X is said to be
(a) y-semiaffine set in X if for all z,u € K, there exists a vector valued
map v : K x K x R — X satisfying the condition %ir% t y(zx,u,t) =0
%

such that v+t y(x,u,t) € K for all t € R.
(b) ~-semiinver set in X if for all x,u € K, there exists a vector valued
map v : K x K x[0,1] — X satisfying the condition %ir% ty(x,u,t) =0
—>

such that u +t vy(x,u,t) € K for all ¢t € [0, 1].

(¢) n-limiting ~-semiaffine (or n-semiaffine) set in X if for all x,u € K,
there exists a vector valued map v : K x K x R — X satisfying the
condition

lim (2, u,t) = 9z, u) and  lim ¢ y(z,u,t) =0
such that u + ¢ y(z,u,t) € K for all t € R.
(d) n-limiting y-semiinvex (or n-semiinvex) set in X if for all z,u € K,

there exists a vector valued map v : K x K x [0,1] — X satisfying the
condition

lim~y(x,u,t) = n(x,u) and lim ¢~y(z,u,t) =0
t—0 t—0

such that u +t vy(z,u,t) € K for all t € [0, 1].

Definition 2.3. A map F': K — Y is said to be

(a) (b;~y)-semipreaffine on K if there exists a vector valued map v : K X
K xR — X satisfying the condition %in(l) ty(x,u,t) = 0 and a scalar
—>
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valued map b € B with %ir% b(z,u,t) = b(z,u) for all z,u € K such
—
that for all ¢ € R, we have
to(x,u,t)F(u) + (1 —t)b(u,z,t)F(z) — F(u+ ty(x,u,t)) =p 0;

(b) (b;7y)-semipreinvex on K if there exists a vector valued map v : K x
K x[0,1] — X satisfying the condition }/ing) ty(x,u,t) = 0 and a scalar
—

valued map b € B with lltin% b(z,u,t) = b(z,u) for all z,u € K such
_)
that for all t € [0,1], we have
to(z,u, t)F(u) + (1 —t)b(u, z, t)F(z) — F(u+ ty(z,u,t)) ¢ —intP;

(c) (b;n)-limiting (b; v)-semipreaffine (or (b;n)-semipreaffine) on K if there
exists a vector valued map v : K x K xR — X satisfying the condition
1%in(l) v(z,u,t) = n(z,u) and %ir% ty(x,u,t) = 0 and a scalar valued map
— —

b € B with %iné b(z,u,t) = b(z,u) for all z,u € K such that for all
—
t € R, we have

to(z,u,t)F(u) + (1 —t)b(u, z,t)F(x) — F(u+ ty(z,u,t)) =p 0;

(d) (b; n)-limiting (b; )-semipreinvex (or (b;n)-semipreinver) on K if there
exists a vector valued map v : K x K x [0,1] — X satisfying the
condition 21i1r1(1) v(z,u,t) = n(z,u) and PII(I] ty(x,u,t) = 0 and a scalar

— —

valued map b € B with %gr(l) b(z,u,t) = b(z,u) for all z,u € K such
that for all ¢ € [0, 1], we have
tb(z,u,t)F(u) + (1 —t)b(u, z,t)F(x) — F(u+ ty(z,u,t)) ¢ —intP.
Let there exists a map v : K x K x [0,1] — X satisfying

li =
lim (2, u,t) = 1z, u)

with %iII(l) ty(xz,u,t) =0, and a scalar valued map b € B with
—

lim b(z, u, t) = b(x,u)

t—0

for all ,u € K. The concept of b-n-monotonicity of T is defined as follows.

Definition 2.4. The mapping 7 is (b;n)-monotone associated with (p,6) on

K if for all z,u € K, we have

b(u, ) (T (u), (@, u)) + pb(z,w)] + bz, w) (T(2), n(u, )) + pd(u, )]
¢ intP.
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Definition 2.5. The mapping 7 is pseudo b-n-monotone associated with (p, 6)
on K if for all z,u € K, we have

B, @) (T (), n(w, ) + ph(, u)] & —intP,
implying

b(z,u) (T(x),n(u,z)) + pb(u,x)] ¢ intP.

Definition 2.6. The mapping 7 is quasi b-n-monotone associated with (p, )
on K if for all x,u € K, we have

bz, u) (T(x), n(u, z)) + pb(u, z)] ¢ intP,
implying

b(u,z) [(T(u),n(x,u)) + pb(z,u)] ¢ —intP.

3. MAIN RESULTS

The concept of n-hemicontinuous at any point xg € K C X is defined as
follows.

Definition 3.1. The mapping 7' : K — L(X,Y) is n-hemicontinuous at x
if for any sequence {x,} converging to z( along a line, the sequence {T'(x,)}
weakly converges to T'(x¢), i.e., the map A — T(y + A\v) of [0,1] into Y is
continuous for y € K, v € M, where

M={z:2=n(x,y) € X,z € K}

when Y is endowed with its weak topology.

Theorem 3.2. Let K be a n-semiinvex set in X. The problems (GPVVIP)
and (GDVVIP) are equivalent under the following conditions:

(a) (T(z),n(z,z)) + pbO(z,2) =p 0 for allx € K,

(b) T is (b;n)-monotone associated with (p,0) on K,

(c) b is antisymmetric on K where b satisfies b(x,u) < 0,

(d) the mapping (T (u),n(-,u)) : K — Y is n-semipreinvex on K,
(e) the mapping O0(-,u) : K — Y is n-semipreinver on K,

(f) for each u € K, the mapping

ws (T(u), (@, ) + p Oz, u)
is n-hemicontinuous for all x € K.
Proof. Let u € K solves (GPVVIP), i.e
(T(u), () + b, u) & —intP
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for all # € K. Since T is (b; )-monotone associated with (p, ) on K, i.e., there
exists a map v : K x K x [0,1] — X satisfying }/iné'y(x,u,t) = n(z,u) with
—

%in% ty(x,u,t) = 0 and a scalar valued map b € B with 1%ir% b(z,u,t) = b(x,u)
— —
such that for all x € K,

B, 2) [(T(u), (i, ) + B, )] + B, w) [(T(), m(, ) + pB(u, )]

¢ intP.

Since b is antisymmetric on K with b(z,u) < 0, we get b(u,x) > 0. Thus
B, 2) [(T(w), (2, w)) + pO(, w)] & —intP
for all x € K, implying
b(z,u) [(T(x),n(u,x)) + pb(u,x)] ¢ intP

for all # € K. Since b(z,u) < 0, we get

(T(x),n(u,x)) + p(u, z) ¢ —intP
for all x € K. Hence u solves (GDVVIP). Conversely, let u € K solves
(GDVVIP), i.c.,

(T (@), n(u,)) + pBu, ) & —intP
for all x € K. Since

(T (@), 7z, 2)) + pb(z,7) =p 0
for all z € K. Since K is n-semiinvex, x; = u+ty(z,u,t) € K for all z,u € K
and t € [0,1]. Replacing = by z; in the above equation, we get
0 =p (T(xe),n(x, 20)) + pO(ar, z1)
<p T (xe),n(u, ) + (1= t)(T(ze),n(x, 20))

+ p[t0(u, ) + (1 — t)0(x, z4)]

for all x € K. Since T and 6 are n-hemicontinuous, taking limit as t — 0, we
et

: 0 <p (T(u),n(z,u)) +pb(z,u)
for all x € K, implying

(T'(u),n(z,u)) +pb(z,u) ¢ —intP
for all x € K. This showing u solves (GPVVIP). This completes the proof
of the theorem. O

Theorem 3.3. Let K be a n-semiinvex set in X. The problems (GPVVIDP,)
and (GDVVIP,) are equivalent under the following conditions:

(a) b(z,z) [(T(z),n(z,z)) + pb(z,z)] =p 0 for all xz € K,
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(b) T is (b;n)-monotone associated with (p,0) on K,
(c) the mapping b(-,u){T(u),n(-,u)) : K — Y is (b;n)-semipreinvex on
K,
(d) the mapping b(-,u)0(-,u) : K — Y is (b;n)-semipreinver on K,
(e) for each u € K, the mapping
u = b(@,u) (T (u),n(z,u) + po(z,u)

is n-hemicontinuous for all x € K.

Proof. Let u € K solves (GPVVIP,), i.e.,

for all x € K. Since T is (b; n)-monotone associated with (p, ) on K i.e., there
exists a map v : K x K x [0,1] — X satisfying %inéfy(x,u,t) = n(z,u) with
ﬁ

%in% ty(x,u,t) = 0 and a scalar valued map b € B with %in% b(z,u,t) = b(x,u)
— —
such that for all x € K|

b(u, z) (T(w),n(x,u)) + p0(z, w)] + b(z, u) (T(x), n(u, z)) + pb(u, )]

¢ intP.

Since

b(u, ) [(T (), n(a, w)) + pb(w, u)] ¢ —intP
for all x € K, we get

b(x, u) [(T(2),n(u, ) + pb(u, )] ¢ intP
for all z € K. Hence u solves (GDVVIP,). Conversely, let u € K solves
(GDVVIP,), i.e.,

b, w) [(T(x), n(u, 2)) + pb(u, 2)] & intP
for all z € K. Since

bz, ) (T'(x),n(z,x)) + pb(z,z)] =p O
for all z € K. Since K is n-semiinvex, x; = u+ty(z,u,t) € K for all z,u € K
and t € [0,1]. Replacing = by z; in the above equation, we get
0 =p b(we,xe) [(T(xe), (e, v)) + p 0w, x1)]
<p t(x,u, t)(T(xs),n(u,z)) + (1 = t)b(u, z, t)(T(z¢), n(x, 21))
+ p[th(x,u,t)0(u, ) + (1 — t)b(u, x,t)0(x, z4)]
for all x € K. Since T and 6 are n-hemicontinuous, taking limit as ¢ — 0, we

get B B
0 <p b(uv ac)(T(u), 77(an u)> =+ pb(”) l‘)e(l', u)
for all x € K, implying

b(u, x) [(T'(u), n(z,u)) + pb(x,u)] ¢ —intP
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for all z € K. This showing u solves (GPVVIP,). This completes the proof
of the theorem. 0

4. T-(n,0,p)-B-INVEX FUNCTION AND ITS ASSOCIATED GENERALIZED
VARIATIONAL INEQUALITIES

Kaul and Kaur [12] called these functions 7-convex and defined 7-pseudoco-
nvex and 7-quasiconvex functions. As an extension, the concept of p-(n,6)-
invexity was introduced by Zalmai [16] which is generalization of invexity.

The class of convex functions have also been further extended to the class
of B-invex functions by Bector et al. [1, 2]. A class of pseudo B-invex and
quasi B-invex functions are studied by Bector et al. [2], which are general-
ization of pseudoinvex and quasiinvex functions respectively. Bector et al. [2]
have introduced the sufficient optimality conditions and duality results for a
nonlinear programming problem using B-invex functions. Behera, Nahak and
Nanda [5] introduced the concept of generalized (p, 6)-n-B-bexity and gener-
alized (p, 0)-n-B-preivexity to study the optimality of the problems.

Behera and Das [3] have defined the T-n-invex functions to study the vari-
ational inequality problems arises in ordered topological vector spaces. Later
the extensions of T-n-invex functions are studied by Behera and Das [4], Das
and Sahu [8], Das and Behera [7].

In this section, we define the concept of T-(n, 8, p)- B-semiinvex function and
study the existence theorems of generalized variational inequalities associated
with it. Let F' : K — Y be any map. Let there exists amap v : Kx K x[0, 1] —
X satisfying }gr(l) v(z,u,t) = n(z,u) with %gr(l) ty(xz,u,t) = 0 and a scalar valued

map b € B with 711_1)% b(z,u,t) = b(z,u) for all z,u € K. The concept of T-n-6-

invez function relazed with (p,b) of F' is defined as follows.

Definition 4.1. Let 6 : K x K — Y \(—int P) be any map and p € R. The
mapping F' : K — Y is said to be T-n-0-invex relazed with (p,b) (in short;
T-(n, 8, p)-B-invex) at v € K if for all x € K, we have

B, u) [F(x) — F(u)] - (T(w),n(z,u)) - pb(z,u) ¢ —intP.

(1) Fis weak T-n-0-invex relaxed with (p,b) if p < 0,

(2) Fis strong T-n-0-invex relaxed with (p,b) if p > 0.

Definition 4.2. Let 6 : K x K — Y'\(—int P) be any map and p € R. The

mapping F' : K — Y is said to be T-n-0-invex relazed with (p,b) (in short;
T-(n, 0, p)-b-invex) on K if for all z,u € K, we have

b(x,u) [F(z) — F(u)] = (T(u),n(x,u)) — pb(z,u) ¢ —intP.
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Remark 4.3. If b = 1 and p > 0, then Definition 4.2 coincides with the
definition of T-n-invexity of F' introduced and studied by [3].

Remark 4.4. If p > 0, then Definition 4.2 coincides with the definition of
T-n-invexity of F' of order A > 0 where A = 1/b introduced and studied by [8].

Proposition 4.5. Let b € B with b > 0. Let F be T-(n,0, p)-b-invex on K,
then T is (b;n)-monotone associated with (p,0) on K.

Proof. Fis T-(n, 0, p)-b-invex on K, i.e., there exists amap v : K x K x[0,1] —
X satisfying }/in(l) v(z,u,t) = n(z,u) with %in(l) ty(x,u,t) = 0 and a scalar valued
— —

map b € B with lim b(x, u,t) = b(z, ) for all z,u € K, and
t—0

b(x, u) [F(x) = F(u)] = (T(u),n(x, u)) — pb(x,u) ¢ —intP,

i.€.,

Fz) - F(u) - <T(“)’”(i’( ;%)* PO o i,

Interchanging = and v in the above equation, we get

T 0
Flu) — F(z) (T(z), n(u, z)) + pb(u, z) ¢ _intP,
b(u, x)
Adding the above two equations, we obtain

(L), n(z,w) + pbz,u) | (T(@), 0w, 2)) + pd(u, z) ¢ intP
b(x,u) b(u, )
for all z,u € K. Since b(z, u)b(u,z) > 0, we have
b(u, ) [(T'(w), n(z, w)) + pb(z, w)] + bz, u) (T(z), n(u, x)) + pb(u, )]
¢ intP

for all z,u € K. Hence T is (b;n)-monotone associated with (p,#) on K. This
completes the proof. O

Theorem 4.6. Let K be a n-semiinvex set in X. The problems (GPVVIDP,)
and (GDVVIP,) are equivalent under the following conditions:

(a) Bla,2) (T(@),n(,2)) + pO(a,2)] =p O for all z € K,

(b) F is T-(n, 0, p)-b-invex on K, ~

(c) the mapping b(-,u){(T(u),n(-,u)) : K — Y is (b;n)-semipreinvex on
K,

(d) the mapping b(-,u)0(-,u) : K — Y is (b;n)-semipreinver on K,
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(e) for each u € K, the mapping
u = b(@,u) (T(u),n(z,u) + po(z,u)

is n-hemicontinuous for all x € K.

Proof. By Proposition 4.5, F is T-(n, 0, p)-b-invex on K, implying T is (b;n)-
monotone associated with (p,#) on K which is a condition in Theorem 3.3.
Since all the conditions of Theorem 3.3 are satisfied, the problems (GPVV IF,)
and (GDVVIP,) are equivalent. This completes the proof of the theorem. [
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