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Abstract. In this paper, the concept of generalized vector B-variational inequality problems

are introduced and are studied their existence theorems. The concept of pre b-η-invex func-

tion and generalized T -(η, θ, ρ)-B-invex are introduced and are used to prove the existence

theorems of generalized vector B-variational inequality problems.

1. Introduction

In 1964, the variational inequality problem (VIP) was introduced by Stam-
pacchia [13]. To develop the VIP in vector spaces, Gianessi ([10], 1980) has
introduced the vector variational inequality problems and has studied its ex-
istence theorems in finite dimensional vector spaces Rn. The theory of vari-
ational inequalities is applied to study various types of problems arises in
physical sciences, engineering branches, economics, optimization etc. The vari-
ational inequality problems studied by Stampacchia [13] is defined as follows.
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Let K be nonempty closed and convex subset of a reflexive real Banach
space X with dual X∗ and T : K → X∗ a nonlinear map. Let the value of
f ∈ X∗ at x ∈ X be denoted by 〈f, x〉. The Variational Inequality Problem
(VIP) is to:

find x0 ∈ K such that for all x ∈ K,

〈T (x0), x− x0〉 ≥ 0. (VIP)

Earlier convexity property of a function has played an important role to study
various types of results in optimization theory. Many significant results have
been derived under convexity assumption. In 1981, Hanson [11] used the
concept of generalized convex function as invex function in the place of convex
and concave as follows: the differentiable function f from Rn to R is invex if
there exists a vector valued function η(x, u) ∈ Rn such that

f(x)− f(u) ≥ ∇′f(u)(η(x, u))

for all x, u ∈ Rn, where ∇′f(u) stands for the transpose of the gradient of f
at u ∈ Rn. But later Craven [6] coined the name as invex (invariant convex)
function if any function f is satisfying the above equation and studied many
duality theorems for functional programs using the functions. In 1988, Weir
and Mond [14] have introduced the concept of η-invex set, pre-invex functions
and have studied the multiple objective optimization problems. Inspired by
the work of Hanson [11], the researchers have defined generalized variational
inequalities replacing x− y by η(x, y) and have shown various useful existence
theorems.

1.1. Definition of the Problems. For simplicity, we recall the following
terminologies given by Behera and Das [3]. Let (Y, P ) be an ordered topo-
logical vector space equipped with a closed convex pointed cone P such that
intP 6= ∅. Let y ∈ Y . Then

(a) y /∈ −intP if and only if y ≥P 0;
(b) y ∈ intP if and only if y >P 0;
(c) y /∈ intP if and only if y ≤P 0;
(d) y ∈ −intP if and only if y <P 0;
(e) y − z /∈ −intP if and only if y − z ≥P 0 (i.e., y ≥P z);
(f) y − z /∈ intP if and only if y − z ≤P 0 (i.e., y ≤P z);
(g) y − z /∈ (−intP

⋃
intP ) if and only if y − z =P 0, (i.e., y =P z).

Throughout this paper, the domain and functions are defined as follows. Let
X be a topological vector space, K be any subset of X and (Y, P ) be an
ordered topological vector space equipped with a closed convex pointed cone
P such that intP 6= ∅. Let L(X,Y ) be the set of continuous linear functionals
from X to Y and η : K ×K → X and θ : K ×K → Y be the vector valued
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functions. Let T : K → L(X,Y ) be any operator. Let ρ ∈ R be any real
number.

We consider the following generalized vector variational inequalities.

(i) The generalized primal vector variational inequality problems is to:
find u ∈ K such that for all x ∈ K,

〈T (u), η(x, u)〉+ ρθ(x, u) /∈ −intP. (GPV V IP )

(ii) The generalized dual vector variational inequality problems is to:
find u ∈ K such that for all x ∈ K,

〈T (x), η(u, x)〉+ ρθ(u, x) /∈ −intP. (GDV V IP )

(iii) The generalized primal vector B-variational inequality problems is to:
find u ∈ K such that for all x ∈ K, b(u, x) > 0 and

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP. (GPV V IPb)

(iv) The generalized dual vector B-variational inequality problems is to:
find u ∈ K such that for all x ∈ K, b(x, u) < 0 and

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP. (GDV V IPb)

Remark 1.1. (1) Let F : K → Y . If ρ = 1, b(x, u) = 1 for all x, u ∈ K and
θ(x, u) = F (x) − F (u), then (GPV V IP ) coincides the F -GVIP studied by
Behera and Das [3].
(2) Let ξ : K → L(X,Y ). If ρ = 1, b(x, u) = 1 for all x, u ∈ K and
θ(x, u) = 〈ξ(u), η(x, u)〉, then (GPV V IP ) coincides the generalized nonlin-
ear variational inequality problems studied by Das and Kodamasingh [9].

2. η-semiinvex set, (b, η)-semipreinvex function
and (b, η)-monotone function

In fact, preinvexity is a generalization of invexity for nondifferentiable func-
tion. In 1992, Yang and Chen [15] presented a wide class of generalized convex
set and functions, called γ-semiconnected set and semipreinvex functions as
follows.

Definition 2.1. ([15]) Let K be a nonempty subset of Rn.

(1) K is to satisfy γ-semiconnected property, if for all x, y ∈ K and t ∈
[0, 1], there exists a vector path function

γ : K ×K × [0, 1]→ Rn

such that

y + tγ(x, y, t) ∈ K.
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(2) Assume that the set K satisfies γ-semiconnected property. A real
valued function F : K → R is said to be semipreinvex with respect to
γ if for all x, y ∈ K and t ∈ [0, 1],

F (y + tγ(x, y, t)) ≤ (1− t)F (y) + tF (x)

holds and

lim
t↓0

t γ(x, y, t) = 0.

Let

B =

{
b : X ×X × [0, 1]→ R | b(x, u) = lim

λ→0+
b(x, u, λ),

∣∣b(x, u)
∣∣ <∞}

6= ∅.

For our need, we define γ-semiinvex set and (b; γ)-semipreinvex as follows.

Definition 2.2. A set K ⊂ X is said to be

(a) γ-semiaffine set in X if for all x, u ∈ K, there exists a vector valued
map γ : K ×K × R → X satisfying the condition lim

t→0
t γ(x, u, t) = 0

such that u+ t γ(x, u, t) ∈ K for all t ∈ R.
(b) γ-semiinvex set in X if for all x, u ∈ K, there exists a vector valued

map γ : K×K× [0, 1]→ X satisfying the condition lim
t→0

t γ(x, u, t) = 0

such that u+ t γ(x, u, t) ∈ K for all t ∈ [0, 1].
(c) η-limiting γ-semiaffine (or η-semiaffine) set in X if for all x, u ∈ K,

there exists a vector valued map γ : K × K × R → X satisfying the
condition

lim
t→0

γ(x, u, t) = η(x, u) and lim
t→0

t γ(x, u, t) = 0

such that u+ t γ(x, u, t) ∈ K for all t ∈ R.
(d) η-limiting γ-semiinvex (or η-semiinvex ) set in X if for all x, u ∈ K,

there exists a vector valued map γ : K ×K × [0, 1]→ X satisfying the
condition

lim
t→0

γ(x, u, t) = η(x, u) and lim
t→0

t γ(x, u, t) = 0

such that u+ t γ(x, u, t) ∈ K for all t ∈ [0, 1].

Definition 2.3. A map F : K → Y is said to be

(a) (b; γ)-semipreaffine on K if there exists a vector valued map γ : K ×
K × R → X satisfying the condition lim

t→0
t γ(x, u, t) = 0 and a scalar
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valued map b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K such

that for all t ∈ R, we have

t b(x, u, t)F (u) + (1− t) b(u, x, t)F (x)− F (u+ tγ(x, u, t)) =P 0;

(b) (b; γ)-semipreinvex on K if there exists a vector valued map γ : K ×
K× [0, 1]→ X satisfying the condition lim

t→0
t γ(x, u, t) = 0 and a scalar

valued map b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K such

that for all t ∈ [0, 1], we have

t b(x, u, t)F (u) + (1− t) b(u, x, t)F (x)− F (u+ tγ(x, u, t)) /∈ −intP ;

(c) (b; η)-limiting (b; γ)-semipreaffine (or (b; η)-semipreaffine) onK if there
exists a vector valued map γ : K×K×R→ X satisfying the condition
lim
t→0

γ(x, u, t) = η(x, u) and lim
t→0

t γ(x, u, t) = 0 and a scalar valued map

b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K such that for all

t ∈ R, we have

t b(x, u, t)F (u) + (1− t) b(u, x, t)F (x)− F (u+ tγ(x, u, t)) =P 0;

(d) (b; η)-limiting (b; γ)-semipreinvex (or (b; η)-semipreinvex ) onK if there
exists a vector valued map γ : K × K × [0, 1] → X satisfying the
condition lim

t→0
γ(x, u, t) = η(x, u) and lim

t→0
t γ(x, u, t) = 0 and a scalar

valued map b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K such

that for all t ∈ [0, 1], we have

t b(x, u, t)F (u) + (1− t) b(u, x, t)F (x)− F (u+ tγ(x, u, t)) /∈ −intP.

Let there exists a map γ : K ×K × [0, 1]→ X satisfying

lim
t→0

γ(x, u, t) = η(x, u)

with lim
t→0

t γ(x, u, t) = 0, and a scalar valued map b ∈ B with

lim
t→0

b(x, u, t) = b(x, u)

for all x, u ∈ K. The concept of b-η-monotonicity of T is defined as follows.

Definition 2.4. The mapping T is (b; η)-monotone associated with (ρ, θ) on
K if for all x, u ∈ K, we have

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] + b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)]

/∈ intP.



328 S. N. Mishra, P. K. Das and G. C. Nayak

Definition 2.5. The mapping T is pseudo b-η-monotone associated with (ρ, θ)
on K if for all x, u ∈ K, we have

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP,

implying

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP.

Definition 2.6. The mapping T is quasi b-η-monotone associated with (ρ, θ)
on K if for all x, u ∈ K, we have

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP,

implying

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP.

3. Main Results

The concept of η-hemicontinuous at any point x0 ∈ K ⊂ X is defined as
follows.

Definition 3.1. The mapping T : K → L(X,Y ) is η-hemicontinuous at x0
if for any sequence {xn} converging to x0 along a line, the sequence {T (xn)}
weakly converges to T (x0), i.e., the map λ 7→ T (y + λv) of [0, 1] into Y is
continuous for y ∈ K, v ∈M, where

M = {z : z = η(x, y) ∈ X,x ∈ K}

when Y is endowed with its weak topology.

Theorem 3.2. Let K be a η-semiinvex set in X. The problems (GPV V IP )
and (GDV V IP ) are equivalent under the following conditions:

(a) 〈T (x), η(x, x)〉+ ρ θ(x, x) =P 0 for all x ∈ K,
(b) T is (b; η)-monotone associated with (ρ, θ) on K,
(c) b is antisymmetric on K where b satisfies b(x, u) < 0,
(d) the mapping 〈T (u), η(-, u)〉 : K → Y is η-semipreinvex on K,
(e) the mapping θ(-, u) : K → Y is η-semipreinvex on K,
(f) for each u ∈ K, the mapping

u 7→ 〈T (u), η(x, u)〉+ ρ θ(x, u)

is η-hemicontinuous for all x ∈ K.

Proof. Let u ∈ K solves (GPV V IP ), i.e.,

〈T (u), η(x, u)〉+ ρθ(x, u) /∈ −intP
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for all x ∈ K. Since T is (b; η)-monotone associated with (ρ, θ) on K, i.e., there
exists a map γ : K × K × [0, 1] → X satisfying lim

t→0
γ(x, u, t) = η(x, u) with

lim
t→0

t γ(x, u, t) = 0 and a scalar valued map b ∈ B with lim
t→0

b(x, u, t) = b(x, u)

such that for all x ∈ K,

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] + b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)]

/∈ intP.

Since b is antisymmetric on K with b(x, u) < 0, we get b(u, x) > 0. Thus

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP
for all x ∈ K, implying

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP
for all x ∈ K. Since b(x, u) < 0, we get

〈T (x), η(u, x)〉+ ρθ(u, x) /∈ −intP
for all x ∈ K. Hence u solves (GDV V IP ). Conversely, let u ∈ K solves
(GDV V IP ), i.e.,

〈T (x), η(u, x)〉+ ρθ(u, x) /∈ −intP
for all x ∈ K. Since

〈T (x), η(x, x)〉+ ρ θ(x, x) =P 0

for all x ∈ K. Since K is η-semiinvex, xt = u+ tγ(x, u, t) ∈ K for all x, u ∈ K
and t ∈ [0, 1]. Replacing x by xt in the above equation, we get

0 =P 〈T (xt), η(xt, xt)〉+ ρ θ(xt, xt)

≤P t〈T (xt), η(u, xt)〉+ (1− t)〈T (xt), η(x, xt)〉
+ ρ [tθ(u, xt) + (1− t)θ(x, xt)]

for all x ∈ K. Since T and θ are η-hemicontinuous, taking limit as t→ 0, we
get

0 ≤P 〈T (u), η(x, u)〉+ ρ θ(x, u)

for all x ∈ K, implying

〈T (u), η(x, u)〉+ ρ θ(x, u) /∈ −intP
for all x ∈ K. This showing u solves (GPV V IP ). This completes the proof
of the theorem. �

Theorem 3.3. Let K be a η-semiinvex set in X. The problems (GPV V IPb)
and (GDV V IPb) are equivalent under the following conditions:

(a) b(x, x) [〈T (x), η(x, x)〉+ ρ θ(x, x)] =P 0 for all x ∈ K,
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(b) T is (b; η)-monotone associated with (ρ, θ) on K,
(c) the mapping b(-, u)〈T (u), η(-, u)〉 : K → Y is (b; η)-semipreinvex on

K,
(d) the mapping b(-, u)θ(-, u) : K → Y is (b; η)-semipreinvex on K,
(e) for each u ∈ K, the mapping

u 7→ b(x, u) [〈T (u), η(x, u)〉+ ρ θ(x, u)]

is η-hemicontinuous for all x ∈ K.

Proof. Let u ∈ K solves (GPV V IPb), i.e.,

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP
for all x ∈ K. Since T is (b; η)-monotone associated with (ρ, θ) on K, i.e., there
exists a map γ : K × K × [0, 1] → X satisfying lim

t→0
γ(x, u, t) = η(x, u) with

lim
t→0

t γ(x, u, t) = 0 and a scalar valued map b ∈ B with lim
t→0

b(x, u, t) = b(x, u)

such that for all x ∈ K,

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] + b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)]

/∈ intP.
Since

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] /∈ −intP
for all x ∈ K, we get

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP
for all x ∈ K. Hence u solves (GDV V IPb). Conversely, let u ∈ K solves
(GDV V IPb), i.e.,

b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)] /∈ intP
for all x ∈ K. Since

b(x, x) [〈T (x), η(x, x)〉+ ρ θ(x, x)] =P 0

for all x ∈ K. Since K is η-semiinvex, xt = u+ tγ(x, u, t) ∈ K for all x, u ∈ K
and t ∈ [0, 1]. Replacing x by xt in the above equation, we get

0 =P b(xt, xt) [〈T (xt), η(xt, xt)〉+ ρ θ(xt, xt)]

≤P tb(x, u, t)〈T (xt), η(u, xt)〉+ (1− t)b(u, x, t)〈T (xt), η(x, xt)〉
+ ρ [tb(x, u, t)θ(u, xt) + (1− t)b(u, x, t)θ(x, xt)]

for all x ∈ K. Since T and θ are η-hemicontinuous, taking limit as t→ 0, we
get

0 ≤P b(u, x)〈T (u), η(x, u)〉+ ρ b(u, x)θ(x, u)

for all x ∈ K, implying

b(u, x) [〈T (u), η(x, u)〉+ ρ θ(x, u)] /∈ −intP
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for all x ∈ K. This showing u solves (GPV V IPb). This completes the proof
of the theorem. �

4. T -(η, θ, ρ)-B-invex function and its associated generalized
variational inequalities

Kaul and Kaur [12] called these functions η-convex and defined η-pseudoco-
nvex and η-quasiconvex functions. As an extension, the concept of ρ-(η, θ)-
invexity was introduced by Zalmai [16] which is generalization of invexity.

The class of convex functions have also been further extended to the class
of B-invex functions by Bector et al. [1, 2]. A class of pseudo B-invex and
quasi B-invex functions are studied by Bector et al. [2], which are general-
ization of pseudoinvex and quasiinvex functions respectively. Bector et al. [2]
have introduced the sufficient optimality conditions and duality results for a
nonlinear programming problem using B-invex functions. Behera, Nahak and
Nanda [5] introduced the concept of generalized (ρ, θ)-η-B-bexity and gener-
alized (ρ, θ)-η-B-preivexity to study the optimality of the problems.

Behera and Das [3] have defined the T -η-invex functions to study the vari-
ational inequality problems arises in ordered topological vector spaces. Later
the extensions of T -η-invex functions are studied by Behera and Das [4], Das
and Sahu [8], Das and Behera [7].

In this section, we define the concept of T -(η, θ, ρ)-B-semiinvex function and
study the existence theorems of generalized variational inequalities associated
with it. Let F : K → Y be any map. Let there exists a map γ : K×K×[0, 1]→
X satisfying lim

t→0
γ(x, u, t) = η(x, u) with lim

t→0
t γ(x, u, t) = 0 and a scalar valued

map b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K. The concept of T -η-θ-

invex function relaxed with (ρ, b) of F is defined as follows.

Definition 4.1. Let θ : K ×K → Y \(−int P ) be any map and ρ ∈ R. The
mapping F : K → Y is said to be T -η-θ-invex relaxed with (ρ, b) (in short;
T -(η, θ, ρ)-B-invex) at u ∈ K if for all x ∈ K, we have

b(x, u) [F (x)− F (u)]− 〈T (u), η(x, u)〉 − ρθ(x, u) /∈ −intP.
(1) F is weak T -η-θ-invex relaxed with (ρ, b) if ρ < 0,
(2) F is strong T -η-θ-invex relaxed with (ρ, b) if ρ > 0.

Definition 4.2. Let θ : K ×K → Y \(−int P ) be any map and ρ ∈ R. The
mapping F : K → Y is said to be T -η-θ-invex relaxed with (ρ, b) (in short;
T -(η, θ, ρ)-b-invex) on K if for all x, u ∈ K, we have

b(x, u) [F (x)− F (u)]− 〈T (u), η(x, u)〉 − ρθ(x, u) /∈ −intP.
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Remark 4.3. If b = 1 and ρ ≥ 0, then Definition 4.2 coincides with the
definition of T -η-invexity of F introduced and studied by [3].

Remark 4.4. If ρ ≥ 0, then Definition 4.2 coincides with the definition of
T -η-invexity of F of order λ > 0 where λ = 1/b introduced and studied by [8].

Proposition 4.5. Let b ∈ B with b > 0. Let F be T -(η, θ, ρ)-b-invex on K,
then T is (b; η)-monotone associated with (ρ, θ) on K.

Proof. F is T -(η, θ, ρ)-b-invex on K, i.e., there exists a map γ : K×K×[0, 1]→
X satisfying lim

t→0
γ(x, u, t) = η(x, u) with lim

t→0
t γ(x, u, t) = 0 and a scalar valued

map b ∈ B with lim
t→0

b(x, u, t) = b(x, u) for all x, u ∈ K, and

b(x, u) [F (x)− F (u)]− 〈T (u), η(x, u)〉 − ρθ(x, u) /∈ −intP,

i.e.,

F (x)− F (u)− 〈T (u), η(x, u)〉+ ρθ(x, u)

b(x, u)
/∈ −intP.

Interchanging x and u in the above equation, we get

F (u)− F (x)− 〈T (x), η(u, x)〉+ ρθ(u, x)

b(u, x)
/∈ −intP.

Adding the above two equations, we obtain

〈T (u), η(x, u)〉+ ρθ(x, u)

b(x, u)
+
〈T (x), η(u, x)〉+ ρθ(u, x)

b(u, x)
/∈ intP

for all x, u ∈ K. Since b(x, u)b(u, x) > 0, we have

b(u, x) [〈T (u), η(x, u)〉+ ρθ(x, u)] + b(x, u) [〈T (x), η(u, x)〉+ ρθ(u, x)]

/∈ intP

for all x, u ∈ K. Hence T is (b; η)-monotone associated with (ρ, θ) on K. This
completes the proof. �

Theorem 4.6. Let K be a η-semiinvex set in X. The problems (GPV V IPb)
and (GDV V IPb) are equivalent under the following conditions:

(a) b(x, x) [〈T (x), η(x, x)〉+ ρ θ(x, x)] =P 0 for all x ∈ K,
(b) F is T -(η, θ, ρ)-b-invex on K,
(c) the mapping b(-, u)〈T (u), η(-, u)〉 : K → Y is (b; η)-semipreinvex on

K,
(d) the mapping b(-, u)θ(-, u) : K → Y is (b; η)-semipreinvex on K,
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(e) for each u ∈ K, the mapping

u 7→ b(x, u) [〈T (u), η(x, u)〉+ ρ θ(x, u)]

is η-hemicontinuous for all x ∈ K.

Proof. By Proposition 4.5, F is T -(η, θ, ρ)-b-invex on K, implying T is (b; η)-
monotone associated with (ρ, θ) on K which is a condition in Theorem 3.3.
Since all the conditions of Theorem 3.3 are satisfied, the problems (GPV V IPb)
and (GDV V IPb) are equivalent. This completes the proof of the theorem. �
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