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Abstract. In this paper, we introduce perturbed quasi equilibrium problems with operator

solutions in Hausdorff topological vector spaces which contains operator quasi equilibrium

problems, operator equilibrium problems and operator variational inequalities as special

cases. We also established existence results for operator solutions of perturbed quasi equi-

librium problems both under compactness and noncompactness assumptions.

1. Introduction

Quasi-equilibria constitute an extension of Nash equilibria, which are of
fundamental importance in the theory of noncoperative games. By scalar
equilibrium problem, Blume and Oettli [1] , we mean the problem of finding

x∗ ∈ K such that f(x∗, y) ≥ 0 for all y ∈ K,

where K is given set and f : K ×K → R is a given bifunction.

In 2002, Domokos and Kolumban [7] introduced and studied a class of
operator variational inequalities (In short, OVVI). These operator variational
inequalities include not only scalar and vector variational inequalities as special
cases, see for example [2]-[4], [8]-[12] but also have sufficent evidence for their
importance to study, see [7]. Inspired by their work, in recent papers [13, 14],
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Kum and Kim developed the scheme of (OVVI) from single valued into general
multi-valued settings.

Motivated and inspired by the work of Domokos and Kolumban [7], Kum
and Kim [13], [14]. In this paper, we consider the perturbed quasi equilibrium
problems with operator solutions and prove existence some results both under
compact and noncompact assumptions.

2. Preliminaries

We begin with taking a brief look at the standard definition of continuities
of multi-valued mappings. Let X and Y be nonempty topological spaces and
T : X → 2Y be a multi-valued mappings. A multi-valued map T : X → 2Y

is said to upper semi continuous if for each x ∈ X and each open set V in Y
with T (x) ⊂ V, there there exists an open neighborhood U of x in X such that
T (y) ⊂ V for each y ∈ U. And a multi-valued map is said to be lower semi
continuous if for each x ∈ X and each open set V in Y with T (x)∩V = Φ, there
exists an open neighborhood U of x in X such thatT (y)∩V 6= Φ for each y ∈ U.
And T is said to be continuous if it is both lower semi continuousand upper
semi continuous. It is also known that T : X → 2Y is lower semi continuous
if and only if for each closed set V in Y, the set {x ∈ X : T (x) ⊂ V } is closed
in X.

We define partial ordering �Cx on Y by y �Cx z if and only if z − y ∈
C(x). So We shall write y ≺Cx z if and only if z − y ∈ intC(x) in the case
intC(x) 6= Φ. A bi function f : K ×K → Y is said to be Cx-monotone if for
each x, y ∈ K, f(x, y) +f(y, x) �Cx 0 and g : K → Y is said to be Cx- convex,
if for each x, y ∈ K and λ ∈ [0, 1], g(λy + (1− λ)x) �Cx λg(y) + (1− λ)g(x)
and hemicontinuous, if for each x, y ∈ K and λ ∈ [0, 1], the mapping λ →
g(λy + (1− λ)x) is upper semi continuous at 0+.

Let E be a Hausdorff topological vector space, X a nonempty convex subset
of E,F is another Hausdorff topological vector space. A nonempty subset P
of E is called convex cone if λP ⊆ P, for all λ > 0 and P + P = P.

From now on, unless otherwise specified, we work under the following set-
tings:

Let L(E,F ) be the space of all continuous linear operators from E to F,
and X ′ a nonempty convex subset of L(E,F ), X a nonempty convex subset
of E. Let C : X ′ → 2F be a multivalued map such that for each f ∈ X ′, C(f)
is convex cone in F with 0 /∈ C(f). For a given continuous multivalued map

A : X ′ → 2X
′

and a bi-operator T : X ′ × X ′ → F, then operator quasi-
equilibrium problem (in short, OQEP) is to find f∗ ∈ X ′ such that



On perturbed quasi-equilibrium problems with operator solutions 387

f∗ ∈ clX′A(f∗) and T (f∗, g) /∈ −intFC(f∗) for all g ∈ A(f∗), (2.1)

where clX′A(f∗) denotes the closure of A(f∗) in X ′.

In this paper, we established some existence results for the operator quasi-
equilibrium problem in the case where

T (f, g) = G(f, g) +H(f, g).

That is, we consider the following perturbed operator quasi-equilibrium prob-
lem (in short, POQEP).

Find f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intFC(f∗), ∀ g ∈ A(f∗). (2.2)

Now we need the following definitions:

The Graph of a multi-valued map T : X ′ ⊂ L(E,F )→ 2F denoted by G(T )
and is defined by

G(T ) = {(f, x) ∈ X ′ × F : f ∈ X ′, x ∈ T (f)}.
The inverse T−1 of T is the multi-valued map from R(T ), the range of T , to
X ′ defined by

f ∈ T−1(x) iff x ∈ T (f).

T is called upper semi continuous on X ′, if for each f ∈ X ′ and any open set
V in Y containing T (f) ⊆ V for all g ∈ U.

Let S, T : X ′ → 2L(E,F ) be multivalued maps. Then the multivalued map-
pings clS, coS, S ∩ T : X ′ → 2F are defined respectively as

(clS)(f) = clS(f), (coS)(f) = coS(f)

and
(S ∩ T )(f) = S(f) ∩ T (f)

for each f ∈ X ′, where coS(f) denotes the convex hull of S(f).

Theorem 2.1. Let Γ = (X,A,P ) be a 1-person game such that

(i) X is nonempty compact convex subset of a Hausdorff topological vector
space E,

(ii) A, clE(A) : X → 2X be a multi-valued mappings such that for each
x ∈ X,A(x) is nonempty convex set in X, for each x ∈ X, A−1(y) is
open set in Xand clEA is upper semi continuous,

(iii) P : X → 2X be a multi-valued mappings such that for each x ∈ X, f /∈
coP (x) and for each y ∈ X,P−1(y) is open set X.

Then there exist x∗ ∈ X such that x∗ ∈ clXA(x∗) and A(x∗) ∩ P (x∗) = Φ.
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Theorem 2.2. Let Γ = (X,A,P ) be a 1-person game such that

(i) X is nonempty compact convex subset of a Hausdorff topological vector
space E and X ′ be a nonempty compact subset of X,

(ii) A : X → 2X
′

and clEA : X → 2X be a multi-valued mappings such
that for each x ∈ X,A(x) is nonempty convex set, for each y ∈ X,
A−1(y) is open set in X and clEA is upper semi continuous,

(iii) P : X → 2X
′

be a multi-valued mappings such that for each x ∈ X,
x /∈ coP (x) and for each y ∈ X ′, P−1(y) is open set X.

Then there exist x∗ ∈ X such that x∗ ∈ clXA(x∗) and A(x∗) ∩ P (x∗) = Φ.

Remark 2.3. Theorem 2.1 is a special case of [[5], Theorem 2] and Theorem
2.2 is a special case of [[6], of Theorem 2].

3. Existence Results in Compact Setting

In this section, we establish some existence result for solution to the per-
turbed operator quasi-equilibrium problem (in short, POQEP) in compact
setting.

Theorem 3.1. Let X ′ is nonempty compact convex subset of L(E,F ). Let

H,G : X ′ × X ′ → F be vector valued bifunction and C : X ′ → 2X
′

and
A : X ′ → 2L(E,F ) be a multi-valued mappings. Assume that

(i) for each f ∈ X ′, G(f, f) = H(f, f) = 0,
(ii) H is continuous in the first argument and C(f)-convex in the second

argument,
(iii) G is Cf -monotone,
(iv) G is continuous in the first argument and C(f)-convex in the second

argument,
(v) the mapping W : X ′ → 2F defined by W (f) = F \ (−intFC(f)) for

each f ∈ X ′, has a closed graph in X ′ × F,
(vi) for each f ∈ X ′, C(f) is closed, convex and pointed cone in F such

that intFC(f) is nonempty,
(vii) for each f ∈ X ′, A(f) is nonempty convex and for each g ∈ X ′, A−1

is open in X ′. Also clX′A : X ′ → 2X
′

is upper semi continuous with
compact values.

Then there exist f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

Proof. The proof follows directly follows from the following two lemmas for
which the hypothesis of Theorem 3.1 remains the same. �
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Lemma 3.2. There exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and H(f∗, g)−G(g, f∗) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

Proof. Define a multi-valued mapping P : X ′ → 2X
′

as

P (f) = {g ∈ X ′ : H(f, g)−G(g, f) ⊆ −intFC(f)}, ∀ f ∈ X ′.

We show that f /∈ coP (f), for each f ∈ X ′. In contrary we suppose that there
exists there exists f∗ ∈ X ′ such that f∗ ∈ coP (f∗). This implies that f∗ can
be expressed as

f∗ =
∑
i∈I

λigi with λi ≥ 0,
∑
i∈I

λi = 1,

where {gi : i ∈ N} be a finite subset of X
′
, I ⊂ N be arbitrary nonempty

subset and N denotes the set of natural numbers. This follows that

H(f∗, gi)−G(gi, f
∗) ∈ −intFC(f∗), ∀ i = 1, 2, · · · , n.

Hence ∑
i∈I

λi(H(f∗, gi)−G(gi, f
∗)) ∈ −intFC(f∗). (3.1)

By assumption (i) and (ii), we have

0 = H(f∗, f∗) �C(f∗)

∑
i∈I

λiH(f∗, gi). (3.2)

By assumption (iii) and (iv), we have∑
i∈I

λiG(gi, f
∗) �C(f∗)

∑
i∈I

∑
j∈I

λjG(gi, gj)

=
1

2

∑
i,j∈I

λiλj(G(gi, gj) +G(gi, gj))

�C(f∗) 0.

(3.3)

Combining (3.2) and (3.3), it follows that∑
i∈I

λiG(gi, f
∗) �C(f∗)

∑
i∈I

λiH(f∗, gi).

Hence ∑
i∈I

λi(H(f∗, gi)−G(gi, f
∗)) ∈ C(f∗). (3.4)

Thus from (3.1) and (3.4), we have∑
i∈I

λi (H(f∗, gi)−G(gi, f
∗)) ∈ −intFC(f∗) ∩ (C(f∗)) 6= Φ,
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which is a contradiction. It remains to show that P−1(g) is open in X ′ which
is equivalent to showing that

[
P−1(g)

]c
= X ′ \ P−1(g) is closed. Indeed we

have

P−1(g) = {f ∈ X ′ : g ∈ P (f)}
= {f ∈ X ′ : H(f, g)−G(g, f) ∈ −intFC(f∗)}.

Thus [
P−1(g)

]c
= {f ∈ X ′ : H(f, g)−G(g, f) /∈ −intFC(f∗)}.

Let h ∈ [P−1(g)]c, the closure of [P−1(g)]c inX ′.We claim that h ∈
[
P−1(g)

]c
.

Indeed, let {fλ}λ∈Λ be a net in
[
P−1(g)

]c
such that fλ → h. Then we have

H(fλ, g)−G(g, fλ) /∈ −intFC(fλ) for each g ∈ X ′ , that is,

H(fλ, g)−G(g, fλ) ∈W (fλ)

for all λ ∈ Λ. Since W has closed graph in X ′ × F and G(., .) and H(.,.) are
continuous in the second and first arguments respectively, we have H(h, g)−
G(g, h) ∈W (h), that is,

H(h, g)−G(g, h) /∈ −intFC(h).

Hence h ∈ [P−1(g)]c. From assumption(vii), it follows that all the hypothesis
of Theorem 2.1 are satisfied. Hence there exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and A(f∗) ∩ P (f∗) = Φ.

Which implies that there exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and H(f∗, g)−G(g, f∗) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

�

Lemma 3.3. The following statements are equivalent.

(i) There exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and H(f∗, g)−G(g, f∗) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

(ii) There exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

Proof. Let f∗ ∈ X ′ such that f∗ ∈ clX′A(f∗) and H(f∗, g) − G(g, f∗) /∈
−intFC(f∗) holds for all g ∈ A(f∗). Let ft = tg + (1− t)f∗, t ∈ (0, 1], then

H(f∗, ft)−G(ft, f
∗) /∈ −intFC(f∗). (3.5)

Since C(f∗) is a cone, we have

(1− t)H(f∗, ft)− (1− t)G(ft, f
∗) /∈ −intFC(f∗).
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Since G and H are Cf -convex in the second arguments, we have

tG(ft, g) + (1− t)G(ft, f
∗)−G(ft, ft) ∈ C(f∗) (3.6)

and

tH(f∗, g) + (1− t)H(f∗, f∗)−H(f∗, ft) ∈ C(f∗).

t(1− t)H(f∗, g) + (1− t)(1− t)H(f∗, f∗)− (1− t)H(f∗, ft) ∈ C(f∗). (3.7)

Since G(f, f) = 0, H(f, f) = 0 for all f, thus a combination of (3.6) and (3.7)
yields

[tG(ft, g) + t(1− t)H(f∗, g)]

+ [(1− t)G(ft, f
∗)− (1− t)H(f∗, ft)] ∈ C(f∗)

(3.8)

Thus from (3.5) and (3.8), we have

tG(ft, g) + t(1− t)H(f∗, g) /∈ −intC(f∗).

Dividing by t > 0, we have

G(ft, g) + (1− t)H(f∗, g) /∈ −intC(f∗).

Since G is hemicontinuous in the first argument it follows that

G(f∗, g) +H(f∗, g) /∈ −intC(f∗) as t→ 0+.

Now let f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intFC(f∗)

holds for all g ∈ A(f∗). That is

−H(f∗, g) � C(f∗) G(f∗, g).

Now monotonicity of G yields,

G(f∗, g) +G(g, f∗) �C(f∗) 0.

Thus we have

G(g, f∗)−H(f∗, g) �C(f∗) G(f∗, g) +G(g, f∗) �C(f∗) 0.

Hence (i) holds. �
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4. Existence results in noncompact setting

Now we prove the following existence results for the solution of perturbed
operator quasi-equilibrium problem in noncompact setting. For this, we need
the concept of the escaping sequence introduced in Border [2].

Definition 4.1. Let E be a topological vector space and X a subset of E

such that X =
∞⋃
n=1

Xn, where {Xn}∞n=1 is an increasing sequence of nonempty

compact sets in the sense that Xn ⊆ Xn+1 for all n ∈ N. A sequence {fn}∞n=1

in X is said to be escaping sequence from X (relative to {Xn}∞n=1 ) if for each
n there is an M such that k ≥M, fk /∈ Xn.

Theorem 4.2. Let X ′ is nonempty subset of L(E,F ),and X ′ =
⋃∞
n=1Xn,

where {Xn}∞n=1 is an increasing sequence of nonempty, compact and convex
subsets of X. Let G,H,C and A be the same as in Theorem 3.1 and satisfies all
the conditions (i)-(vii). In additions, suppose that for each sequence {fn}∞n=1

in X ′ with fn ∈ Xn, n ∈ N which is escaping from X ′ relative to {Xn}∞n=1,
there exists m ∈ N and gm ∈ Xm

⋂
A(fm) such that for each fm ∈ clX′A(fm),

G(fm, gm) +H(fm, gm) ∈ −intFC(fm).

Then there exists f∗ ∈ X ′ such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

Proof. Since for each n ∈ N, Xn is compact and convex set in E, Theorem 3.1
implies that for all n ∈ N, there is fn ∈ Xn such that

fn ∈ clX′A(fn) and G(fn, h) +H(fn, h) /∈ −intFC(fn), ∀h ∈ A(fn). (4.1)

Suppose that the sequence be {fn}∞n=1 escaping from X ′ relative to {fn}∞n=1.
By assumption, there exists m ∈ N and hm ∈ Xm

⋂
A(fn) such that for each

fm ∈ clXA(fm),

G(fm, hm) +H(fm, hm) ∈ −intFC(fm),

which contradicts (4.1). Hence {fn}∞n=1 is not an escaping sequence from X ′

relative to {Xn}∞n=1. Therefore there exists r ∈ N and there is some subse-
quence {fjn} of {fn}∞n=1 which must lies entire in Xr is compact, there is a
subsequence {fin}in∈Λ of {fjn} in fr such that fin → f∗, where in →∞. Since
{Xn}∞n=1 is an increasing sequence, for all g ∈ X there exists i0 ∈ Λ with i0 > r
such that g ∈ Xi0 for all in ∈ Λ and in > i0, we have g ∈ Xi0 ⊂ Xin such
that fin ∈ clX′A(fin) and G(fin , g) +H(fin , g) /∈ −intFCfin). Since G and H
are continuous in second and first argument, respectively. Using upper semi-
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continuity of clXA, assumption (v) and Theorem 2.2, we see that f∗ ∈ X ′

such that

f∗ ∈ clX′A(f∗) and G(f∗, g) +H(f∗, g) /∈ −intC(f∗).

Hence the result is proved. �

Theorem 4.3. Let X ′ be a nonempty convex subset of a locally convex Haus-
dorff topological vector space E and X ′ be a nonempty compact subset of X. Let
F be an ordered Hausdorff topological vector space. Let G,H : X ′×X ′ → F be
a vector-valued bifunction, T : X ′ → 2L(E,F ) a multi-valued mapping with the
compact values and C : X ′ → 2F a multi-valued mapping such that for each
f ∈ X ′, C(f) is closed, convex and pointed cone in F with intFC(f) 6= Φ. Let
A, clX′A : X ′ → 2F be a multi-valued mappings such that for each f ∈ X ′,
A(f) is nonempty, for each g ∈ X ′, A−1(g) is open in X ′ and clX′A is upper
semicontinuous. Suppose that conditions (i)-(iii) of Theorem 3.1. Then there
exists f∗ ∈ X ′ such that for all g ∈ A(f∗) there exists t∗ ∈ T (f∗) such that

f∗ ∈ clXA(f∗) and 〈t∗, g − f∗〉+H(f∗, g) /∈ −intFC(f∗).

Proof. Define a multi-valued mapping P : X ′ → 2X
′

as

P (f) = {g ∈ X : G(f, g) +H(f, g) ∈ −intFC(f)}, ∀ f ∈ X ′.

Then using the argument similar to those used in proving Theorem 3.1, we
have f /∈ coP (f) for each f ∈ X ′ and P−1(g) is open for each g ∈ X ′. Thus all
the conditions of Theorem 2.2 are satisfied. Hence there exists f∗ ∈ X ′ such
that

f∗ ∈ clXA(f∗) and A(f∗) ∩ P (f∗) = Φ.

Which implies that there exists f∗ ∈ X ′such that

f∗ ∈ clX′A(f∗) and H(f∗, g) +H(f∗, g) /∈ −intFC(f∗), ∀ g ∈ A(f∗).

Hence the proof is complete. �
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