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Abstract. In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave equa-
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1. Introduction

In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave
equation with the source term containing an unknown boundary value as fol-
lows

utt − uxx = f (x, t, u(x, t), u(0, t)) , 0 < x < 1, 0 < t < T, (1.1)

ux(0, t)− h0u(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where f, ũ0, ũ1 are given functions and h0 ≥ 0 is a given constant.
Eq. (1.1) has a constructive relationship to a more general equation, namely

utt −∆u = F (x, t, u, ux, ut, u(0, t)), 0 < x < 1, 0 < t < T. (1.4)

In some special cases, when the nonlinear term has the simple forms, Eq.
(1.4), with various boundary conditions, has been extensively studied by many
authors, for example, we refer to [1]-[4], [6]-[13], [15] and the references given
therein. In these works, many interesting results about existence, regular-
ity, asymptotic behavior, asymptotic expansion, and decay of solutions were
obtained.

In [6], Long and Diem has studied Prob. (1.3), (1.4) with the nonlinear
term

F = f (x, t, u, ux, ut) + εg (x, t, u, ux, ut) , (1.5)

associated with the mixed homogeneous boundary conditions

ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0. (1.6)

In the case of f ∈ C2
(
[0, 1]× [0,∞)× R3

)
and g ∈ C1

(
[0, 1]× [0,∞)× R3

)
,

an asymptotic expansion of order 2 in ε is obtained, for ε sufficiently small.
In [4], Ficken and Fleishman established the unique global existence and

stability of solutions for Prob. (1.3), (1.4) as follows

uxx − utt − 2αut − βu = εu3 + γ, ε > 0. (1.7)

Rabinowitz [12] proved the existence of periodic solutions for the equation

uxx − utt − 2αut = εf(x, t, u, ux, ut), (1.8)

where ε is a small parameter and f is periodic in time.
In a paper of Caughey and Ellison [3], a unified approach to the previ-

ous cases was presented discussing the existence, uniqueness and asymptotic
stability of classical solutions for a class of nonlinear continuous dynamical
systems.

In the case F = f
(
x, t, u,

∫ 1
0 g(u(y, t))dy

)
with g(u) = u2, a high order

iterative scheme was established in order to get a convergent sequence at a
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rate of order N (N ≥ 1) to a local unique weak solution of a nonlinear wave
equation

utt − uxx = f(x, t, u, ‖u‖2), 0 < x < 1, 0 < t < T, (1.9)

associated with the Dirichlet boundary conditions [8].
In [11], the authors considered a one dimentional nonlocal nonlinear strongly

damped wave equation with dynamical boundary conditions. In other word,
they looked to the following problem:

utt − uxx − αutxx + εf
(
u(1, t), ut(1,t)√

ε

)
= 0,

u(0, t) = 0,
utt(1, t) = −ε [ux(1, t) + αutx(1, t) + rut(1, t)]

−εf
(
u(1, t), ut(1,t)√

ε

)
,

(1.10)

with x ∈ (0, 1), t > 0, α, r > 0 and ε ≥ 0. Pro. (1.10) models a spring-

mass-damper system, where the term εf
(
u(1, t), ut(1,t)√

ε

)
represents a control

acceleration at x = 1. By using the invariant manifold theory, the authors
proved that for small values of the parameter ε, the solution of (1.10) attracted
to a two dimensional invariant manifold.

The aforementioned works lead to the study of the existence, asymptotic
expansion for Robin-Dirichlet problem for a nonlinear wave equation with the
source term containing an unknown boundary value (1.1)-(1.3). The paper
consists of four sections. In Section 2, we present some preliminaries. In
Section 3, we associate with Prob. (1.1)-(1.3) a linear recurrent sequence
which is bounded in a suitable space of functions. The existence of a local weak
solution and the uniqueness are proved by using the Faedo-Galerkin method
and the weak compact method. In Section 4, we establish an asymptotic
expansion of a weak solution uε(x, t) of order N + 1 in a small parameter ε for
the equation

utt − uxx = f (x, t, u(x, t), εu(0, t)) + εf1 (x, t, u(x, t), εu(0, t)) , (1.11)

0 < x < 1, 0 < t < T, associated to (1.2), (1.3). The results obtained here
may be considered as a relative generalization of the results obtained in [6]-[13],
[15].

2. Preliminaries

Put Ω = (0, 1). We will omit the definitions of the usual function spaces and
denote them by the notations Lp = Lp(Ω), Hm = Hm (Ω) . Let 〈·, ·〉 be either
the scalar product in L2 or the dual pairing of a continuous linear functional
and an element of a function space. The notation ‖·‖ stands for the norm in
L2 and we denote by ‖·‖X the norm in the Banach space X. We call X ′ the
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dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ the Banach space of real
functions u : (0, T )→ X measurable, such that ‖u‖Lp(0,T ;X) < +∞, with

‖u‖Lp(0,T ;X) =


(∫ T

0 ‖u(t)‖pX dt
)1/p

, if 1 ≤ p <∞,
ess sup
0<t<T

‖u(t)‖X , if p =∞.

With f ∈ Ck([0, 1]× R+ × R2), f = f(x, t, y1, y2), we put

D1f =
∂f

∂x
, D2f =

∂f

∂t
, Di+2f =

∂f

∂yi
, i = 1, 2

and

Dαf = Dα1
1 · · ·D

α4
4 f, α = (α1, · · · , α4) ∈ Z4

+,

|α| = α1 + · · ·+ α4 = k, D(0,··· ,0)f = f.

On H1, we shall use the following norm

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
.

We put

V = {v ∈ H1 : v(1) = 0}, (2.1)

a(u, v) =
∫ 1

0 ux(x)vx(x)dx+ h0u(0)v(0), u, v ∈ V. (2.2)

V is a closed subspace of H1 and on V three norms ‖v‖H1 , ‖vx‖ and ‖v‖a =√
a(v, v) are equivalent norms.

We have the following lemmas, the proofs of which are straightforward hence
we omit the details.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 , ∀ v ∈ H1. (2.3)

Lemma 2.2. Let h0 ≥ 0. Then the imbedding V ↪→ C0(Ω) is compact and{
‖v‖C0(Ω) ≤ ‖vx‖ ≤ ‖v‖a ,

1√
2
‖v‖H1 ≤ ‖vx‖ ≤ ‖v‖a ≤

√
1 + h0 ‖v‖H1 ,

for all v ∈ V.

Lemma 2.3. Let h0 ≥ 0. Then the symmetric bilinear form a(·, ·) defined by
(2.2) is continuous on V × V and coercive on V.
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Lemma 2.4. Let h0 ≥ 0. Then there exists the Hilbert orthonormal base {w̃j}
of L2 consisting of the eigenfunctions w̃j corresponding to the eigenvalue λj
such that {

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , lim
j→+∞

λj = +∞,

a(w̃j , v) = λj〈w̃j , v〉, ∀ v ∈ V, j = 1, 2, · · · .

Furthermore, the sequence {w̃j/
√
λj} is also a Hilbert orthonormal base of V

with respect to the scalar product a(·, ·).
On the other hand, we also have w̃j satisfying the following boundary value

problem {
−∆w̃j = λjw̃j in (0, 1),
w̃jx(0)− h0w̃j(0) = w̃j(1) = 0, w̃j ∈ V ∩ C∞(Ω).

The proof of Lemma 2.4 can be found in ([14], p.87, Theorem 7.7), with
H = L2 and V, a(·, ·) as defined by (2.1), (2.2).

Remark 2.5. The weak formulation of the initial-boundary value problem
(1.1)–(1.3) can be given in the following manner:

Find

u ∈ W̃ = {u ∈ L∞(0, T ;V ∩H2) : ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2)},
such that u satisfies the following variational equation

〈utt(t), w〉+ a(u(t), w) = 〈f (·, t, u(t), u(0, t)) , w〉 , (2.4)

for all w ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, ut(0) = ũ1. (2.5)

3. The existence and uniqueness

We make the following assumptions:

(H1) (ũ0, ũ1) ∈
(
V ∩H2

)
× V, ũ0x(0)− h0ũ0(0) = 0;

(H2) f ∈ C1([0, 1]× R+ × R2).

Fix T ∗ > 0. For each M > 0 given, we set the constant KM (f) as follows

KM (f) =

4∑
i=1

K0(M,Dif),

where {
K0(M,f) = sup

(x,t,y1,y2)∈A1(M)
|f(x, t, y1, y2)| ,

A1(M) = [0, 1]× [0, T ∗]× [−M,M ]2.
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For every T ∈ (0, T ∗] and M > 0, we put
W (M,T ) = {v ∈ L∞(0, T ;V ∩H2) : vt ∈ L∞(0, T ;V ), vtt ∈ L2(QT ),

with max{‖v‖L∞(0,T ;V ∩H2) , ‖vt‖L∞(0,T ;V ) , ‖vtt‖L2(QT )} ≤M},
W1(M,T ) = {v ∈W (M,T ) : vtt ∈ L∞(0, T ;L2)},

in which QT = Ω× (0, T ).
Now, we establish the recurrent sequence {um}. The first term is chosen as

u0 ≡ ũ0, suppose that
um−1 ∈W1(M,T ), (3.1)

we associate Prob. (1.1) - (1.3) with the following problem.

Find um ∈W1(M,T ) (m ≥ 1) satisfying the linear variational problem{
〈u′′m(t), w〉+ a(um(t), w) = 〈Fm(t), w〉 , ∀w ∈ V,
um(0) = ũ0, u

′
m(0) = ũ1,

(3.2)

where

Fm(x, t) = f [um−1](x, t) = f (x, t, um−1(x, t), um−1(0, t)) . (3.3)

Then, we have the following theorem.

Theorem 3.1. Let (H1) , (H2) hold. Then there exist positive constants M,
T > 0 such that, for u0 ≡ ũ0, there exists a recurrent sequence {um} ⊂
W1(M,T ) defined by (3.1)-(3.3).

Proof. The proof consists of several steps.

Step 1. The Faedo–Galerkin approximation (introduced by Lions [5]).

Consider the basis {wj} for V as in Lemma 2.4. Put

u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj , (3.4)

where the coefficients c
(k)
mj satisfy the system of linear differential equations{

〈ü(k)
m (t), wj〉+ a(u

(k)
m (t), wj) = 〈Fm(t), wj〉, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

(3.5)

where {
ũ0k =

∑k
j=1 α

(k)
j wj → ũ0 strongly in V ∩H2,

ũ1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly in V.

(3.6)

The system of the equations (3.5) can be rewritten in form{
c̈

(k)
mj(t) + λjc

(k)
mi (t) = 〈Fm(t), wj〉,

c
(k)
m (0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k.

(3.7)
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It is not difficult to show that (3.7) has a unique solution c
(k)
mj(t) in [0, T ] as

follows

c
(k)
mj(t) = α

(k)
j cos(

√
λjt) + β

(k)
j

sin(
√
λjt)√
λj

+

∫ t

0

sin(
√
λj(t− s))√
λj

〈Fm(s), wj〉ds, 0 ≤ t ≤ T, 1 ≤ j ≤ k. (3.8)

Therefore, (3.5) has a unique solution u
(k)
m (t) in [0, T ].

Step 2. A priori estimates.

We put

S(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥u̇(k)

m (t)
∥∥∥2

a
+
∥∥∥u(k)

m (t)
∥∥∥2

a

+ ||∆u(k)
m (t)||2 +

∫ t

0
||ü(k)

m (s)||2ds. (3.9)

Then, it follows from (3.5) and (3.9) that

S(k)
m (t) = S(k)

m (0) + 2〈Fm(0),4ũ0k〉+ 2

∫ t

0
〈Fm(s), u̇(k)

m (s)〉ds

− 2〈Fm(t),4u(k)
m (t)〉+2

∫ t

0
〈F ′m(s),4u(k)

m (s)〉ds+

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds

≡ S(k)
m (0) + 2〈Fm(0),∆ũ0k〉+

4∑
j=1

Ij . (3.10)

We can estimate without difficulty all terms on the right hand side of (3.10)
and we obtain that

I1 = 2

∫ t

0
〈Fm(s), u̇(k)

m (s)〉ds ≤ 4TK2
M (f) +

1

4

∫ t

0
S(k)
m (s)ds; (3.11)

I2 = −2〈Fm(t),4u(k)
m (t)〉

≤ 4
(
‖Fm(0)‖2 + T 2(1 + 2M)2K2

M (f)
)

+
1

2
S(k)
m (t); (3.12)

I3 = 2

∫ t

0
〈F ′m(s),4u(k)

m (s)〉ds

≤ 4T (1 + 2M)2K2
M (f) +

1

4

∫ t

0
S(k)
m (s)ds; (3.13)

I4 =

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds ≤ 2

∫ t

0
S(k)
m (s)ds+ 2TK2

M (f). (3.14)
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It follows from (3.10)-(3.14) that

S
(k)
m (t) ≤ D(k)

0 (f, ũ0k, ũ1k) +D1(M,T ) + 5
∫ t

0 S
(k)
m (s)ds, (3.15)

where{
D

(k)
0 (f, ũ0k, ũ1k) = 2S

(k)
m (0) + 4 〈Fm(0),∆ũ0k〉+ 8 ‖Fm(0)‖2 ,

D1(M,T ) = 4T
[
3 + 2(1 + 2M)2 + 2T (1 + 2M)2

]
K2
M (f).

(3.16)

By means of the convergences in (3.6), we can deduce the existence of a con-
stant M > 0 independent of k and m such that

D
(k)
0 (f, ũ0k, ũ1k) ≤ 1

2M
2, ∀m, k ∈ N. (3.17)

We choose T ∈ (0, T ∗], such that(
1
2M

2 +D1(M,T )
)

exp (5T ) ≤M2 (3.18)

and

kT = 4
√
TeTKM (f) < 1. (3.19)

Finally, it follows from (3.15), (3.17) and (3.18), that

S
(k)
m (t) ≤M2 exp (−5T ) + 5

∫ t
0 S

(k)
m (s)ds. (3.20)

By using Gronwall’s Lemma, we deduce from (3.20) that

S
(k)
m (t) ≤M2 exp (−5T ) exp (5t) ≤M2, (3.21)

for all t ∈ [0, T ], for all m and k. Therefore, we have

u(k)
m ∈W (M,T ) for all m and k. (3.22)

Step 3. Limiting process.

From (3.22), we deduce the existence of a subsequence of {u(k)
m } still so

denoted, such that
u

(k)
m → um in L∞(0, T ;V ∩H2) weak*,

u̇
(k)
m → u′m in L∞(0, T ;V ) weak*,

ü
(k)
m → u′′m in L2(QT ) weak,
um ∈W (M,T ).

(3.23)

Passing to limit in (3.5), we have um satisfying (3.2), (3.3) in L2(0, T ).
On the other hand, it follows from (3.2)1 and (3.23)4 that u′′m = ∆um +

Fm ∈ L∞(0, T ;L2), hence um ∈ W1(M,T ) and the proof of Theorem 3.1 is
complete. �

We use the result given in Theorem 3.1 and the compact imbedding theo-
rems to prove the existence and uniqueness of a weak solution of Prob. (1.1)-
(1.3). Hence, we get the main result in this section as follows.
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Theorem 3.2. Suppose that (H1), (H2) hold. Then, there exist the constants
M > 0 and T > 0 such that the problem (1.1)-(1.3) has a unique weak solution
u ∈ W1(M,T ). Furthermore, the linear recurrent sequence {um} defined by
(3.1)-(3.3) converges to the solution u strongly in the space

W1(T ) = {v ∈ L∞(0, T ;V ) : v′ ∈ L∞(0, T ;L2)}
with the estimation

‖um − u‖W1(T ) ≤ CTk
m
T for all m ∈ N, (3.24)

where the constant kT ∈ [0, 1) is defined as in (3.19) and CT is a constant
depending only on T, h0, f, ũ0, ũ1 and kT .

Proof. (a) Existence of the solution. First, we note thatW1(T ) is a Banach
space with respect to the norm (see Lions [5]).

‖v‖W1(T ) = ‖v‖L∞(0,T ;V ) +
∥∥v′∥∥

L∞(0,T ;L2)
.

We shall prove that {um} is a Cauchy sequence inW1(T ). Let wm = um+1−um.
Then wm satisfies the variational problem{

〈w′′m(t), w〉+ a(wm(t), w) = 〈Fm+1(t)− Fm(t), w〉 , ∀w ∈ V,
wm(0) = w′m(0) = 0.

(3.25)

Taking w = w′m in (3.25)1, after integrating in t, we get

‖w′m(t)‖2 + ‖wm(t)‖2a = 2
∫ t

0 〈Fm+1(s)− Fm(s), w′m(s)〉 ds. (3.26)

By (H2) it is clear to see that

‖Fm+1(t)− Fm(t)‖ ≤ 2KM (f) ‖∇wm−1(t)‖
≤ 2KM (f) ‖wm−1‖W1(T ) . (3.27)

Hence

‖w′m(t)‖2 + ‖wm(t)‖2a
≤ 4TK2

M (f) ‖wm−1‖2W1(T ) +
∫ t

0

(
‖w′m(s)‖2 + ‖wm(s)‖2a

)
ds.

(3.28)

Using Gronwall’s Lemma, we deduce from (3.28) that

‖wm‖W1(T ) ≤ kT ‖wm−1‖W1(T ) , ∀m ∈ N, (3.29)

where kT ∈ (0, 1) is defined as in (3.19), which implies that

‖um − um+p‖W1(T ) ≤ ‖u0 − u1‖W1(T ) (1− kT )−1kmT , ∀m, p ∈ N. (3.30)

It follows that {um} is a Cauchy sequence in W1(T ). Then there exists u ∈
W1(T ) such that

um → u strongly in W1(T ). (3.31)

Note that um ∈W1(M,T ), then there exists a subsequence {umj} of {um} such
that
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umj → u in L∞(0, T ;V ∩H2) weak*,

u′mj
→ u′ in L∞(0, T ;V ) weak*,

u′′mj
→ u′′ in L2(QT ) weak,

u ∈W (M,T ).

(3.32)

We also note that

‖Fm(t)− f (·, t, u(x, t), u(0, t))‖L∞(0,T ;L2)

≤ 2KM (f) ‖um−1 − u‖W1(T ) . (3.33)

Hence, from (3.31) and (3.33), we obtain

Fm(t)→ f (·, t, u(t), u(0, t)) strongly in L∞(0, T ;L2). (3.34)

Finally, passing to limit in (3.2)–(3.3) as m = mj →∞, it implies from (3.31),
(3.32)1,3 and (3.34) that there exists u ∈W (M,T ) satisfying (2.4), (2.5).

On the other hand, from the assumption (H2) we obtain from (2.4)1, (3.32)4

and (3.34) that

u′′ = uxx + f (·, t, u(t), u(0, t)) ∈ L∞(0, T ;L2), (3.35)

thus we have u ∈W1(M,T ). The existence proof is completed.
(b) Uniqueness of the solution. Let u1, u2 ∈ W1(M,T ) be two weak
solutions of Prob. (1.1)-(1.3). Then u = u1 − u2 satisfies the variational
problem{

〈u′′(t), w〉+ a(u(t), w) = 〈F1(t)− F2(t), w〉 , ∀w ∈ V,
u(0) = u′(0) = 0,

(3.36)

where Fi(x, t) = f (x, t, ui(x, t), ui(0, t)) , i = 1, 2.
We take w = u′ in (3.36)1 and integrate in t to get

‖u′(t)‖2 + ‖u(t)‖2a ≤ KM (f)
∫ t

0

(
‖u′(s)‖2 + ‖u(s)‖2a

)
ds.

Using Gronwall’s Lemma, it follows that ‖u′(t)‖2 + ‖u(t)‖2a ≡ 0, i.e., u1 ≡ u2.
So (i) is proved and (ii) follows. Theorem 3.2 is proved completely. �

4. Asymptotic expansion of the solution with respect to a small
parameter

In this section, let (H1), (H2) hold. We make more the following assump-
tions:

(H ′2) f1 ∈ C1([0, 1]× R+ × R2).
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We consider the following perturbed problem, where ε is a small parameter
such that, |ε| ≤ 1 :

(Pε)


utt − uxx = Fε[u](x, t), 0 < x < 1, 0 < t < T,

ux(0, t)− h0u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where 
Fε[u](x, t) = fε[u](x, t) + εf1ε[u](x, t),

fε[u](x, t) = f (x, t, u(x, t), εu(0, t)) ,

f1ε[u](x, t) = f1 (x, t, u(x, t), εu(0, t)) .

First, we note that if the functions f, f1 satisfy (H2), (H ′2), then the a pri-

ori estimates of the Galerkin approximation sequence {u(k)
m } in the proof of

Theorem 3.1 for Prob. (1.1)-(1.3) corresponding to f = Fε[u], |ε| ≤ 1, sat-

isfy u
(k)
m ∈ W1(M,T ), where M, T are constants independent of ε. We also

note that the positive constants M and T are chosen as in (3.16)-(3.19) with
|f (·, 0, ũ0, ũ0(0))| , KM (f), stand for |f (·, 0, ũ0, ũ0(0))| + |f1 (·, 0, ũ0, ũ0(0))| ,
KM (f)+KM (f1), respectively. Hence, the limit uε in suitable function spaces

of the sequence {u(k)
m } as k → +∞, after m→ +∞, is a unique weak solution

of the problem (Pε) satisfying uε ∈ W1(M,T ). Then we can prove, in a man-
ner similar to the proof of Theorem 3.2, that the limit u0 in suitable function
spaces of the family {uε} as ε → 0 is a unique weak solution of the prob-
lem (P0) (corresponding to f = f0[u0](x, t) = f (x, t, u0(x, t), 0)) satisfying
u0 ∈W1(M,T ).

We shall study the asymptotic expansion of the solution of the problem (Pε)
with respect to a small parameter ε.

We use the following notations. For a multi-index α = (α1, · · · , αN ) ∈ ZN+ ,
and x = (x1, · · · , xN ) ∈ RN , we put

|α| = α1 + · · ·+ αN , α! = α1! · · ·αN !,

α, β ∈ ZN+ , α ≤ β ⇐⇒ αi ≤ βi, ∀i = 1, · · · , N,
xα = xα1

1 · · ·x
αN
N .

Next, we need the following lemma.

Lemma 4.1. Let m, N ∈ N and x = (x1, · · · , xN ) ∈ RN , ε ∈ R. Then(∑N

i=1
xiε

i

)m
=
∑mN

k=m
P

(m)
k [N, x]εk, (4.1)
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where the coefficients P
(m)
k [N, x], m ≤ k ≤ mN depending on x = (x1, · · · , xN )

defined by the formulas

P
(m)
k [N, x] =


xk, 1 ≤ k ≤ N, m = 1,∑
α∈A(m)

k (N)

m!

α!
xα, m ≤ k ≤ mN, m ≥ 2, (4.2)

where A
(m)
k (N) = {α ∈ ZN+ : |α| = m,

∑N
i=1 iαi = k}.

Proof. The proof of Lemma 4.1 is easy, hence we omit the details. �

Now, we assume that

(H
(N)
2 ) f ∈ CN+1([0, 1]× R+ × R2), f1 ∈ CN ([0, 1]× R+ × R2).

Let u0 be a unique weak solution of the problem (P0) corresponding to
ε = 0, i.e.,

(P0)


u′′0 −∆u0 = f (x, t, u0(x, t), 0) = f0[u0], 0 < x < 1, 0 < t < T,
u0x(0, t)− h0u0(0, t) = u0(1, t) = 0,

u0(x, 0) = ũ0(x), u′0(x, 0) = ũ1(x),

u0 ∈W1(M,T ).

Let us consider the sequence of the weak solutions uk, 1 ≤ k ≤ N, defined by
the following problems:

(P̃k)


u′′k −∆uk = Fk, 0 < x < 1, 0 < t < T,

ukx(0, t)− h0uk(0, t) = uk(1, t) = 0,

uk(x, 0) = u′k(x, 0) = 0,

uk ∈W1(M,T ),

where Fk, 1 ≤ k ≤ N, are defined by the formulas

Fk =

{
Φ̄1[N, f ] + f1 (x, t, u0(x, t), 0) , k = 1,

Φ̄k[N, f ] + Φ̄k−1[N − 1, f1], 2 ≤ k ≤ N,
(4.3)

with Φ̄k[N, f ] = Φ̄k[N, f, ~u∗], 0 ≤ k ≤ N, are defined by the formulas

Φ̄k[N, f ]

=

 f (x, t, u0(x, t), 0), k = 0,∑
1≤|γ|≤k

1
γ!D

γf (x, t, u0(x, t), 0) Ψk[γ,N, ~u∗], 1 ≤ k ≤ N, (4.4)

where

Ψk[γ,N, ~u∗] =
∑

(i,j)∈Ã(γ,N),
i+j=k

P
(γ1)
i [N,~u(x, t)]P

(γ2)
j [N + 1, ~u∗(0, t)]

(4.5)
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with

Ã(γ,N) = {(i, j) ∈ Z2
+ : γ1 ≤ i ≤ Nγ1, γ2 ≤ j ≤ (N + 1)γ2},

γ = (γ1, γ2) ∈ Z2
+, 1 ≤ |γ| ≤ N,

(4.6)

and

~u(x, t) = (u1(x, t), · · · , uN (x, t)),

~u∗(x, t) = (u0(x, t), u1(x, t), · · · , uN (x, t)).

Then, we have the following theorem.

Theorem 4.2. Let (H1) and (H
(N)
2 ) hold. Then there exist constants M > 0

and T > 0 such that, for every ε ∈ [−1, 1], the problem (Pε) has a unique
weak solution uε ∈W1(M,T ) satisfying the asymptotic estimation up to order
N + 1 as follows ∥∥∥∥uε −∑N

k=0
ukε

k

∥∥∥∥
W1(T )

≤ CT |ε|N+1 , (4.7)

where the functions uk, 0 ≤ k ≤ N are the weak solutions of the problems
(P0), (P̃k), 1 ≤ k ≤ N, respectively, and CT is a constant depending only on
N, T, f, f1, uk, 0 ≤ k ≤ N.

In order to prove Theorem 4.2, we need the following Lemmas.

Lemma 4.3. Let Φ̄k[N, f ], 1 ≤ k ≤ N, be the functions are defined by the

formulas (4.4)–(4.6). Put h =
∑N

k=0 ukε
k, then we have

fε[h] = f0[u0] +
∑N

k=1 Φ̄k[N, f ]εk + |ε|N+1 R̂N [f, ~u∗, ε] (4.8)

with
∥∥∥R̂N [f, ~u∗, ε]

∥∥∥
L∞(0,T ;L2)

≤ C, where C is a constant depending only on

N, T, f, uk, 0 ≤ k ≤ N.

Proof. (i) In the case of N = 1, the proof of (4.8) is easy, hence we omit the

details, which we only prove with N ≥ 2. Put h = u0 +
∑N

k=1 ukε
k ≡ u0 + h1,

we rewrite as follows

fε[h] = f (x, t, h(x, t), εh(0, t)) = f(x, t, u0(x, t) + h1(x, t), εh(0, t)). (4.9)

By using Taylor’s expansion of the function

fε[h] = f(x, t, u0(x, t) + h1(x, t), εh(0, t))
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around the point [u0] ≡ (x, t, u0(x, t), 0) up to order N + 1, we obtain

fε[h] = f0[u0] +
∑

1≤|γ|≤N

1

γ!
Dγf0[u0]hγ11 (x, t) (εh(0, t))γ2

+RN [f, ~u∗, ε], (4.10)

where

RN [f, ~u∗, ε]

=
∑

|γ|=N+1

N + 1

γ!

∫ 1

0
(1− θ)NDγf (x, t, ε, θ)hγ11 (x, t) (εh(0, t))γ2 dθ

= |ε|N+1R
(1)
N [f, ~u∗, ε],

Dγf (x, t, ε, θ) = Dγf (x, t, u0(x, t) + θh1(x, t), θεh(0, t)) ,

f0[u0] = f (x, t, u0(x, t), 0) , Dγf0[u0] = Dγf (x, t, u0(x, t), 0) ,

γ = (γ1, γ2) ∈ Z2
+, |γ| = γ1 + γ2, γ! = γ1!γ2!, Dγf = Dγ1

3 D
γ2
4 f.

(4.11)

By the formula (4.1), we get

hγ11 (x, t) =

(∑N

k=1
uk(x, t)ε

k

)γ1
=
∑Nγ1

k=γ1
P

(γ1)
k [N,~u(x, t)]εk,

(εh(0, t))γ2 =

(∑N+1

k=1
uk−1(0, t)εk

)γ2
=
∑(N+1)γ2

k=γ2
P

(γ2)
k [N + 1, ~u∗(0, t)]ε

k, (4.12)

where

~u(x, t) = (u1(x, t), · · · , uN (x, t)),

~u∗(x, t) = (u0(x, t), u1(x, t), · · · , uN (x, t)).

Hence, we deduce from (4.12), that

hγ11 (x, t) (εh(0, t))γ2 =
∑N

k=|γ|
Ψk[γ,N, ~u∗]ε

k

+
∑N |γ|+γ2

k=N+1
Ψk[γ,N, ~u∗]ε

k, (4.13)

where
Ψk[γ,N, ~u∗] =

∑
(i,j)∈Ã(γ,N),

i+j=k

P
(γ1)
i [N,~u(x, t)]P

(γ2)
j [N + 1, ~u∗(0, t)],

Ã(γ,N) = {(i, j) ∈ Z2
+ : γ1 ≤ i ≤ Nγ1, γ2 ≤ j ≤ (N + 1)γ2}.

(4.14)
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We deduce from (4.10), (4.13) that

fε[h] = f0[u0] +
∑

1≤|γ|≤N

1

γ!
Dγf0[u0]

∑N

k=|γ|
Ψk[γ,N, ~u∗]ε

k

+ |ε|N+1 R̂N [f, ~u∗, ε]

= f0[u0] +

N∑
k=1

 ∑
1≤|γ|≤k

1

γ!
Dγf0[u0]Ψk[γ,N, ~u∗]

 εk

+ |ε|N+1 R̂N [f, ~u∗, ε]

= f [u0] +

N∑
k=1

Φ̄k[N, f ]εk + |ε|N+1 R̂N [f, ~u∗, ε], (4.15)

where Φ̄k[N, f ], 0 ≤ k ≤ N, are defined by (4.4)–(4.6) and

|ε|N+1 R̂N [f, ~u∗, ε] =
∑

1≤|γ|≤N

1

γ!
Dγf0[u0]

∑N |γ|+γ2

k=N+1
Ψk[γ,N, ~u∗]ε

k

+ |ε|N+1R
(1)
N [f, ~u∗, ε]. (4.16)

By the boundedness of the functions uk, 0 ≤ k ≤ N in the function space
L∞(0, T ;V ), we obtain from (4.11), (4.13) and (4.16) that∥∥∥R̂N [f, ~u∗, ε]

∥∥∥
L∞(0,T ;L2)

≤ C,

where C is a constant depending only on N, T, f, uk, 0 ≤ k ≤ N. Thus, the
Lemma 4.3 is proved. �

Remark 4.4. Lemma 4.3 is the key to establish the asymptotic expansion of
the weak solution uε of order N + 1 in a small parameter ε as below.

Let u = uε ∈ W1(M,T ) be the unique weak solution of the problem (Pε).

Then v = uε −
∑N

k=0 ukε
k ≡ uε − h satisfies the problem

v′′ −∆v = fε[v + h]− fε[h] + ε (f1ε[v + h]− f1ε[h]) + Eε(x, t),
0 < x < 1, 0 < t < T,

vx(0, t)− h0v(0, t) = v(1, t) = 0,

v(x, 0) = v′(x, 0) = 0,

(4.17)

where

Eε(x, t) = fε[h]− f0[u0] + εf1ε[h]−
∑N

k=1 Fkε
k. (4.18)

Then, we have the following lemma.
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Lemma 4.5. Let (H1) and (H
(N)
2 ) hold. Then there exists a constant C∗ such

that
‖Eε‖L∞(0,T ;L2) ≤ C∗ |ε|

N+1 , (4.19)

where C∗ is a constant depending only on N, T, f, f1, uk, 0 ≤ k ≤ N.

Proof. In the case of N = 1, the proof of Lemma 4.5 is easy, hence we omit
the details, which we only prove with N ≥ 2.

By using the formula (4.8) for the function f1ε[h] we obtain

f1ε[h] = f10[u0] +
∑N−1

k=1 Φ̄k[N − 1, f1]εk + |ε|N R̂N−1[f1, ~u∗, ε], (4.20)

where
∥∥∥R̂N−1[f, ~u∗, ε]

∥∥∥
L∞(0,T ;L2)

≤ C, with C is a constant depending only on

N, T, f1, uk, 0 ≤ k ≤ N. By (4.20), we rewrite εf1[h] as follows

εf1ε[h] = εf10[u0] +
∑N

k=2 Φ̄k−1[N − 1, f1]εk + ε |ε|N R̂N−1[f, ~u∗, ε], (4.21)

Combining (4.3), (4.8), (4.18) and (4.21) lead to

Eε(x, t) = |ε|N+1 R̂N [f, ~u∗, ε] + ε |ε|N R̂N−1[f1, ~u∗, ε]. (4.22)

By the boundedness of the functions uk, 0 ≤ k ≤ N in the function space
L∞(0, T ;V ), we obtain from (4.8), (4.20) and (4.22) that

‖Eε‖L∞(0,T ;L2) ≤ C∗ |ε|
N+1 , (4.23)

where C∗ is a constant depending only on N, T, f, f1, uk, 0 ≤ k ≤ N. The
proof of Lemma 4.5 is complete. �

Proof of Theorem 4.2. Consider the sequence {vm} defined by

v0 ≡ 0,

v′′m −∆vm = fε[vm−1 + h]− fε[h] + ε (f1ε[vm−1 + h]− f1ε[h])

+ Eε(x, t), 0 < x < 1, 0 < t < T,

vmx(0, t)− h0vm(0, t) = vm(1, t) = 0,

vm(x, 0) = v′m(x, 0) = 0, m ≥ 1.

(4.24)

By multiplying two sides of (4.24) with v′m and after integration in t, we have

Zm(t) = 2

∫ t

0
〈Eε(s), v′m(s)〉ds+ 2

∫ t

0
〈fε[vm−1 + h]− fε[h], v′m(s)〉ds

+ 2ε

∫ t

0
〈f1ε[vm−1 + h]− f1ε[h], v′m(s)〉ds

= J̄1 + J̄2 + J̄3, (4.25)

where Zm(t) = ‖v′m(t)‖2 + ‖vm(t)‖2a . We estimate the integrals on the right-
hand side of (4.25) as follows.
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Estimating J̄1. By using Lemma 4.5, we deduce from (4.19) that

J̄1 = 2
∫ t

0 〈Eε(s), v
′
m(s)〉ds ≤ TC2

∗ |ε|
2N+2 +

∫ t
0 Zm(s)ds. (4.26)

Estimating J̄2. We note that

‖fε[vm−1 + h]− fε[h]‖ ≤ 2KM∗(f) ‖vm−1‖W1(T ) (4.27)

with M∗ = (N + 2)M. It follows from (4.27), that

J̄2 = 2
∫ t

0 〈fε[vm−1 + h]− fε[h], v′m(s)〉ds
≤ 4TK2

M∗
(f) ‖vm−1‖2W1(T ) +

∫ t
0 Zm(s)ds.

(4.28)

Estimating J̄3. Similarly

J̄3 = 2ε
∫ t

0 〈f1ε[vm−1 + h]− f1ε[h], v′m(s)〉ds
≤ 4TK2

M∗
(f1) ‖vm−1‖2W1(T ) +

∫ t
0 Zm(s)ds.

(4.29)

Combining (4.26), (4.28), (4.29), it leads to

Zm(t) ≤ 4T
[
K2
M∗(f) +K2

M∗(f1)
]
‖vm−1‖2W1(T ) + TC2

∗ |ε|
2N+2

+ 3

∫ t

0
Zm(s)ds. (4.30)

By using Gronwall’s lemma, we deduce from (4.30) that

‖vm‖W1(T ) ≤ σT ‖vm−1‖W1(T ) + δT (ε), ∀m ≥ 1, (4.31)

where σT = 4 [KM∗(f) +KM∗(f1)]
√
Te3T , δT (ε) = 2C∗

√
Te3T |ε|N+1 .

We can assume that

σT < 1 with the suitable constant T > 0. (4.32)

We require the following lemma whose proof is immediate.

Lemma 4.6. Let the sequence {γm} satisfy

γm ≤ σγm−1 + δ, ∀ m ≥ 1, γ0 = 0, (4.33)

where 0 ≤ σ < 1, δ ≥ 0 are the given constants. Then

γm ≤ δ/(1− σ), ∀ m ≥ 1. (4.34)

Applying Lemma 4.6 with γm = ‖vm‖W1(T ) , σ = σT < 1, δ = δT (ε) =

2C∗
√
Te3T |ε|N+1 , it follows from (4.34) that

‖vm‖W1(T ) ≤
δT (ε)

1− σT
= CT |ε|N+1 , (4.35)

where CT = 2C∗
√
Te3T

1−4[KM∗ (f)+KM∗ (f1)]
√
Te3T

.
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On the other hand, the linear recurrent sequence {vm} defined by (4.24)
converges strongly in the space W1(T ) to the solution v of the problem (4.17).
Hence, letting m→ +∞ in (4.35), we get

‖v‖W1(T ) ≤ CT |ε|
N+1 . (4.36)

This implies (4.7). The proof of Theorem 4.2 is complete. �
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