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Abstract. In the present paper, considering some different type of Cauchy sequence on

a quasi metric space, we classify the completeness of quasi metric spaces. By using some

recent techniques we provide new fixed point results on some kind of complete quasi metric

spaces.

1. Introduction and preliminaries

Fixed point theory is one of basic subjects in topology and analysis. There
are many applications of this theory in the literature, which one of the most
important of them is investigated the existence and uniqueness of solutions of
differential and integral equations. Therefore, an operator is determined for
differential or integral equations, and one to one correspondence is constructed
between the existence (and the uniqueness) of fixed point of this operator and
the existence (and uniqueness) of solution of differential or integral equations.
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This theory, contains the research about whether the fixed point of an operator
exist, whether the fixed point is unique, if it is unique, then how to find it.

Fundamentally, fixed point theory divides into three major subjects which
are topological, discrete and metric. Especially, it has been intensively im-
proving on the metric case because of useful to applications.

The purpose of this paper is that to investigate the feasibility of the studies
of metrical fixed point theory on quasi metric space, which has a comprehensive
structure space and more application on computer science and semantics.

On the metric space, definition of Cauchy sequence and completeness of
space depend on metric. Hence, these are indispensable terms for fixed point
theory. In the studies of metrical fixed point theory, it is essential method that
shows the sequence which is obtained by an iteration is Cauchy in a complete
metric space.

To obtain the quasi metric version of studies of metrical fixed point theory,
we need to correspondence to quasi metric version of these two fundamental
concepts. However, results of researches show that there are seven different
definitions of Cauchy sequence on quasi metric spaces. On the other hand,
taking into account the quasi metric, the conjugate quasi metric and the metric
(which is obtained by quasi metric) topology, the convergence of a sequence
in quasi metric spaces can be obtained in three different ways. In this case,
when studying fixed point theory on quasi metric space, it should be analyzed
which Cauchy sequence and type of convergence are more appropriate to use
for completeness of quasi metric space. In this paper, we will examine this
analyze by classifying the completeness of quasi metric spaces, and give some
new fixed point results.

Now we recall some basic concepts.

A quasi-pseudo metric on a nonempty set X is a function d : X ×X → R+

such that for all x, y, z ∈ X,
(i) d(x, x) = 0,
(ii) d(x, y) ≤ d(x, z) + d(z, y).

If a quasi-pseudo metric d satisfies

(iii) d(x, y) = d(y, x) = 0⇒ x = y,

then d is said to be quasi metric, in addition if a quasi metric d satisfies

(iv) d(x, y) = 0⇒ x = y,

then d is said to be T1-quasi metric. It is clear that, every metric is a T1-quasi
metric, every T1-quasi metric is a quasi metric and every quasi metric is a
quasi-pseudo metric. In this case the pair (X, d) is said to be quasi-pseudo
(resp. quasi, T1-quasi) metric space.
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Let (X, d) be a quasi-pseudo metric space. Given a point x0 ∈ X and a real
constant ε > 0, the sets

Bd(x0, ε) = {y ∈ X : d(x0, y) < ε}
and

Bd[x0, ε] = {y ∈ X : d(x0, y) ≤ ε}
are called open ball and closed ball, respectively, with center x0 and radius ε.

Each quasi-pseudo metric d on X generates a topology τd on X which has
a base the family of open balls {Bd(x, ε) : x ∈ X and ε > 0}. The closure of a
subset A of X with respect to τd is denoted by clτd(A). If d is a quasi metric
on X, then τd is a T0 topology, and if d is a T1-quasi metric, then τd is a T1
topology on X.

If d is a quasi-pseudo metric on X, then the functions d−1, ds and d+ defined
by

d−1(x, y) = d(y, x),

ds(x, y) = max
{
d(x, y), d−1(x, y)

}
and

d+(x, y) = d(x, y) + d−1(x, y)

are also quasi-pseudo metrics on X. If d is a quasi metric, then ds and d+ are
(equivalent) metrics on X. Further, if a quasi-pseudo metric d satisfies

x 6= y ⇒ d(x, y) + d−1(x, y) > 0,

then d+ (and also ds) is a metric on X.

Example 1.1. Let X = R and d(x, y) = max
{
y2 − x2, 0

}
for all x, y ∈ X.

Then d is a quasi-pseudo metric, but not a quasi metric on X.

Example 1.2. Let X = R and d(x, y) = max {y − x, 0} for all x, y ∈ X.
Then, d is a quasi metric but not a T1-quasi metric on X. In this case τd is
left order topology, τd−1 is right order topology and τds is usual topology on
R.

Example 1.3. Let X = R and

d(x, y) =

 0 , x = y,

|y| , x 6= y,

for all x, y ∈ X. Then, d is a quasi metric but not a T1-quasi metric on
X. If we consider the subset Y =

{
1
n : n ∈ N

}
of X, then (Y, τd) is cofinite

topological space. Also (Y, τd−1) is discrete topological space.
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Example 1.4. Let X = R and

d(x, y) =

 y − x , x ≤ y,

1 , x > y,

for all x, y ∈ X. Then d is a T1-quasi metric, but not a metric on X. In this
case, τd is lower limit topology, τd−1 is upper limit topology and τds is discrete
topology on R.

Let (X, d) be a quasi metric space and x ∈ X. The convergence of a
sequence {xn} to x with respect to τd called d-convergence and denoted by

xn
d→ x, is defined

xn
d→ x ⇔ d(x, xn)→ 0.

Similarly, the convergence of a sequence {xn} to x with respect to τd−1 called

d−1-convergence and denoted by xn
d−1

→ x, is defined

xn
d−1

→ x ⇔ d−1(xn, x)→ 0.

Finally, the convergence of a sequence {xn} to x with respect to τds called

ds-convergence and denoted by xn
ds→ x, is defined

xn
ds→ x ⇔ ds(xn, x)→ 0.

It is clear that xn
ds→ x⇔ xn

d→ x and xn
d−1

→ x. More and detailed information
about some important properties of quasi metric spaces and their topological
structures can be found in [8, 11, 12].

Definition 1.5. ([17]) Let (X, d) be a quasi metric space. A sequence {xn}
in X is called

(1) left d-Cauchy if for every ε > 0, there exist x ∈ X and n0 ∈ N such
that

∀n ≥ n0, d(x, xn) < ε,

(2) right d-Cauchy if for every ε > 0, there exist x ∈ X and n0 ∈ N such
that

∀n ≥ n0, d(xn, x) < ε,

(3) left K-Cauchy (or forward Cauchy) if for every ε > 0, there exists
n0 ∈ N such that

∀n, k, n ≥ k ≥ n0, d(xk, xn) < ε,

(4) right K-Cauchy (or backward Cauchy) if for every ε > 0, there exists
n0 ∈ N such that

∀n, k, n ≥ k ≥ n0, d(xn, xk) < ε,
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(5) weakly left K-Cauchy (or weakly forward Cauchy) if for every ε > 0,
there exists n0 ∈ N such that

∀n ≥ n0, d(xn0 , xn) < ε,

(6) weakly right K-Cauchy (or weakly backward Cauchy) if for every ε >
0, there exists n0 ∈ N such that

∀n ≥ n0, d(xn, xn0) < ε,

(7) ds-Cauchy if for every ε > 0, there exists n0 ∈ N such that

∀n, k ≥ n0, d(xn, xk) < ε.

Remark 1.6. The following implications are hold:

ds-Cauchy⇒ left K-Cauchy⇒ weakly left K-Cauchy⇒ left d-Cauchy,

ds-Cauchy⇒ right K-Cauchy⇒ weakly right K-Cauchy⇒ right d-Cauchy.

Example 1.7 ([17]). Consider the quasi metric space (X, d) such that X =
[0, 1] and

d(x, y) =

 0 , x ≤ y,

1 , x > y.

Let {xn} be the sequence in X defined as follows:

xn =


1
2 + 1

2n , if n is odd,

1
3 + 1

3n , if n is even.

Then, d(0, xn) = 0 for all n ≥ 1, so that {xn} is d-convergent and also it is
left d-Cauchy. But, it is not weakly left K-Cauchy, since

max{d(xn, xn+1), d(xn, xn+2)} = 1.

Therefore, from Remark 1.6, it is neither left K-Cauchy nor ds-Cauchy. On
the other hand, d(xn, x1) = 0 for all n ≥ 1, so that {xn} is d−1-convergent
and so it is right d-Cauchy and also it is weakly right K-Cauchy. But, it is
not right K-Cauchy, since d(x2n+1, x2n) = 1. Let {yn} be the sequence in X
defined by {yn} =

{
0, 1, 12 ,

1
3 , · · · ,

1
n , · · ·

}
. Then it is weakly left K-Cauchy

but not left K-Cauchy, since d(y1, yn) = 0 for all n ≥ 1 and d(yk, yn) = 1 for
all n > k > 1.

If a sequence is left Cauchy (in the sense of d, K and weakly K, respectively)
with respect to d, then it is right Cauchy (in the sense of d, K and weakly K,
respectively) with respect to d−1.
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If a sequence is ds-Cauchy if and only if it is both left K-Cauchy and right
K-Cauchy.

It is well known that every convergent sequence is Cauchy in a metric space.
This situation is not valid in a quasi metric space. That is, d-convergent or
d−1-convergent sequences may not be Cauchy (in the sense of ds, K or weakly
K) in a quasi metric space. But, if a sequence is d-convergent, then it is left
d-Cauchy. Similarly, if a sequence is d−1-convergent, then it is right d-Cauchy.

Example 1.8. Consider the quasi metric space (X, d) such that X = [0, 1)
and d(x, y) = max {y − x, 0}. Let xn = n

n+1 , then it is ds-Cauchy and so it is
left d-Cauchy, but not d-convergent since

lim
n→∞

d(x,
n

n+ 1
) = lim

n→∞
max

{
n

n+ 1
− x, 0

}
= 1− x 6= 0

for all x ∈ X.

2. Classification of completeness

It is well known that, a metric space is said to be complete if every Cauchy
sequence is convergent. But, the completeness of a quasi metric space can
not be uniquely defined. Taking into account the convergence of a sequence
and Cauchyness, we can define most of completeness, which most of them
are already available in the literature (see [1, 6, 7, 8, 12, 17]) with different
notations.

Definition 2.1. Let (X, d) be a quasi metric space. Then (X, d) is said to be

(1) left (right) ζ-complete if every left (right) d-Cauchy sequence is d-
convergent,

(2) left (right) η-complete if every left (right) d-Cauchy sequence is d−1-
convergent,

(3) left (right) θ-complete if every left (right) d-Cauchy sequence is ds-
convergent,

(4) ζ-complete if every ds-Cauchy sequence is d-convergent,
(5) η-complete if every ds-Cauchy sequence is d−1-convergent,
(6) θ-complete (or bicomplete) if every ds-Cauchy sequence is ds-convergent,
(7) (weakly) left (right)K-complete if every (weakly) left (right)K-Cauchy

sequence is d-convergent,
(8) (weakly) left (right) M-complete if every (weakly) left (right) K-

Cauchy sequence is d−1-convergent,
(9) (weakly) left (right) Smyth complete if every (weakly) left (right) K-

Cauchy sequence is ds-convergent.
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Remark 2.2. It is clear that the following implications are true:

left ζ-complete ⇒ weakly left K-complete

⇒ left K-complete

⇒ ζ-complete,

right ζ-complete ⇒ weakly right K-complete

⇒ right K-complete

⇒ ζ-complete.

Example 2.3. ([17]) Let X = N and

d(m,n) =


0 , m = n,
1
n , m > n, m is even, n is odd,
1 , otherwise.

Since there are no non-trivial right K-Cauchy sequences, (X, d) is right K-
complete. However, the sequence {2, 4, 6, · · · } is right d-Cauchy but not d-
convergent. Thus the space is not right ζ-complete. On the other hand, the
same sequence is left d-Cauchy on (X, d−1), but not weakly left K-Cauchy on
(X, d−1). Also, (X, d−1) is left K-complete, but not left ζ-complete.

Remark 2.4. ([8]) Let {xn} be a sequence in a quasi metric space (X, d) such
that

∞∑
n=1

d(xn, xn+1) <∞,

then it is left K-Cauchy sequence.

In the light of the above definitions, we can give the following table:

d-convergence ⇐ ds-convergence ⇒ d−1-convergence
left d-Cauchy left ζ-complete ⇐ left θ-complete ⇒ left η-complete

⇑ ⇓ ⇓ ⇓
w left K-Cauchy w left K-complete ⇐ w left Smyth complete ⇒ w left M-complete

⇑ ⇓ ⇓ ⇓
left K-Cauchy left K-complete ⇐ left Smyth complete ⇒ left M-complete

⇑ ⇓ ⇓ ⇓
ds-Cauchy ζ-complete ⇐ θ-complete (bicomplete) ⇒ η-complete

⇓ ⇑ ⇑ ⇑
right K-Cauchy right K-complete ⇐ right Smyth complete ⇒ right M-complete

⇓ ⇑ ⇑ ⇑
w right K-Cauchy w right K-complete ⇐ w right Smyth complete ⇒ w right M-complete

⇓ ⇑ ⇑ ⇑
right d-Cauchy right ζ-complete ⇐ right θ-complete ⇒ right η-complete

Remark 2.5. Note that weakly left K-Cauchy sequence may not be left K-
Cauchy. But, according to the following result, weakly left K-completeness
and left K-completeness are equivalent.



378 I. Altun, G. Mınak and M. Olgun

Theorem 2.6. ([18]) A quasi metric space is weakly left K complete if and
only if it is left K-complete.

Taking into account this theorem, we can reduce the table as follows:

d-convergence ⇐ ds-convergence ⇒ d−1-convergence
left d-Cauchy left ζ-complete ⇐ left θ-complete ⇒ left η-complete

⇑ ⇓ ⇓ ⇓
left K-Cauchy left K-complete ⇐ left Smyth complete ⇒ left M-complete

⇑ ⇓ ⇓ ⇓
ds-Cauchy ζ-complete ⇐ θ-complete (bicomplete) ⇒ η-complete

⇓ ⇑ ⇑ ⇑
right K-Cauchy right K-complete ⇐ right Smyth complete ⇒ right M-complete

⇓ ⇑ ⇑ ⇑
right d-Cauchy right ζ-complete ⇐ right θ-complete ⇒ right η-complete

.

Remark 2.7. In spite of the fact that left d-Cauchyness is equivalent to right
d−1-Cauchyness, left ζ and right η-completeness are not equivalent. However,
the quasi metric space (X, d) is left ζ-complete if and only if (X, d−1) is right
η-complete. Also, similar relations can be obtained other Cauchyness and
completeness.

Remark 2.8. A quasi metric space is θ-complete (bicomplete) if and only if
it is both ζ and η-complete.

Remark 2.9. If a quasi metric space (X, d) is left M-complete, then it is
η-complete. Also, if a quasi metric space (X, d) is left K-complete, then it is
ζ-complete. Therefore if (X, d) is both left K-complete and left M-complete,
then it is θ-complete (bicomplete).

Example 2.10. Consider the quasi metric space (X, d) such that X = [0, 1)
and d(x, y) = max {y − x, 0}. Then (X, d) is left (right) η-complete, η-complete
and left (right) M-complete since every sequence d−1-converges to 0. On the
other hand, since ds(x, y) = |x− y|, then (X, d) is not θ-complete (bicom-
plete), therefore it is also not ζ-complete. Consider Y = (0, 1] with the same
quasi metric d. Then (Y, d) is ζ-complete but not η-complete.

Example 2.11. Consider the quasi metric space (X, d) such that X = [0, 1]
and

d(x, y) =

 0 , x ≤ y,

1 , x > y.

Since every sequence d-converges to 0, then (X, d) is left (right) ζ-complete,
ζ-complete and left (right) K-complete.
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Example 2.12. ([17]) Let X be the unit interval (0, 1) with the quasi metric
d on X defined by

d(x, y) =

 x− y , x ≥ y,

1 , x < y.

Consider the sequence {xn} where xn = 1
n+1 . Then, d(xk, xn) < 1

k for all

n > k, so that {xn} is left K-Cauchy and hence left d-Cauchy. However,
{xn} is not right d-Cauchy because for each point x ∈ X, d(xn, x) = 1 after
a certain stage. We also note that {xn} is not d-convergent. Similarly, the
sequence {yn} where yn = 1 − 1

n+1 is right d-Cauchy. We observe that {yn}
is in fact right K-Cauchy but not ds-Cauchy, for if n > k then d(yn, yk) <

1
k

while if n < k then d(yn, yk) = 1.

Let (A, d) be the subspace of (X, d), where A =
{

1
n+1 : n ∈ N

}
. Then A is

right ζ-complete, since every right d-Cauchy sequence in A is constant after
a certain stage. On the other hand, A is not left ζ-complete, since the left

d-Cauchy sequence
{

1
n+1

}
is not d-convergent in A. We also observe that A is

right K-complete but not left K-complete (since the left K-Cauchy sequence{
1

n+1

}
is not d-convergent in A). Similarly, the subspace (B, d) of (X, d),

where B =
{

1− 1
n+1 : n ∈ N

}
, is left ζ-and K-complete but neither right ζ-

nor K-complete since the sequence
{

1− 1
n+1

}
is not d-convergent in B.

3. Fixed point result

In this section, we provide some fixed point results considering appropriate
completeness of quasi metric space. First, we will mention some recent fixed
point results on quasi metric space.

In [10], considering a contractive condition depending on the quasi metric
d, Gaba proved a fixed point result for single valued maps on left K-complete
quasi metric space. In the same paper, there are similar fixed point results for
right K-completeness and θ-completeness (bicompleteness) of (X, d).

Also, in [2, 13, 15], considering some contractive conditions with respect to
q-function, which is introduced by Al-Homidan [2], the authors proved some
fixed point results for multivalued mappings on quasi metric space. When
the proof of Theorem 6.1 of [2] has been investigated, it is arise that the
completeness of quasi metric space is left-η-completeness. In fact, it suffices
η-completeness in this theorem. Although the completeness of quasi metric
space is not clear in Theorem 2.1 of [13], Latif and Al-Mezel considered the
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ζ-completeness of quasi metric space. On the other hand, it has been clearly
indicated which Cauchyness and which type of convergence have been used
in their fixed point results of [15]. Therefore, they used in our sense left-M-
completeness and η-completeness.

As understood from recent papers [2, 13, 14, 15], it is more suitable using
the w-distance or q-function (a slight generalization of w-distance) instead of
the quasi metric d in contractive condition of fixed point results.

A q-function on a quasi metric space (X, d) is a function q : X×X → [0,∞)
satisfying the following conditions:

(Q1) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X,
(Q2) if x ∈ X, M > 0, and {yn} is a sequence in X that τd−1-converges to a

point y ∈ X and satisfies q(x, yn) ≤M for all n ∈ N, then q(x, y) ≤M ,
(Q3) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ

imply d(y, z) ≤ ε.
Note that if q(x, y) = 0 and q(x, z) = 0, then y = z.

It is clear that if (X, d) is a metric space, then d is a q-function on (X, d).
However, Example 3.2 (Example 1.3 above) of [2] shows that there exists a
quasi metric space (X, d) such that d does not satisfy condition (Q3), and
hence it is not a q-function on (X, d).

Remark 3.1. ([15]) Let q be a q-function on a quasi metric space (X, d).
Then, for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ
imply ds(y, z) ≤ ε.

On the other hand, the following family of functions, which is introduced by
Wardowski [20], has been considered recently for fixed point theory on metric
spaces (see for example [3, 4, 5, 9, 16, 19, 21]).

Let F be the family of all functions F : (0,∞)→ R satisfying the following
conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β,
F (α) < F (β).

(F2) For each sequence {an} of positive numbers limn→∞ an = 0 if and only
if limn→∞ F (an) = −∞.

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

Definition 3.2. Let q be a q-function on a quasi metric space (X, d), T :
X → X be a mapping and F ∈ F . Then T is said to be an Fq-contraction if

(i) q(x, y) = 0 ⇒ q(Tx, Ty) = 0,
(ii) there exists τ > 0 such that

τ + F (q(Tx, Ty)) ≤ F (q(x, y)), (3.1)
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for all x, y ∈ X with q(Tx, Ty) > 0.

Remark 3.3. It is clear from Definition 3.2 that if T is an Fq-contraction on
a quasi metric space (X, d), then T is nonexpansive with respect to q, that is,

q(Tx, Ty) ≤ q(x, y)

holds for all x, y ∈ X.

Our main fixed point result as follows:

Theorem 3.4. Let (X, d) be a left M-complete quasi metric space, q be a
Q-function on X, T : X → X be a mapping and F ∈ F . If T is an Fq-
contraction, then T has a unique fixed point z ∈ X. Moreover, q(z, z) = 0.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X by xn = Txn−1
for all n ∈ N. Let qn = q(xn−1, xn) for all n ∈ N. If there exists k ∈ N with
q(xk−1, xk) = 0, then by (i) of Definition 3.2, we get q(Txk−1, Txk) = 0. That
is, q(xk, xk+1) = 0. Thus, q(xk−1, xk+1) ≤ q(xk−1, xk)+q(xk, xk+1) = 0. Since
q(xk−1, xk) = 0 and q(xk−1, xk+1) = 0, we have xk = xk+1. and so T has a
fixed point. Now assume that qn = q(xn−1, xn) > 0 for all n ∈ N. Then, by
(ii) of Definition 3.2, we get

F (qn) ≤ F (qn−1)− τ ≤ F (qn−2)− 2τ ≤ · · · ≤ F (q0)− nτ. (3.2)

From (3.2), we get limn→∞ F (qn) = −∞. Thus, from (F2), we have

lim
n→∞

qn = 0.

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

qknF (qn) = 0.

By (3.2), the following holds for all n ∈ N,

qknF (qn)− qknF (q0) ≤ −qknnτ ≤ 0. (3.3)

Letting n→∞ in (3.3), we obtain that

lim
n→∞

nqkn = 0. (3.4)

From (3.4), there exits n1 ∈ N such that nqkn ≤ 1 for all n ≥ n1. So, we have,
for all n ≥ n1

qn ≤
1

n1/k
. (3.5)
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Therefore
∞∑
n=1

qn <∞. Now let ε > 0 and 0 < δ < ε for which condition (Q3)

is satisfied. Thus there exists n(δ) ∈ N such that

∞∑
n=n(δ)

qn < δ.

Now, for all n ≥ n(δ), we get, from (Q1)

q(xn(δ), xn) ≤ q(xn(δ), xn(δ)+1) + q(xn(δ)+1, xn(δ)+2) + · · ·+ q(xn−1, xn)

= qn(δ) + qn(δ)+1 + · · ·+ qn−1

≤
∞∑

n=n(δ)

qn < δ.

Therefore, for all m,n ≥ n(δ), we get q(xn(δ), xn) < δ and q(xn(δ), xm) < δ.
From Remark 3.1, we get ds(xn, xm) ≤ ε. Consequently, {xn} is a ds-Cauchy
and so it is left K-Cauchy sequence in the quasi metric space (X, d). Since
(X, d) left M-complete, there exists z ∈ X such that {xn} is d−1-convergent
to z, that is, d(xn, z) → 0 as n → ∞. On the other hand, for m > n ≥ n(δ)
we can get q(xn, xm) < δ. Therefore by (Q2), we get q(xn, z) ≤ δ < ε and so
q(xn, z) → 0 as n → ∞. Hence, from Remark 3.3 we have q(Txn, T z) → 0
as n → ∞. From Remark 3.1, we conclude that ds(z, Tz) = 0, i.e., z = Tz.
Moreover, from (3.1) q(z, z) = 0.

Next, we show the uniqueness of the fixed point. Let w be another fixed
point of T . If q(z, w) > 0, we have τ ≤ F (q(z, w)) − F (q(Tz, Tw)) = 0,
a contradiction. Hence, q(z, w) = 0. Since q(z, z) = 0 and q(z, w) = 0,
we obtain z = w, which is a contradiction. Hence, the fixed point of T is
unique. �

Remark 3.5. Since the iterative sequence in the proof of Theorem 3.4 is
ds-Cauchy, from Remark 1.6 it is also left K-Cauchy, left d-Cauchy, right
K-Cauchy and right d-Cauchy. Therefore, in the proof of Theorem 3.4, the
condition that (X, d) is left M-complete can be replaced by that (X, d) is η-
complete, left η-complete, right η-complete or rightM-complete. Moreover, it
can be considered the completeness which requires ds-convergence in the proof,
but it is stronger than the completeness which requires d−1-convergence.

The following easy example shows that we can not consider the completeness
which requires d-convergence with the same conditions in Theorem 3.4.

Example 3.6. LetX = (0, 1] and d(x, y) = max{y−x, 0}, q(x, y) = max{x, y},
Tx = x

2 and F (α) = lnα. Then (X, d) is a quasi metric space, q is a q-function



Classification of completeness of quasi metric space 383

on X, and T is Fq-contraction with τ = ln 2. Also, since every sequence d-
converges to 1, then (X, d) is ζ-complete, left (right) K-complete and left
(right) ζ-complete. But T has no fixed point.

By taking into account Remark 3.5 and Example 3.6, the following questions
may come to mind:

Problem 3.7. Under what conditions, we can use one of the completeness
which requires d-convergence in Theorem 3.4?

Problem 3.8. Is it possible to find a new contractive condition that the it-
erative sequence is left (right) K-Cauchy or left (right) d-Cauchy, but not
ds-Cauchy in Theorem 3.4?
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[15] J. Maŕın, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and fixed
points for multivalued maps, Fixed Point Theory Appl., 2011, Article ID 603861, 10 pp.

[16] G. Mınak, M. Olgun and I. Altun, A new approach to fixed point theorems for multivalued
contractive maps, Carpathian J. Math., 31(2) (2015), 241–248.

[17] I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasi-
pseudo-metric spaces, Monatsh. Math., 93 (1982), 127–140.

[18] S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr., 157 (1992),
15–23.

[19] M. Sgrio and C. Vetro, Multi-valued F -contractions and the solution of certain functional
and integral equations, Filomat, 27(7) (2013), 1259–1268.

[20] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl., 2012 2012:94, 6 pp.

[21] D. Wardowski and N. Van Dung, Fixed points of F -weak contractions on complete metric
spaces, Demonstr. Math., 47(1) (2014), 146–155.


