Nonlinear Functional Analysis and Applications Vol. 22, No. 2 (2017), pp. 323-334 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2017 Kyungnam University Press

GENERALIZED VECTOR B-VARIATIONAL INEQUALITY PROBLEMS

Satya Narayan Mishra 1, Prasanta Kumar Das 2 and Girish Chandra Nayak 3

¹Department of Mathematics, School of Applied Sciences KIIT University, Bhubaneswar-751024, India e-mail: snmishra000@gmail.com

²Department of Mathematics, School of Applied Sciences KIIT University, Bhubaneswar-751024, India e-mail: dasprasantkumar@yahoo.co.in

3 Junior Lecturer (Mathematics) Govt. Jr. College, Phulbani, Kandhamal-762001, India e-mail: girishchn@gmail.com

Abstract. In this paper, the concept of generalized vector B-variational inequality problems are introduced and are studied their existence theorems. The concept of pre b - η -invex function and generalized $T-(\eta, \theta, \rho)$ -B-invex are introduced and are used to prove the existence theorems of generalized vector B-variational inequality problems.

1. INTRODUCTION

In 1964, the variational inequality problem (VIP) was introduced by Stampacchia [13]. To develop the VIP in vector spaces, Gianessi ([10], 1980) has introduced the vector variational inequality problems and has studied its existence theorems in finite dimensional vector spaces \mathbb{R}^n . The theory of variational inequalities is applied to study various types of problems arises in physical sciences, engineering branches, economics, optimization etc. The variational inequality problems studied by Stampacchia [13] is defined as follows.

 0 Received July 1, 2016. Revised November 11, 2016.

⁰ 2010 Mathematics Subject Classification: 90C33, 47J30, 65K10.

⁰Keywords: Generalized vector *b*-variational inequality problems, $T-(\eta, \theta, \rho)$ -*B*-invex function, $(b; \gamma)$ -semiinvex set, $(b; \gamma)$ -semipreinvex.

Let K be nonempty closed and convex subset of a reflexive real Banach space X with dual X^* and $T: K \to X^*$ a nonlinear map. Let the value of $f \in X^*$ at $x \in X$ be denoted by $\langle f, x \rangle$. The *Variational Inequality Problem* (VIP) is to:

find $x_0 \in K$ such that for all $x \in K$,

$$
\langle T(x_0), x - x_0 \rangle \ge 0. \tag{VIP}
$$

Earlier convexity property of a function has played an important role to study various types of results in optimization theory. Many significant results have been derived under convexity assumption. In 1981, Hanson [11] used the concept of generalized convex function as invex function in the place of convex and concave as follows: the differentiable function f from \mathbb{R}^n to $\mathbb R$ is invex if there exists a vector valued function $\eta(x, u) \in \mathbb{R}^n$ such that

$$
f(x) - f(u) \ge \nabla' f(u)(\eta(x, u))
$$

for all $x, u \in \mathbb{R}^n$, where $\nabla' f(u)$ stands for the transpose of the gradient of f at $u \in \mathbb{R}^n$. But later Craven [6] coined the name as invex (invariant convex) function if any function f is satisfying the above equation and studied many duality theorems for functional programs using the functions. In 1988, Weir and Mond [14] have introduced the concept of η -invex set, pre-invex functions and have studied the multiple objective optimization problems. Inspired by the work of Hanson [11], the researchers have defined generalized variational inequalities replacing $x-y$ by $\eta(x, y)$ and have shown various useful existence theorems.

1.1. Definition of the Problems. For simplicity, we recall the following terminologies given by Behera and Das [3]. Let (Y, P) be an ordered topological vector space equipped with a closed convex pointed cone P such that $int P \neq \emptyset$. Let $y \in Y$. Then

- (a) $y \notin -intP$ if and only if $y \geq_P 0$;
- (b) $y \in intP$ if and only if $y >_P 0$;
- (c) $y \notin intP$ if and only if $y \leq_P 0$;
- (d) $y \in -intP$ if and only if $y <_P 0$;
- (e) $y z \notin -\mathrm{int}P$ if and only if $y z \geq_P 0$ (*i.e.*, $y \geq_P z$);
- (f) $y z \notin intP$ if and only if $y z \leq_P 0$ (*i.e.*, $y \leq_P z$);
- (g) $y z \notin (-intP \cup intP)$ if and only if $y z = P \cup (i.e., y = P z)$.

Throughout this paper, the domain and functions are defined as follows. Let X be a topological vector space, K be any subset of X and (Y, P) be an ordered topological vector space equipped with a closed convex pointed cone P such that $int P \neq \emptyset$. Let $L(X, Y)$ be the set of continuous linear functionals from X to Y and $\eta: K \times K \to X$ and $\theta: K \times K \to Y$ be the vector valued

functions. Let $T: K \to L(X,Y)$ be any operator. Let $\rho \in \mathbb{R}$ be any real number.

- We consider the following generalized vector variational inequalities.
	- (i) The generalized primal vector variational inequality problems is to: find $u \in K$ such that for all $x \in K$,

$$
\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u) \notin -intP. \qquad (GPVVIP)
$$

(ii) The generalized dual vector variational inequality problems is to: find $u \in K$ such that for all $x \in K$,

$$
\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -intP. \tag{GDVVIP}
$$

(iii) The generalized primal vector B-variational inequality problems is to: find $u \in K$ such that for all $x \in K$, $\overline{b}(u, x) > 0$ and

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP.\tag{GPVVIP}_b
$$

(iv) The generalized dual vector B-variational inequality problems is to: find $u \in K$ such that for all $x \in K$, $\overline{b}(x, u) < 0$ and

$$
\overline{b}(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)] \notin intP. \qquad (GDVVIP_b)
$$

Remark 1.1. (1) Let $F: K \to Y$. If $\rho = 1$, $b(x, u) = 1$ for all $x, u \in K$ and $\theta(x, u) = F(x) - F(u)$, then $(GPVVIP)$ coincides the F-GVIP studied by Behera and Das [3].

(2) Let $\xi: K \to L(X,Y)$. If $\rho = 1$, $b(x, u) = 1$ for all $x, u \in K$ and $\theta(x, u) = \langle \xi(u), \eta(x, u) \rangle$, then $(GPVVIP)$ coincides the generalized nonlinear variational inequality problems studied by Das and Kodamasingh [9].

2. η -semiinvex set, (\bar{b}, η) -semipreinvex function AND (\bar{b}, η) -MONOTONE FUNCTION

In fact, preinvexity is a generalization of invexity for nondifferentiable function. In 1992, Yang and Chen [15] presented a wide class of generalized convex set and functions, called γ -semiconnected set and semipreinvex functions as follows.

Definition 2.1. ([15]) Let K be a nonempty subset of \mathbb{R}^n .

(1) K is to satisfy γ -semiconnected property, if for all $x, y \in K$ and $t \in$ [0, 1], there exists a vector path function

$$
\gamma: K \times K \times [0,1] \to \mathbb{R}^n
$$

such that

$$
y + t\gamma(x, y, t) \in K.
$$

(2) Assume that the set K satisfies γ -semiconnected property. A real valued function $F: K \to \mathbb{R}$ is said to be *semipreinvex* with respect to γ if for all $x, y \in K$ and $t \in [0, 1],$

$$
F(y + t\gamma(x, y, t)) \le (1 - t)F(y) + tF(x)
$$

holds and

$$
\lim_{t \downarrow 0} t \gamma(x, y, t) = 0.
$$

Let

$$
B = \left\{ b : X \times X \times [0,1] \to \mathbb{R} \mid \overline{b}(x,u) = \lim_{\lambda \to 0^+} b(x,u,\lambda), \ |\overline{b}(x,u)| < \infty \right\}
$$
\n
$$
\neq \emptyset.
$$

For our need, we define γ -semiinvex set and $(b; \gamma)$ -semipreinvex as follows.

Definition 2.2. A set $K \subset X$ is said to be

- (a) γ -semiaffine set in X if for all $x, u \in K$, there exists a vector valued map $\gamma: K \times K \times \mathbb{R} \to X$ satisfying the condition $\lim_{x \to K} t \gamma(x, u, t) = 0$ $t\rightarrow 0$ such that $u + t \gamma(x, u, t) \in K$ for all $t \in \mathbb{R}$.
- (b) γ -semiinvex set in X if for all $x, u \in K$, there exists a vector valued map $\gamma: K \times K \times [0, 1] \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ such that $u + t \gamma(x, u, t) \in K$ for all $t \in [0, 1]$.
- (c) η -limiting γ -semiaffine (or η -semiaffine) set in X if for all $x, u \in K$, there exists a vector valued map $\gamma: K \times K \times \mathbb{R} \to X$ satisfying the condition

$$
\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u) \quad \text{and} \quad \lim_{t \to 0} t \gamma(x, u, t) = 0
$$

such that $u + t \gamma(x, u, t) \in K$ for all $t \in \mathbb{R}$.

(d) η -limiting γ -semiinvex (or η -semiinvex) set in X if for all $x, u \in K$, there exists a vector valued map $\gamma: K \times K \times [0,1] \to X$ satisfying the condition

$$
\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u) \quad \text{and} \quad \lim_{t \to 0} t \gamma(x, u, t) = 0
$$

such that $u + t \gamma(x, u, t) \in K$ for all $t \in [0, 1]$.

Definition 2.3. A map $F: K \to Y$ is said to be

(a) $(b; \gamma)$ -semipreaffine on K if there exists a vector valued map $\gamma : K \times$ $K \times \mathbb{R} \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar

valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$ such that for all $t \in \mathbb{R}$, we have

$$
t\,b(x,u,t)F(u)+(1-t)\,b(u,x,t)F(x)-F(u+t\gamma(x,u,t))=_{P}0;
$$

(b) $(b; \gamma)$ -semipreinvex on K if there exists a vector valued map $\gamma : K \times$ $K \times [0, 1] \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$ such that for all $t \in [0, 1]$, we have

$$
t b(x, u, t) F(u) + (1-t) b(u, x, t) F(x) - F(u + t\gamma(x, u, t)) \notin -intP;
$$

(c) $(\bar{b}; \eta)$ -limiting $(b; \gamma)$ -semipreaffine (or $(\bar{b}; \eta)$ -semipreaffine) on K if there exists a vector valued map $\gamma: K \times K \times \mathbb{R} \to X$ satisfying the condition $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ and $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = b(x, u)$ for all $x, u \in K$ such that for all $t \in \mathbb{R}$, we have

$$
t b(x, u, t) F(u) + (1-t) b(u, x, t) F(x) - F(u + t\gamma(x, u, t)) = P 0;
$$

(d) $(\bar{b}; \eta)$ -limiting $(b; \gamma)$ -semipreinvex (or $(\bar{b}; \eta)$ -semipreinvex) on K if there exists a vector valued map $\gamma : K \times K \times [0,1] \to X$ satisfying the condition $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ and $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = b(x, u)$ for all $x, u \in K$ such that for all $t \in [0,1]$, we have

$$
t b(x, u, t) F(u) + (1-t) b(u, x, t) F(x) - F(u + t\gamma(x, u, t)) \notin -intP.
$$

Let there exists a map $\gamma : K \times K \times [0,1] \to X$ satisfying

$$
\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)
$$

with $\lim_{t \to 0} t \gamma(x, u, t) = 0$, and a scalar valued map $b \in B$ with

$$
\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)
$$

for all $x, u \in K$. The concept of \bar{b} -*n*-monotonicity of T is defined as follows.

Definition 2.4. The mapping T is $(\bar{b}; \eta)$ -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$
b(u, x) [\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)] + b(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)]
$$

$$
\notin intP.
$$

Definition 2.5. The mapping T is pseudo \bar{b} - η -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -int P,
$$

implying

$$
\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\notin intP.
$$

Definition 2.6. The mapping T is quasi \overline{b} - η -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$
\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\notin intP,
$$

implying

 $\overline{b}(u, x) [\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)] \notin -\overline{intP}.$

3. Main Results

The concept of η -hemicontinuous at any point $x_0 \in K \subset X$ is defined as follows.

Definition 3.1. The mapping $T: K \to L(X, Y)$ is η -hemicontinuous at x_0 if for any sequence $\{x_n\}$ converging to x_0 along a line, the sequence $\{T(x_n)\}$ weakly converges to $T(x_0)$, *i.e.*, the map $\lambda \mapsto T(y + \lambda v)$ of [0, 1] into Y is continuous for $y \in K$, $v \in M$, where

$$
M = \{ z : z = \eta(x, y) \in X, x \in K \}
$$

when Y is endowed with its weak topology.

Theorem 3.2. Let K be a η -semiinvex set in X. The problems (GPVVIP) and $(GDVVIP)$ are equivalent under the following conditions:

- (a) $\langle T(x), \eta(x, x)\rangle + \rho \theta(x, x) =_P 0$ for all $x \in K$,
- (b) T is $(b; \eta)$ -monotone associated with (ρ, θ) on K,
- (c) \bar{b} is antisymmetric on K where \bar{b} satisfies $\bar{b}(x, u) < 0$,
- (d) the mapping $\langle T(u), \eta(-, u)\rangle : K \to Y$ is η -semipreinvex on K,
- (e) the mapping $\theta(\cdot, u) : K \to Y$ is η -semipreinvex on K,
- (f) for each $u \in K$, the mapping

$$
u \mapsto \langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)
$$

is η -hemicontinuous for all $x \in K$.

Proof. Let $u \in K$ solves $(GPVVIP)$, *i.e.*,

$$
\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u) \notin -intP
$$

for all $x \in K$. Since T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K, *i.e.*, there exists a map $\gamma: K \times K \times [0,1] \to X$ satisfying $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t\to 0} t\gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t\to 0} b(x, u, t) = b(x, u)$ such that for all $x \in K$,

$$
\overline{b}(u,x) [\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u)] + \overline{b}(x,u) [\langle T(x), \eta(u,x) \rangle + \rho \theta(u,x)]
$$

$$
\notin intP.
$$

Since \bar{b} is antisymmetric on K with $\bar{b}(x, u) < 0$, we get $\bar{b}(u, x) > 0$. Thus

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP
$$

for all $x \in K$, implying

$$
\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\notin intP
$$

for all $x \in K$. Since $\overline{b}(x, u) < 0$, we get

$$
\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -intF
$$

for all $x \in K$. Hence u solves (GDVVIP). Conversely, let $u \in K$ solves $(GDVVIP), i.e.,$

$$
\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -\mathrm{int}P
$$

for all $x \in K$. Since

$$
\langle T(x), \eta(x, x) \rangle + \rho \theta(x, x) =_P 0
$$

for all $x \in K$. Since K is η -semiinvex, $x_t = u + t\gamma(x, u, t) \in K$ for all $x, u \in K$ and $t \in [0,1]$. Replacing x by x_t in the above equation, we get

$$
0 = P \langle T(x_t), \eta(x_t, x_t) \rangle + \rho \theta(x_t, x_t)
$$

\n
$$
\leq P \quad t \langle T(x_t), \eta(u, x_t) \rangle + (1 - t) \langle T(x_t), \eta(x, x_t) \rangle
$$

\n
$$
+ \rho \left[t\theta(u, x_t) + (1 - t)\theta(x, x_t) \right]
$$

for all $x \in K$. Since T and θ are η -hemicontinuous, taking limit as $t \to 0$, we get

$$
0 \leq_P \langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)
$$

for all $x \in K$, implying

$$
\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u) \notin -intP
$$

for all $x \in K$. This showing u solves $(GPVVIP)$. This completes the proof of the theorem. $\hfill \square$

Theorem 3.3. Let K be a η -semiinvex set in X. The problems (GPVVIP_b) and $(GDVVIP_b)$ are equivalent under the following conditions:

(a)
$$
b(x, x) [\langle T(x), \eta(x, x) \rangle + \rho \theta(x, x)] =_P 0
$$
 for all $x \in K$,

- (b) T is $(b; \eta)$ -monotone associated with (ρ, θ) on K,
- (c) the mapping $\overline{b}(-,u)\langle T(u), \eta(-, u)\rangle : K \to Y$ is $(\overline{b}; \eta)$ -semipreinvex on K,
- (d) the mapping $\bar{b}(\cdot, u)\theta(\cdot, u): K \to Y$ is $(\bar{b}; \eta)$ -semipreinvex on K,
- (e) for each $u \in K$, the mapping

$$
u \mapsto \overline{b}(x, u) [\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)]
$$

is η -hemicontinuous for all $x \in K$.

Proof. Let $u \in K$ solves $(GPVVIP_b)$, *i.e.*,

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP
$$

for all $x \in K$. Since T is $(\bar{b}; \eta)$ -monotone associated with (ρ, θ) on K, *i.e.*, there exists a map $\gamma: K \times K \times [0,1] \to X$ satisfying $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t\to 0} t\gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t\to 0} b(x, u, t) = b(x, u)$ such that for all $x \in K$,

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]+\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\n\in int P.
$$

Since

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP
$$

for all $x \in K$, we get

$$
\overline{b}(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)] \notin intP
$$

for all $x \in K$. Hence u solves $(GDVVIP_b)$. Conversely, let $u \in K$ solves $(GDVVIP_b), i.e.,$

$$
\overline{b}(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)] \notin intP
$$

for all $x \in K$. Since

$$
\overline{b}(x,x)\left[\langle T(x),\eta(x,x)\rangle+\rho\,\theta(x,x)\right]=_P0
$$

for all $x \in K$. Since K is η -semiinvex, $x_t = u + t\gamma(x, u, t) \in K$ for all $x, u \in K$ and $t \in [0,1]$. Replacing x by x_t in the above equation, we get

$$
0 =_{P} \overline{b}(x_t, x_t) [\langle T(x_t), \eta(x_t, x_t) \rangle + \rho \theta(x_t, x_t)]
$$

\n
$$
\leq_{P} \overline{b}(x, u, t) \langle T(x_t), \eta(u, x_t) \rangle + (1 - t) b(u, x, t) \langle T(x_t), \eta(x, x_t) \rangle
$$

\n
$$
+ \rho [t b(x, u, t) \theta(u, x_t) + (1 - t) b(u, x, t) \theta(x, x_t)]
$$

for all $x \in K$. Since T and θ are η -hemicontinuous, taking limit as $t \to 0$, we get

$$
0 \leq_P b(u, x) \langle T(u), \eta(x, u) \rangle + \rho b(u, x) \theta(x, u)
$$

for all $x \in K$, implying

 $\overline{b}(u, x) [\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)] \notin -\overline{int}$

for all $x \in K$. This showing u solves $(GPVVIP_b)$. This completes the proof of the theorem.

4. $T-(\eta, \theta, \rho)$ -B-INVEX FUNCTION AND ITS ASSOCIATED GENERALIZED variational inequalities

Kaul and Kaur [12] called these functions η -convex and defined η -pseudoconvex and η -quasiconvex functions. As an extension, the concept of ρ - (η, θ) invexity was introduced by Zalmai [16] which is generalization of invexity.

The class of convex functions have also been further extended to the class of B-invex functions by Bector *et al.* [1, 2]. A class of pseudo B-invex and quasi B-invex functions are studied by Bector *et al.* [2], which are generalization of pseudoinvex and quasiinvex functions respectively. Bector $et al.$ [2] have introduced the sufficient optimality conditions and duality results for a nonlinear programming problem using B-invex functions. Behera, Nahak and Nanda [5] introduced the concept of generalized (ρ, θ) -η-B-bexity and generalized (ρ, θ) -η-B-preivexity to study the optimality of the problems.

Behera and Das [3] have defined the $T-\eta$ -invex functions to study the variational inequality problems arises in ordered topological vector spaces. Later the extensions of T - η -invex functions are studied by Behera and Das [4], Das and Sahu [8], Das and Behera [7].

In this section, we define the concept of $T-(\eta, \theta, \rho)$ -B-semiinvex function and study the existence theorems of generalized variational inequalities associated with it. Let $F: K \to Y$ be any map. Let there exists a map $\gamma: K \times K \times [0,1] \to$ X satisfying $\lim_{t\to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t\to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = b(x, u)$ for all $x, u \in K$. The concept of T - η - θ *invex* function *relaxed with* (ρ, b) of F is defined as follows.

Definition 4.1. Let $\theta : K \times K \to Y \setminus (-int P)$ be any map and $\rho \in \mathbb{R}$. The mapping $F: K \to Y$ is said to be $T-\eta-\theta$ -invex relaxed with (ρ, \overline{b}) (in short; $T-(\eta, \theta, \rho)$ -B-invex) at $u \in K$ if for all $x \in K$, we have

$$
\overline{b}(x,u)[F(x) - F(u)] - \langle T(u), \eta(x,u) \rangle - \rho \theta(x,u) \notin -intP.
$$

- (1) F is weak T- η - θ -invex relaxed with (ρ, \bar{b}) if $\rho < 0$,
- (2) F is strong T-η-θ-invex relaxed with (ρ, \overline{b}) if $\rho > 0$.

Definition 4.2. Let $\theta : K \times K \to Y \setminus (-int P)$ be any map and $\rho \in \mathbb{R}$. The mapping $F: K \to Y$ is said to be T -η-θ-invex relaxed with (ρ, \overline{b}) (in short; $T-(\eta,\theta,\rho)$ - \bar{b} -invex) on K if for all $x, u \in K$, we have

$$
b(x, u) [F(x) - F(u)] - \langle T(u), \eta(x, u) \rangle - \rho \theta(x, u) \notin -\mathrm{int}P.
$$

Remark 4.3. If $\bar{b} = 1$ and $\rho \geq 0$, then Definition 4.2 coincides with the definition of T - η -invexity of F introduced and studied by [3].

Remark 4.4. If $\rho \geq 0$, then Definition 4.2 coincides with the definition of T-η-invexity of F of order $\lambda > 0$ where $\lambda = 1/\overline{b}$ introduced and studied by [8].

Proposition 4.5. Let $b \in B$ with $\overline{b} > 0$. Let F be $T-(\eta, \theta, \rho)$ - \overline{b} -invex on K, then T is $(\bar{b}; \eta)$ -monotone associated with (ρ, θ) on K.

Proof. F is $T-(\eta, \theta, \rho)$ - \bar{b} -invex on K, *i.e.*, there exists a map $\gamma : K \times K \times [0, 1] \rightarrow$ X satisfying $\lim_{t\to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t\to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$, and

$$
\overline{b}(x, u) [F(x) - F(u)] - \langle T(u), \eta(x, u) \rangle - \rho \theta(x, u) \notin -\mathrm{int}P,
$$

i.e.,

$$
F(x) - F(u) - \frac{\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)}{\overline{b}(x, u)} \notin -intP.
$$

Interchanging x and u in the above equation, we get

$$
F(u) - F(x) - \frac{\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)}{\overline{b}(u, x)} \notin -intP.
$$

Adding the above two equations, we obtain

$$
\frac{\langle T(u), \eta(x, u) \rangle + \rho\theta(x, u)}{\overline{b}(x, u)} + \frac{\langle T(x), \eta(u, x) \rangle + \rho\theta(u, x)}{\overline{b}(u, x)} \notin intP
$$

for all $x, u \in K$. Since $\overline{b}(x, u)\overline{b}(u, x) > 0$, we have

$$
\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]+\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]
$$

$$
\notin intP
$$

for all $x, u \in K$. Hence T is $(\bar{b}; \eta)$ -monotone associated with (ρ, θ) on K. This completes the proof. \Box

Theorem 4.6. Let K be a *n*-semiinvex set in X. The problems $(GPVVIP_b)$ and $(GDVVIP_b)$ are equivalent under the following conditions:

- (a) $\overline{b}(x, x) [\langle T(x), \eta(x, x) \rangle + \rho \theta(x, x)] = P \ 0 \text{ for all } x \in K,$
- (b) F is $T-(\eta, \theta, \rho)$ - \overline{b} -invex on K,
- (c) the mapping $\bar{b}(-,u)\langle T(u), \eta(-, u)\rangle : K \to Y$ is $(\bar{b}; \eta)$ -semipreinvex on K,
- (d) the mapping $\bar{b}(-, u)\theta(-, u) : K \to Y$ is $(\bar{b}; \eta)$ -semipreinvex on K,

(e) for each $u \in K$, the mapping

 $u \mapsto \overline{b}(x, u) [\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)]$

is η -hemicontinuous for all $x \in K$.

Proof. By Proposition 4.5, F is $T-(\eta, \theta, \rho)$ - \overline{b} -invex on K, implying T is $(\overline{b}; \eta)$ monotone associated with (ρ, θ) on K which is a condition in Theorem 3.3. Since all the conditions of Theorem 3.3 are satisfied, the problems $(GPVVIP_b)$ and $(GDVVIP_b)$ are equivalent. This completes the proof of the theorem. \Box

REFERENCES

- [1] C.R. Bector and C. Singh, B-Vex Functions, J. Optim. Theory Appl., 71 (1991), 237– 257.
- [2] C.R. Bector, S.K. Suneja and C.S. Lalitha, Generalized B-Vex Functions and Generalized B-Vex Programming, J. Optim. Theory Appl., $76(3)$ (1993), 561–576.
- [3] A. Behera and P.K. Das, *Variational Inequality Problems in H-spaces*, Int. Jour. Math. Math. Sci., 2006, article 78545, 1–18.
- [4] A. Behera and P.K. Das, Variational inequality problems in H-space Associated with T-η-pseudoinvex function, Nonl. Func. Anal. Appl., 14(2) (2009), 233–244.
- [5] N. Behera, C. Nahak and S. Nanda, *Generalized* (ρ, θ) -η- B -Bexity and *Generalized* (ρ, θ) -η-B-Preivexity, J. Math. Ineq. Appl., 10(2) (2007), 437-446.
- [6] B.D. Craven, Duality for generalized convex fractional programs in generalized concavity in optimization and economics, (eds. S. Schaible and W. T. Ziemba), Academic Press, New Work (1981), 473–489.
- [7] P.K. Das and A. Behera, An application of coincidence lifting index theorem in (GHVIP) and the variable step iterative method for $(T_n; \xi_\theta)$ -invex function, Advances in Nonlinear Variational Inequalities, $14(1)$ (2011), 73-94.
- [8] P.K. Das and A.K. Sahu, The Generalized Differential Dominated Vector Complementarity Problem of order λ (GDDVCP; λ) and Generalized F-Minty's Lemma, Int. Jour. Appl. Math. Comp., 3(1) (2011), 35–59.
- [9] P.K. Das and B. Kodamasingh, Generalized Nonlinear F-Variational inequality Problems and Equivalence Theorem, Advances in Nonlinear Variational Inequalities, 17(1) (2013), 1–22.
- [10] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.)Variational inequalities and complementarity problems, pp. 151-186. John Wiley and Sons, New York (1980).
- [11] M.A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, J. Math. Anal. Appl., 80 (1981), 545–550.
- [12] R.N. Kaul and S. Kaur, Optimality Ctriteria in Nonlinear Programming Involving Nonconvex Functions, J. Math. Anal. Appl., 105 (1985), 104–112.
- [13] G. Stampachchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258, (1964), 4413–4416.
- [14] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38.
- [15] X.Q. Yang and G.Y. Chen, A class of nonconvex functions and pre-variational inequalities), J. Math. Anal. Appl., 169 (1992), 359–373.

[16] G.J. Zalmai, Sufficiency Criteria and duality in nonlinear program involving n-set functions, J. Math. Anal. Appl., 149 (1990), 323–338.