Nonlinear Functional Analysis and Applications Vol. 22, No. 2 (2017), pp. 323-334 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2017 Kyungnam University Press

GENERALIZED VECTOR B-VARIATIONAL INEQUALITY PROBLEMS

Satya Narayan Mishra¹, Prasanta Kumar Das² and Girish Chandra Nayak³

¹Department of Mathematics, School of Applied Sciences KIIT University, Bhubaneswar-751024, India e-mail: snmishra000@gmail.com

²Department of Mathematics, School of Applied Sciences KIIT University, Bhubaneswar-751024, India e-mail: dasprasantkumar@yahoo.co.in

³Junior Lecturer (Mathematics) Govt. Jr. College, Phulbani, Kandhamal-762001, India e-mail: girishchn@gmail.com

Abstract. In this paper, the concept of generalized vector *B*-variational inequality problems are introduced and are studied their existence theorems. The concept of pre b- η -invex function and generalized T- (η, θ, ρ) -*B*-invex are introduced and are used to prove the existence theorems of generalized vector *B*-variational inequality problems.

1. INTRODUCTION

In 1964, the variational inequality problem (VIP) was introduced by Stampacchia [13]. To develop the VIP in vector spaces, Gianessi ([10], 1980) has introduced the vector variational inequality problems and has studied its existence theorems in finite dimensional vector spaces \mathbb{R}^n . The theory of variational inequalities is applied to study various types of problems arises in physical sciences, engineering branches, economics, optimization etc. The variational inequality problems studied by Stampacchia [13] is defined as follows.

⁰Received July 1, 2016. Revised November 11, 2016.

⁰2010 Mathematics Subject Classification: 90C33, 47J30, 65K10.

⁰Keywords: Generalized vector *b*-variational inequality problems, T- (η, θ, ρ) -*B*-invex function, $(b; \gamma)$ -semiinvex set, $(b; \gamma)$ -semipreinvex.

Let K be nonempty closed and convex subset of a reflexive real Banach space X with dual X^* and $T: K \to X^*$ a nonlinear map. Let the value of $f \in X^*$ at $x \in X$ be denoted by $\langle f, x \rangle$. The Variational Inequality Problem (VIP) is to:

find $x_0 \in K$ such that for all $x \in K$,

$$\langle T(x_0), x - x_0 \rangle \ge 0. \tag{VIP}$$

Earlier convexity property of a function has played an important role to study various types of results in optimization theory. Many significant results have been derived under convexity assumption. In 1981, Hanson [11] used the concept of generalized convex function as invex function in the place of convex and concave as follows: the differentiable function f from \mathbb{R}^n to \mathbb{R} is invex if there exists a vector valued function $\eta(x, u) \in \mathbb{R}^n$ such that

$$f(x) - f(u) \ge \nabla' f(u)(\eta(x, u))$$

for all $x, u \in \mathbb{R}^n$, where $\nabla' f(u)$ stands for the transpose of the gradient of f at $u \in \mathbb{R}^n$. But later Craven [6] coined the name as invex (invariant convex) function if any function f is satisfying the above equation and studied many duality theorems for functional programs using the functions. In 1988, Weir and Mond [14] have introduced the concept of η -invex set, pre-invex functions and have studied the multiple objective optimization problems. Inspired by the work of Hanson [11], the researchers have defined generalized variational inequalities replacing x - y by $\eta(x, y)$ and have shown various useful existence theorems.

1.1. **Definition of the Problems.** For simplicity, we recall the following terminologies given by Behera and Das [3]. Let (Y, P) be an ordered topological vector space equipped with a closed convex pointed cone P such that $intP \neq \emptyset$. Let $y \in Y$. Then

- (a) $y \notin -intP$ if and only if $y \ge_P 0$;
- (b) $y \in intP$ if and only if $y >_P 0$;
- (c) $y \notin intP$ if and only if $y \leq_P 0$;
- (d) $y \in -intP$ if and only if $y <_P 0$;
- (e) $y z \notin -intP$ if and only if $y z \ge_P 0$ (*i.e.*, $y \ge_P z$);
- (f) $y z \notin intP$ if and only if $y z \leq_P 0$ (*i.e.*, $y \leq_P z$);
- (g) $y z \notin (-intP \bigcup intP)$ if and only if $y z =_P 0$, (*i.e.*, $y =_P z$).

Throughout this paper, the domain and functions are defined as follows. Let X be a topological vector space, K be any subset of X and (Y, P) be an ordered topological vector space equipped with a closed convex pointed cone P such that $intP \neq \emptyset$. Let L(X, Y) be the set of continuous linear functionals from X to Y and $\eta : K \times K \to X$ and $\theta : K \times K \to Y$ be the vector valued

functions. Let $T: K \to L(X, Y)$ be any operator. Let $\rho \in \mathbb{R}$ be any real number.

- We consider the following generalized vector variational inequalities.
 - (i) The generalized primal vector variational inequality problems is to: find u ∈ K such that for all x ∈ K,

$$\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u) \notin -intP.$$
 (GPVVIP)

(ii) The generalized dual vector variational inequality problems is to: find $u \in K$ such that for all $x \in K$,

$$\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -intP.$$
 (GDVVIP)

(iii) The generalized primal vector B-variational inequality problems is to:
 find u ∈ K such that for all x ∈ K, b(u, x) > 0 and

$$b(u,x) [\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u)] \notin -intP.$$
 (GPVVIP_b)

(iv) The generalized dual vector B-variational inequality problems is to: find $u \in K$ such that for all $x \in K$, $\overline{b}(x, u) < 0$ and

$$b(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)] \notin int P.$$
 (GDVVIP_b)

Remark 1.1. (1) Let $F: K \to Y$. If $\rho = 1$, b(x, u) = 1 for all $x, u \in K$ and $\theta(x, u) = F(x) - F(u)$, then (*GPVVIP*) coincides the *F*-GVIP studied by Behera and Das [3].

(2) Let $\xi : K \to L(X, Y)$. If $\rho = 1$, b(x, u) = 1 for all $x, u \in K$ and $\theta(x, u) = \langle \xi(u), \eta(x, u) \rangle$, then (GPVVIP) coincides the generalized nonlinear variational inequality problems studied by Das and Kodamasingh [9].

2. η -semiinvex set, (\overline{b}, η) -semipreinvex function and (\overline{b}, η) -monotone function

In fact, preinvexity is a generalization of invexity for nondifferentiable function. In 1992, Yang and Chen [15] presented a wide class of generalized convex set and functions, called γ -semiconnected set and semipreinvex functions as follows.

Definition 2.1. ([15]) Let K be a nonempty subset of \mathbb{R}^n .

(1) K is to satisfy γ -semiconnected property, if for all $x, y \in K$ and $t \in [0, 1]$, there exists a vector path function

$$\gamma: K \times K \times [0,1] \to \mathbb{R}^n$$

such that

$$y + t\gamma(x, y, t) \in K$$

(2) Assume that the set K satisfies γ -semiconnected property. A real valued function $F: K \to \mathbb{R}$ is said to be semipreinvex with respect to γ if for all $x, y \in K$ and $t \in [0, 1]$,

$$F(y + t\gamma(x, y, t)) \le (1 - t)F(y) + tF(x)$$

holds and

$$\lim_{t\downarrow 0} t \ \gamma(x, y, t) = 0.$$

Let

$$B = \left\{ b : X \times X \times [0,1] \to \mathbb{R} \mid \overline{b}(x,u) = \lim_{\lambda \to 0^+} b(x,u,\lambda), \ \left| \overline{b}(x,u) \right| < \infty \right\}$$

$$\neq \emptyset.$$

For our need, we define γ -semiinvex set and $(b; \gamma)$ -semipreinvex as follows.

Definition 2.2. A set $K \subset X$ is said to be

- (a) γ -semiaffine set in X if for all $x, u \in K$, there exists a vector valued map $\gamma : K \times K \times \mathbb{R} \to X$ satisfying the condition $\lim_{t \to 0} t \ \gamma(x, u, t) = 0$ such that $u + t \ \gamma(x, u, t) \in K$ for all $t \in \mathbb{R}$.
- (b) γ -semiinvex set in X if for all $x, u \in K$, there exists a vector valued map $\gamma: K \times K \times [0,1] \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ such that $u + t \gamma(x, u, t) \in K$ for all $t \in [0,1]$.
- (c) η -limiting γ -semiaffine (or η -semiaffine) set in X if for all $x, u \in K$, there exists a vector valued map $\gamma : K \times K \times \mathbb{R} \to X$ satisfying the condition

$$\lim_{t\to 0}\gamma(x,u,t)=\eta(x,u) \quad \text{and} \quad \lim_{t\to 0} t \ \gamma(x,u,t)=0$$

such that $u + t \ \gamma(x, u, t) \in K$ for all $t \in \mathbb{R}$.

(d) η -limiting γ -semiinvex (or η -semiinvex) set in X if for all $x, u \in K$, there exists a vector valued map $\gamma : K \times K \times [0, 1] \to X$ satisfying the condition

$$\lim_{t\to 0}\gamma(x,u,t)=\eta(x,u) \quad \text{and} \quad \lim_{t\to 0}t\ \gamma(x,u,t)=0$$

such that $u + t \gamma(x, u, t) \in K$ for all $t \in [0, 1]$.

Definition 2.3. A map $F: K \to Y$ is said to be

(a) $(b; \gamma)$ -semipreaffine on K if there exists a vector valued map $\gamma : K \times K \times \mathbb{R} \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar

valued map $b \in B$ with $\lim_{t\to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$ such that for all $t \in \mathbb{R}$, we have

$$t \, b(x, u, t) F(u) + (1 - t) \, b(u, x, t) F(x) - F(u + t \gamma(x, u, t)) =_P 0;$$

(b) $(b; \gamma)$ -semipreinvex on K if there exists a vector valued map $\gamma : K \times K \times [0, 1] \to X$ satisfying the condition $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$ such that for all $t \in [0, 1]$, we have

$$t b(x, u, t)F(u) + (1-t) b(u, x, t)F(x) - F(u + t\gamma(x, u, t)) \notin -intP;$$

(c) $(\overline{b}; \eta)$ -limiting $(b; \gamma)$ -semipreaffine (or $(\overline{b}; \eta)$ -semipreaffine) on K if there exists a vector valued map $\gamma : K \times K \times \mathbb{R} \to X$ satisfying the condition $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ and $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$ such that for all $t \in \mathbb{R}$, we have

$$t b(x, u, t)F(u) + (1 - t) b(u, x, t)F(x) - F(u + t\gamma(x, u, t)) =_P 0;$$

(d) $(\bar{b};\eta)$ -limiting $(b;\gamma)$ -semipreinvex (or $(\bar{b};\eta)$ -semipreinvex) on K if there exists a vector valued map $\gamma : K \times K \times [0,1] \to X$ satisfying the condition $\lim_{t\to 0} \gamma(x, u, t) = \eta(x, u)$ and $\lim_{t\to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t\to 0} b(x, u, t) = \bar{b}(x, u)$ for all $x, u \in K$ such that for all $t \in [0, 1]$, we have

$$t b(x, u, t)F(u) + (1-t) b(u, x, t)F(x) - F(u + t\gamma(x, u, t)) \notin -intP.$$

Let there exists a map $\gamma: K \times K \times [0,1] \to X$ satisfying

$$\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$$

with $\lim_{t\to 0} t \gamma(x, u, t) = 0$, and a scalar valued map $b \in B$ with

$$\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$$

for all $x, u \in K$. The concept of \overline{b} - η -monotonicity of T is defined as follows.

Definition 2.4. The mapping T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$\overline{b}(u,x) \left[\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u) \right] + \overline{b}(x,u) \left[\langle T(x), \eta(u,x) \rangle + \rho \theta(u,x) \right]$$

$$\notin intP.$$

Definition 2.5. The mapping T is pseudo b- η -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP,$$

implying

$$b(x, u) [\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)] \notin intP.$$

Definition 2.6. The mapping T is quasi \overline{b} - η -monotone associated with (ρ, θ) on K if for all $x, u \in K$, we have

$$\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+
ho heta(u,x)
ight]\notin intP,$$

implying

$$\overline{b}(u,x) \left[\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u) \right] \notin -intP.$$

3. MAIN RESULTS

The concept of η -hemicontinuous at any point $x_0 \in K \subset X$ is defined as follows.

Definition 3.1. The mapping $T: K \to L(X, Y)$ is η -hemicontinuous at x_0 if for any sequence $\{x_n\}$ converging to x_0 along a line, the sequence $\{T(x_n)\}$ weakly converges to $T(x_0)$, *i.e.*, the map $\lambda \mapsto T(y + \lambda v)$ of [0, 1] into Y is continuous for $y \in K$, $v \in M$, where

$$M = \{ z : z = \eta(x, y) \in X, x \in K \}$$

when Y is endowed with its weak topology.

Theorem 3.2. Let K be a η -semiinvex set in X. The problems (GPVVIP) and (GDVVIP) are equivalent under the following conditions:

- (a) $\langle T(x), \eta(x, x) \rangle + \rho \,\theta(x, x) =_P 0$ for all $x \in K$,
- (b) T is $(b; \eta)$ -monotone associated with (ρ, θ) on K,
- (c) \overline{b} is antisymmetric on K where \overline{b} satisfies $\overline{b}(x, u) < 0$,
- (d) the mapping $\langle T(u), \eta(-, u) \rangle : K \to Y$ is η -semipreinvex on K,
- (e) the mapping $\theta(-, u) : K \to Y$ is η -semipreinvex on K,
- (f) for each $u \in K$, the mapping

$$u \mapsto \langle T(u), \eta(x, u) \rangle + \rho \,\theta(x, u)$$

is η -hemicontinuous for all $x \in K$.

Proof. Let $u \in K$ solves (*GPVVIP*), *i.e.*,

$$\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u) \notin -intP$$

for all $x \in K$. Since T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K, *i.e.*, there exists a map $\gamma : K \times K \times [0, 1] \to X$ satisfying $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ such that for all $x \in K$,

$$\overline{b}(u,x) \left[\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u) \right] + \overline{b}(x,u) \left[\langle T(x), \eta(u,x) \rangle + \rho \theta(u,x) \right]$$

 $\notin intP.$

Since \overline{b} is antisymmetric on K with $\overline{b}(x, u) < 0$, we get $\overline{b}(u, x) > 0$. Thus

$$\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin-intP$$

for all $x \in K$, implying

$$\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\notin intP$$

for all $x \in K$. Since $\overline{b}(x, u) < 0$, we get

$$\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -intP$$

for all $x \in K$. Hence u solves (GDVVIP). Conversely, let $u \in K$ solves (GDVVIP), *i.e.*,

$$\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x) \notin -intP$$

for all $x \in K$. Since

$$\langle T(x), \eta(x, x) \rangle + \rho \,\theta(x, x) =_P 0$$

for all $x \in K$. Since K is η -semiinvex, $x_t = u + t\gamma(x, u, t) \in K$ for all $x, u \in K$ and $t \in [0, 1]$. Replacing x by x_t in the above equation, we get

$$0 =_P \langle T(x_t), \eta(x_t, x_t) \rangle + \rho \,\theta(x_t, x_t)$$

$$\leq_P t \langle T(x_t), \eta(u, x_t) \rangle + (1 - t) \langle T(x_t), \eta(x, x_t) \rangle$$

$$+ \rho \left[t \theta(u, x_t) + (1 - t) \theta(x, x_t) \right]$$

for all $x \in K$. Since T and θ are η -hemicontinuous, taking limit as $t \to 0$, we get

$$0 \leq_P \langle T(u), \eta(x, u) \rangle + \rho \,\theta(x, u)$$

for all $x \in K$, implying

$$\langle T(u), \eta(x, u) \rangle + \rho \, \theta(x, u) \notin -intP$$

for all $x \in K$. This showing u solves (*GPVVIP*). This completes the proof of the theorem.

Theorem 3.3. Let K be a η -semiinvex set in X. The problems (GPVVIP_b) and (GDVVIP_b) are equivalent under the following conditions:

(a)
$$b(x,x)[\langle T(x),\eta(x,x)\rangle + \rho \theta(x,x)] =_P 0 \text{ for all } x \in K,$$

- (b) T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K,
- (c) the mapping $\overline{b}(-,u)\langle T(u),\eta(-,u)\rangle : K \to Y$ is $(\overline{b};\eta)$ -semipreinvex on K,
- (d) the mapping $\overline{b}(-, u)\theta(-, u): K \to Y$ is $(\overline{b}; \eta)$ -semipreinvex on K,
- (e) for each $u \in K$, the mapping

$$u \mapsto b(x, u) \left[\langle T(u), \eta(x, u) \rangle + \rho \, \theta(x, u) \right]$$

is η -hemicontinuous for all $x \in K$.

Proof. Let $u \in K$ solves $(GPVVIP_b)$, *i.e.*,

$$\bar{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP$$

for all $x \in K$. Since T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K, *i.e.*, there exists a map $\gamma : K \times K \times [0, 1] \to X$ satisfying $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \overline{b}(x, u)$ such that for all $x \in K$,

$$\overline{b}(u,x) \left[\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u) \right] + \overline{b}(x,u) \left[\langle T(x), \eta(u,x) \rangle + \rho \theta(u,x) \right]$$

$$\notin intP.$$

Since

$$\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\theta(x,u)\right]\notin -intP$$

for all $x \in K$, we get

$$\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle+\rho\theta(u,x)\right]\notin intP$$

for all $x \in K$. Hence u solves $(GDVVIP_b)$. Conversely, let $u \in K$ solves $(GDVVIP_b)$, *i.e.*,

$$\overline{b}(x,u)\left[\langle T(x),\eta(u,x)\rangle + \rho\theta(u,x)\right] \notin intP$$

for all $x \in K$. Since

$$\overline{b}(x,x)\left[\langle T(x),\eta(x,x)\rangle+\rho\,\theta(x,x)\right]=_P 0$$

for all $x \in K$. Since K is η -semiinvex, $x_t = u + t\gamma(x, u, t) \in K$ for all $x, u \in K$ and $t \in [0, 1]$. Replacing x by x_t in the above equation, we get

$$0 =_{P} \overline{b}(x_{t}, x_{t}) \left[\langle T(x_{t}), \eta(x_{t}, x_{t}) \rangle + \rho \theta(x_{t}, x_{t}) \right]$$

$$\leq_{P} tb(x, u, t) \langle T(x_{t}), \eta(u, x_{t}) \rangle + (1 - t)b(u, x, t) \langle T(x_{t}), \eta(x, x_{t}) \rangle$$

$$+ \rho \left[tb(x, u, t)\theta(u, x_{t}) + (1 - t)b(u, x, t)\theta(x, x_{t}) \right]$$

for all $x \in K$. Since T and θ are η -hemicontinuous, taking limit as $t \to 0$, we get

$$0 \leq_P \bar{b}(u,x) \langle T(u), \eta(x,u) \rangle + \rho \, \bar{b}(u,x) \theta(x,u)$$

for all $x \in K$, implying

 $\overline{b}(u,x)\left[\langle T(u),\eta(x,u)\rangle+\rho\,\theta(x,u)\right]\notin-intP$

for all $x \in K$. This showing u solves $(GPVVIP_b)$. This completes the proof of the theorem. \Box

4. T- (η, θ, ρ) -B-invex function and its associated generalized variational inequalities

Kaul and Kaur [12] called these functions η -convex and defined η -pseudoconvex and η -quasiconvex functions. As an extension, the concept of ρ - (η, θ) invexity was introduced by Zalmai [16] which is generalization of invexity.

The class of convex functions have also been further extended to the class of *B*-invex functions by Bector *et al.* [1, 2]. A class of pseudo *B*-invex and quasi *B*-invex functions are studied by Bector *et al.* [2], which are generalization of pseudoinvex and quasiinvex functions respectively. Bector *et al.* [2] have introduced the sufficient optimality conditions and duality results for a nonlinear programming problem using *B*-invex functions. Behera, Nahak and Nanda [5] introduced the concept of generalized (ρ, θ) - η -*B*-bexity and generalized (ρ, θ) - η -*B*-preivexity to study the optimality of the problems.

Behera and Das [3] have defined the T- η -invex functions to study the variational inequality problems arises in ordered topological vector spaces. Later the extensions of T- η -invex functions are studied by Behera and Das [4], Das and Sahu [8], Das and Behera [7].

In this section, we define the concept of T- (η, θ, ρ) -B-semiinvex function and study the existence theorems of generalized variational inequalities associated with it. Let $F: K \to Y$ be any map. Let there exists a map $\gamma: K \times K \times [0, 1] \to X$ satisfying $\lim_{t\to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t\to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t\to 0} b(x, u, t) = \overline{b}(x, u)$ for all $x, u \in K$. The concept of T- η - θ invex function relaxed with (ρ, b) of F is defined as follows.

Definition 4.1. Let $\theta: K \times K \to Y \setminus (-int P)$ be any map and $\rho \in \mathbb{R}$. The mapping $F: K \to Y$ is said to be T- η - θ -invex relaxed with (ρ, \overline{b}) (in short; T- (η, θ, ρ) -B-invex) at $u \in K$ if for all $x \in K$, we have

$$\overline{b}(x,u)\left[F(x) - F(u)\right] - \langle T(u), \eta(x,u) \rangle - \rho \theta(x,u) \notin -intP.$$

- (1) F is weak T- η - θ -invex relaxed with (ρ, \overline{b}) if $\rho < 0$,
- (2) F is strong T- η - θ -invex relaxed with (ρ, \overline{b}) if $\rho > 0$.

Definition 4.2. Let $\theta: K \times K \to Y \setminus (-int P)$ be any map and $\rho \in \mathbb{R}$. The mapping $F: K \to Y$ is said to be T- η - θ -invex relaxed with (ρ, \overline{b}) (in short; T- (η, θ, ρ) - \overline{b} -invex) on K if for all $x, u \in K$, we have

$$b(x,u) \left[F(x) - F(u) \right] - \langle T(u), \eta(x,u) \rangle - \rho \theta(x,u) \notin -intP.$$

Remark 4.3. If $\overline{b} = 1$ and $\rho \ge 0$, then Definition 4.2 coincides with the definition of T- η -invexity of F introduced and studied by [3].

Remark 4.4. If $\rho \ge 0$, then Definition 4.2 coincides with the definition of T- η -invexity of F of order $\lambda > 0$ where $\lambda = 1/\overline{b}$ introduced and studied by [8].

Proposition 4.5. Let $b \in B$ with $\overline{b} > 0$. Let F be $T \cdot (\eta, \theta, \rho) \cdot \overline{b}$ -invex on K, then T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K.

Proof. F is T- (η, θ, ρ) - \bar{b} -invex on K, *i.e.*, there exists a map $\gamma : K \times K \times [0, 1] \to X$ satisfying $\lim_{t \to 0} \gamma(x, u, t) = \eta(x, u)$ with $\lim_{t \to 0} t \gamma(x, u, t) = 0$ and a scalar valued map $b \in B$ with $\lim_{t \to 0} b(x, u, t) = \bar{b}(x, u)$ for all $x, u \in K$, and

$$\overline{b}(x,u) \left[F(x) - F(u)\right] - \langle T(u), \eta(x,u) \rangle - \rho \theta(x,u) \notin -intP,$$

i.e.,

$$F(x) - F(u) - \frac{\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)}{\overline{b}(x, u)} \notin -intP$$

Interchanging x and u in the above equation, we get

$$F(u) - F(x) - \frac{\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)}{\overline{b}(u, x)} \notin -intP$$

Adding the above two equations, we obtain

$$\frac{\langle T(u), \eta(x, u) \rangle + \rho \theta(x, u)}{\overline{b}(x, u)} + \frac{\langle T(x), \eta(u, x) \rangle + \rho \theta(u, x)}{\overline{b}(u, x)} \notin intP$$

for all $x, u \in K$. Since $\overline{b}(x, u)\overline{b}(u, x) > 0$, we have

$$\overline{b}(u,x) \left[\langle T(u), \eta(x,u) \rangle + \rho \theta(x,u) \right] + \overline{b}(x,u) \left[\langle T(x), \eta(u,x) \rangle + \rho \theta(u,x) \right]$$

$$\notin intP$$

for all $x, u \in K$. Hence T is $(\overline{b}; \eta)$ -monotone associated with (ρ, θ) on K. This completes the proof.

Theorem 4.6. Let K be a η -semiinvex set in X. The problems (GPVVIP_b) and (GDVVIP_b) are equivalent under the following conditions:

- (a) $b(x,x) [\langle T(x), \eta(x,x) \rangle + \rho \,\theta(x,x)] =_P 0 \text{ for all } x \in K,$
- (b) F is $T (\eta, \theta, \rho) \overline{b}$ -invex on K,
- (c) the mapping $\overline{b}(-,u)\langle T(u),\eta(-,u)\rangle : K \to Y$ is $(\overline{b};\eta)$ -semipreinvex on K,
- (d) the mapping $\overline{b}(-, u)\theta(-, u): K \to Y$ is $(\overline{b}; \eta)$ -semipreinvex on K,

(e) for each $u \in K$, the mapping

 $u \mapsto \overline{b}(x,u) \left[\langle T(u), \eta(x,u) \rangle + \rho \,\theta(x,u) \right]$

is η -hemicontinuous for all $x \in K$.

Proof. By Proposition 4.5, F is $T - (\eta, \theta, \rho) - \overline{b}$ -invex on K, implying T is $(\overline{b}; \eta)$ monotone associated with (ρ, θ) on K which is a condition in Theorem 3.3. Since all the conditions of Theorem 3.3 are satisfied, the problems $(GPVVIP_b)$ and $(GDVVIP_b)$ are equivalent. This completes the proof of the theorem. \Box

References

- C.R. Bector and C. Singh, B-Vex Functions, J. Optim. Theory Appl., 71 (1991), 237– 257.
- [2] C.R. Bector, S.K. Suneja and C.S. Lalitha, Generalized B-Vex Functions and Generalized B-Vex Programming, J. Optim. Theory Appl., 76(3) (1993), 561–576.
- [3] A. Behera and P.K. Das, Variational Inequality Problems in H-spaces, Int. Jour. Math. Math. Sci., 2006, article 78545, 1–18.
- [4] A. Behera and P.K. Das, Variational inequality problems in H-space Associated with T-η-pseudoinvex function, Nonl. Func. Anal. Appl., 14(2) (2009), 233–244.
- [5] N. Behera, C. Nahak and S. Nanda, Generalized (ρ, θ) - η -B-Bexity and Generalized (ρ, θ) - η -B-Preivexity, J. Math. Ineq. Appl., **10**(2) (2007), 437–446.
- [6] B.D. Craven, Duality for generalized convex fractional programs in generalized concavity in optimization and economics, (eds. S. Schaible and W. T. Ziemba), Academic Press, New Work (1981), 473–489.
- [7] P.K. Das and A. Behera, An application of coincidence lifting index theorem in (GHVIP) and the variable step iterative method for $(T_{\eta}; \xi_{\theta})$ -invex function, Advances in Nonlinear Variational Inequalities, **14**(1) (2011), 73–94.
- [8] P.K. Das and A.K. Sahu, The Generalized Differential Dominated Vector Complementarity Problem of order λ (GDDVCP; λ) and Generalized F-Minty's Lemma, Int. Jour. Appl. Math. Comp., 3(1) (2011), 35–59.
- [9] P.K. Das and B. Kodamasingh, Generalized Nonlinear F-Variational inequality Problems and Equivalence Theorem, Advances in Nonlinear Variational Inequalities, 17(1) (2013), 1–22.
- [10] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.)Variational inequalities and complementarity problems, pp. 151-186. John Wiley and Sons, New York (1980).
- [11] M.A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, J. Math. Anal. Appl., 80 (1981), 545–550.
- [12] R.N. Kaul and S. Kaur, Optimality Ctriteria in Nonlinear Programming Involving Nonconvex Functions, J. Math. Anal. Appl., 105 (1985), 104–112.
- G. Stampachchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258, (1964), 4413–4416.
- [14] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38.
- [15] X.Q. Yang and G.Y. Chen, A class of nonconvex functions and pre-variational inequalities), J. Math. Anal. Appl., 169 (1992), 359–373.

[16] G.J. Zalmai, Sufficiency Criteria and duality in nonlinear program involving n-set functions, J. Math. Anal. Appl., 149 (1990), 323–338.