
Nonlinear Functional Analysis and Applications
Vol. 22, No. 2 (2017), pp. 395-402

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

A GENERALIZED CONTRACTION PRINCIPLE WITH
CONTROL FUNCTION ON M-METRIC SPACES

Hossein Monfared1, Mahdi Azhini2 and Mehdi Asadi3

1Department of Mathematics,
Science and Research Branch, Islamic Azad University, Tehran, Iran

e-mail: monfared.h@gmail.com

2Department of Mathematics,
Science and Research Branch, Islamic Azad University, Tehran, Iran

e-mail: m.azhini@srbiau.ac.ir

3Department of Mathematics,
Zanjan Branch, Islamic Azad University, Zanjan, Iran

e-mail: masadi@iauz.ac.ir

Abstract. M -metric spaces were introduced by Asadi et al. [3] in 2014 as a part of the

study of denotational semantics of data flow networks. In this paper, we prove a general-

ized contraction principle functions ϕ and ψ on M -metric spaces. The theorems we prove

generalize many previously obtained results.

1. Introduction

The notion of metric space was introduced by Fréchet [8] in 1906. Later,
many authors attempted to generalize the notion of metric space such as
pseudo metric space, quasi metric space, semi metric spaces. In this paper, we
consider another generalization of a metric space, so called M -metric space.
This notion was introduced by Asadi et al. (see e.g. [3, 4, 5, 13]) to solve
some difficulties in domain theory of computer science. The concept of the
metric space was applied to domain theory problems by Khan [9] in 1974.
By using Baire metric, Khan [9] modeled a parallel computation consisting
of a set that sends unending streams of information. Basically, he modeled a
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computation program that was based on an infinite sequence, but in computer
science, an infinite sequence corresponding to unterminated programs. During
the last decades many authors focused on a generalization of Banach contrac-
tion mapping principle. After the appearance of partial metric spaces as a
place for distinct research work in to flow analysis, non-symmetric topology
and domain theory [11, 12], some authors started to generalize this principle
to these spaces [1, 2, 14, 16]. In this paper we prove fixed point theorem
for a wide general type contractive mappings in M -metric spaces and hence
generalize some previously obtained results such as those in [6, 7, 10, 15].

The following notations are useful in the sequel.

(1) mxy := min{m(x, x),m(y, y)} = m(x, x) ∨m(y, y),
(2) Mxy := max{m(x, x),m(y, y)} = m(x, x) ∧m(y, y).

Definition 1.1. ([3]) Let X be a non empty set. A function m : X×X → R+

is called a m-metric if the following conditions are satisfied:

(m1) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,
(m2) mxy ≤ m(x, y),
(m3) m(x, y) = m(y, x),
(m4) (m(x, y)−mxy) ≤ (m(x, z)−mxz) + (m(z, y)−mzy) .

Then the pair (X,m) is called a M -metric space.

Remark 1.2. ([3]) For every x, y ∈ X
(1) 0 ≤Mxy +mxy = m(x, x) +m(y, y),
(2) 0 ≤Mxy −mxy = |m(x, x)−m(y, y)|,
(3) Mxy −mxy ≤ (Mxz −mxz) + (Mzy −mzy).

The next examples state that ms and mw are ordinary metric.

Example 1.3. ([3]) Let m be a m-metric. Put

(1) mw(x, y) = m(x, y)− 2mxy +Mxy,
(2) ms(x, y) = m(x, y)−mxy when x 6= y and ms(x, y) = 0 if x = y.

Then mw and ms are ordinary metrics.

In the following example we present an example of a m-metric which is not
p-metric.

Remark 1.4. ([3]) For every x, y ∈ X
(1) m(x, y)−Mxy ≤ mw(x, y) ≤ m(x, y) +Mxy,
(2) (m(x, y)−Mxy) ≤ ms(x, y) ≤ m(x, y).
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Example 1.5. ([3]) Let X = {1, 2, 3}. Define

m(1, 2) = m(2, 1) = m(1, 1) = 8,

m(1, 3) = m(3, 1) = m(3, 2) = m(2, 3) = 7, m(2, 2) = 9, m(3, 3) = 5,

so m is m-metric but m is not p-metric. Since m(2, 2) 6≤ m(1, 2) means m
is not p-metric. If D(x, y) = m(x, y) −mx,y, then m(1, 2) = m1,2 = 8 but it
means D(1, 2) = 0 while 1 6= 2 which means D is not metric.

Example 1.6. ([3]) Let (X, d) be a metric space and φ : [0,∞) → [φ(0),∞)
be an one to one and nondecreasing or strictly increasing mapping with
φ(0) ≥ 0 is defined, such that

φ(x+ y) ≤ φ(x) + φ(y)− φ(0), ∀x, y ≥ 0.

Then m(x, y) = φ(d(x, y)) is a m-metric.

Example 1.7. ([3]) Let (X, d) be a metric space. Then m(x, y) = ad(x, y)+b
where a, b > 0 is a m-metric, because put φ(t) = at+ b.

Lemma 1.8. ([3]) Every p-metric is an M -metric.

2. Topology for M-metric space

It is clear that each m-metric p on X generates a T0 topology τm on X. The
set

{Bm(x, ε) : x ∈ X, ε > 0},
where

Bm(x, ε) = {y ∈ X : m(x, y) < mx,y + ε},
for all x ∈ X and ε > 0, forms the base of τm.

Definition 2.1. ([3]) Let (X,m) be a M -metric space. Then:

(1) A sequence {xn} in a M -metric space (X,m) converges to a point
x ∈ X if and only if

lim
n→∞

(m(xn, x)−mxn,x) = 0. (2.1)

(2) A sequence {xn} in a M -metric space (X,m) is called a m-Cauchy
sequence if

lim
n,m→∞

(m(xn, xm)−mxn,xm) and lim
n,m→∞

(Mxn,xm −mxn,xm) (2.2)

are exist and finite.
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(3) A M -metric space (X,m) is said to be complete if every m-Cauchy
sequence {xn} in X converges, with respect to τm, to a point x ∈ X
such that

lim
n→∞

(m(xn, x)−mxn,x) = 0 and lim
n→∞

(Mxn,x −mxn,x) = 0.

Lemma 2.2. ([3]) Let (X,m) be a M -metric space. Then:

(1) {xn} is a m-Cauchy sequence in (X,m) if and only if it is a Cauchy
sequence in the metric space (X,mw).

(2) A M -metric space (X,m) is complete if and only if the metric space
(X,mw) is complete. Furthermore,

lim
n→∞

mw(xn, x) = 0

⇐⇒
[

lim
n→∞

(m(xn, x)−mxn,x) = 0 and lim
n→∞

(Mxn,x −mxn,x) = 0
]
.

Likewise above definition holds also for ms.

Lemma 2.3. ([3]) Assume that xn → x and yn → y as n→∞ in a M -metric
space (X,m). Then

lim
n→∞

(m(xn, yn)−mxn,yn) = m(x, y)−mxy.

Proof. We have

|(m(xn, yn)−mxn,yn)− (m(x, y)−mx,y)|
≤ (m(xn, x)−mxn,x) + (m(y, yn)−my,yn) .

�

From Lemma 2.3 we can deduce the following lemma.

Lemma 2.4. ([3]) Assume that xn → x as n → ∞ in a M -metric space
(X,m). Then

lim
n→∞

(m(xn, y)−mxn,y) = m(x, y)−mx,y,

for all y ∈ X.

Lemma 2.5. ([3]) Assume that xn → x and xn → y as n→∞ in a M -metric
space (X,m). Then m(x, y) = mxy. Further if m(x, x) = m(y, y), then x = y.

Proof. By Lemma 2.3, we have

0 = lim
n→∞

(m(xn, xn)−mxn,xn) = m(x, y)−mxy.

�
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3. Main result

Theorem 3.1. Let (X,m) be a complete M -metric space and T : X → X be
a self-mapping satisfying

ψ(m(Tx, Ty)) ≤ ψ(m(x, y))− φ(m(x, y)), ∀ x, y ∈ X, (3.1)

where ψ, φ : [0,∞)→ [0,∞) are both continuous and monotone nondecreasing
function with ψ(t) = φ(t) = 0 if and only if t = 0. Then T has a unique fixed
point.

Proof. Fix x0 ∈ X and define xn = Tnx0 for every n = 1, 2, 3, · · · . We shall
prove that

m(xn, xn+1)→ 0 as n→∞.
We have

ψ(m(xn, xn+1)) = ψ(m(Txn−1, Txn))

≤ ψ(m(xn−1, xn))− φ(m(xn−1, xn)). (3.2)

So we have

ψ(m(xn, xn+1)) ≤ ψ(m(xn−1, xn)).

Together with that ψ is nondecreasing implies that the sequence {m(xn, xn+1)}
is monotone decreasing and hence there is an m ≥ 0 such that

m(xn, xn+1)→ m as n→∞.

Letting n→∞ in (3.2) and by continuity of ψ and φ we obtain

ψ(m) ≤ ψ(m)− φ(m).

Which is a contradiction unless m = 0. Hence,

m(xn, xn+1)→ 0 as n→∞.

Now we want to show that {xn} is an m-Cauchy sequence in (X,m) so by
Lemma 2.2 we will prove that {xn} is a Cauchy sequence in (X,mw). But we
have

(1) limn→∞m(xn, xn+1) = 0,
(2) 0 ≤ mxn,xn+1 ≤ m(xn, xn+1)⇒ limn→∞mxn,xn+1 = 0,
(3) mxn,xn+1 = min{m(xn, xn),m(xn+1, xn+1)} ⇒ limn→∞m(xn, xn) = 0.

On the other hand

mxn,xm = min{m(xn, xn),m(xm, xm)} ⇒ lim
n,m→∞

mxn,xm = 0

and

Mxn,xm = max{m(xn, xn),m(xm, xm)} ⇒ lim
n,m→∞

Mxn,xm = 0.
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Assume that {xn} is not Cauchy in (X,mw). Then there exist some ε > 0 for
sub sequences {xlk} and {xnk

} of {xn} with nk > lk > k such that

mw(xlk , xnk
) ≥ ε.

Now corresponding to lk, we can choose nk such that it is the smallest integer
with nk > lk and satisfying above inequality. Hence

mw(xlk , xnk−1) < ε.

So we have

ε ≤ mw(xlk , xnk
)

≤ mw(xlk , xnk−1) +mw(xnk−1, xnk
)

< ε+mw(xnk−1, xnk
). (3.3)

We know that

mw(xnk−1, xnk
) = m(xnk−1, xnk

)− 2mxnk−1,xnk
+Mxnk−1,xnk

. (3.4)

Now by (3.3) and (3.4), we have

lim
k→∞

mw(xnk−1, xnk
) = 0 and lim

k→∞
mw(xlk , xnk

) = ε. (3.5)

Again,

mw(xnk
, xlk) ≤ mw(xnk

, xnk−1) +mw(xnk−1, xlk−1) +mw(xlk−1, xlk), (3.6)

mw(xnk−1, xlk−1) ≤ m
w(xnk−1, xnk

) +mw(xnk
, xlk) +mw(xlk , xlk−1). (3.7)

Letting k →∞ in the above inequalities (3.6) and (3.7), we have

lim
k→∞

mw(xnk−1, xlk−1) = ε,

so we have

lim
k→∞

m(xnk−1, xlk−1)

= lim
k→∞

(m(xnk−1, xnk−1 − 2mxnk−1,xnk−1 +Mxnk−1,xnk−1)

= lim
k→∞

mw(xnk−1, xnk−1) = ε.

Now by (3.1), we have

ψ(ε) = lim
k→∞

ψ(m(xnk
, xlk))

≤ lim
k→∞

[ψ(m(xnk−1, xlk−1))− φ(m(xnk−1, xlk−1))],

therefore

ψ(ε) ≤ ψ(ε)− φ(ε).
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Which is a contradiction, thus {xn} is a Cauchy sequence in complete metric
space (X,mw) and so {xn} is an m-Cauchy sequence in complete M -metric
space (X,m). Hence there exist some v ∈ X such that

lim
n→∞

(m(xn, v)−mxn,v) = 0.

But we have limn→∞mxn,v = 0, hence limn→∞m(xn, v) = 0 and by Remark
1.2, m(v, v) = 0. Now we want to show that v is the fixed point of T . By (3.1)
we have

0 ≤ ψ(m(Tv, Tv)) ≤ ψ(m(v, v))− φ(m(v, v)) = ψ(0)− φ(0) = 0.

And hence

ψ(m(Tv, Tv)) = 0 ⇒ m(Tv, Tv) = 0.

On the other hand

ψ(m(xn, T v)) ≤ ψ(m(xn−1, v))− φ(m(xn−1, v)).

Then letting n → ∞ above and making use of Lemma 2.4 and continuity of
functions ψ and φ we have

m(v, Tv) = 0.

Hence, we have

m(v, v) = m(Tv, Tv) = m(v, Tv) = 0,

so by (m1) we have Tv = v. Now let u, v ∈ X and both of them are the fixed
points of T . We have m(u, u) = m(v, v) = 0, because if m(v, v) > 0, by (3.1)

ψ(m(v, v)) = ψ(m(Tv, Tv)) ≤ ψ(m(v, v))− φ(m(v, v)) < ψ(m(v, v))

and since ψ is monotone nondecreasing we get m(v, v) < m(v, v), which is
contradiction. Similarly we obtain m(u, u) = 0.

On the other hand, if m(v, u) > 0 then by (3.1) we have

ψ(m(v, u)) = ψ(m(Tv, Tu)) ≤ ψ(m(v, u))− φ(m(v, u)) < ψ(m(v, u),

again by monotone nondecreasing of ψ we have m(v, u) < m(v, u), which is
contradiction. Thus m(v, u) = 0. Now we get

m(v, v) = m(u, u) = m(v, u) = 0.

Hence by (m1) u = v. �

Remark 3.2. If we take φ(t) = (1− k)ψ(t), where 0 < k < 1, then we obtain
the M -metric generalization of the result in [10].

Remark 3.3. If we take ψ(t) = t, then we obtain the M -metric generalization
for the weakly contractive fixed point theorem in [15].
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Remark 3.4. All of Theorems and Lemmas are satisfying in p-metric and
metric spaces, since by Lemma 1.8 every p-metric and metric spaces are M -
metric space.
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