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Abstract. The over-relaxed (η)−proximal point algorithm in the context of solving a class

of inclusion problems, based on the notion of maximal (η)−monotonicity, is developed. Con-

vergence analysis for the over-relaxed (η)−proximal point algorithm is examined, and finally,

some specializations are included. Furthermore, we remark that the Yosida approximation

can be generalized in light of maximal (η)−monotonicity, and then it can be applied to

first-order evolution equations/inclusions.

1. Introduction

Let X be a real Hilbert space with the norm ‖ · ‖ and the inner product
〈·, ·〉. We consider the inclusion problem: find a solution to

0 ∈ M(x), (1)

where M : X → 2X is a set-valued mapping on X.
Rockafellar [18] introduced the proximal point algorithm, and examined

the general convergence and rate of convergence analysis, while solving (1) by
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showing when M is maximal monotone, that the sequence {xk} generated for
an initial point x0 by

xk+1 ≈ Pk(xk), (2)

converges weakly to a solution of (1), provided the approximation is made
sufficiently accurate as the iteration proceeds, where Pk = (I + ckM)−1 for
a sequence {ck} of positive real numbers that is bounded away from zero. It
follows from (2) that xk+1 is an approximate solution to inclusion problem

0 ∈ M(x) + c−1
k (x− xk). (3)

We recall the relaxed proximal point algorithm introduced in [7].

Algorithm 1.1. Let M : X → 2X be a set-valued maximal monotone map-
ping on X with 0 ∈ range(M), and let the sequence {xk} be generated by the
iterative procedure

xk+1 = (1− αk)xk + αkw
k ∀k ≥ 0, (4)

where wk is such that

‖wk − (I + ckM)−1(xk)‖ ≤ εk ∀k ≥ 0,

and {εk}, {αk} and {ck} ⊆ [0,∞) are scalar sequences.

Eckstein and Bertsekas [7] applied Algorithm 1.1 to approximate a weak
solution to (1).

Theorem 1.1. [7, Theorem 3] Let M : X → 2X be a set-valued maximal
monotone mapping on X with 0 ∈ range(M), and let the sequence {xk} be
generated by Algorithm 1.1. If the scalar sequences {εk}, {αk} and {ck} satisfy

E1 = Σ∞k=0εk < ∞, 41 = inf αk > 0, 42 = sup αk < 2, and c = inf ck > 0,

then the sequence {xk} converges weakly to a zero of M.

Convergence analysis for Algorithm 1.1 is achieved using the notion of the
firm nonexpansiveness of the resolvent operator (I + cM)−1. As a whole, the
maximal monotonicity has played a powerful role to studying convex program-
ming and variational inequalities. Later it turned out that one of the funda-
mental algorithms applied to solve these problems was the proximal point
algorithm. In [7], Eckstein and Bertsekas has shown that much of the theory
of the relaxed proximal point algorithm and related algorithms can be car-
ried over to the Douglas-Rachford splitting method and its special cases, for
instance, the alternating direction method of multipliers.

Just recently, Verma [26] generalized the relaxed proximal point algorithm,
and applied to the approximation solvability of variational inclusion problems
of the form (1). Recently, a great deal of research on the solvability of inclusion
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problems is carried out using resolvent operator techniques, that have applica-
tions to other problems such as equilibria problems in economics, optimization
and control theory, operations research, and mathematical programming.

In this paper, we first introduce the over-relaxed (η)−proximal point al-
gorithm based on the notion of (η)− monotonicity, and then apply it for
approximating a solution to a general class of nonlinear inclusion problems
involving (η)− monotone mappings in a Hilbert space setting. Second, we
examine the convergence analysis of the over-relaxed (η)−proximal point al-
gorithm for solving a class of nonlinear inclusions. Also, several results on
the generalized firm nonexpansiveness and generalized resolvent mapping are
given. The results, thus obtained here, are general and in some cases new. For
more details, we refer the reader [1–36].

We note that the solution set for (1) turns out to be the same as of the
Yosida inclusion

0 ∈ Mρ,

where Mρ = ρ−1(I − (I + ρM)−1) is the Yosida approximation of M with
parameter ρ > 0. It seems in certain ways that it is easier to solve the Yosida
inclusion than (1). In other words, Mρ provides better solvability conditions
under right choice for ρ than M itself. On the other hand, Mρ has also
been applied to first-order evolution equations/inclusions in Hilbert space as
well as Banach space settings. As in our present situation, resolvent opera-
tor (I + ρM)−1 is empowered by (η)−maximal monotonicity, the Yosida ap-
proximation can be generalized in the context of solving first-order evolution
equations/inclusions.

The contents for the paper are organized as: Section 1 deals with a historical
development of the relaxed proximal point algorithm in conjunction with the
(η)− maximal monotonicity, and with the approximation solvability of a class
of nonlinear inclusion problems using the convergence analysis for the proximal
point algorithm, as well as for the relaxed proximal point algorithm. Section
2 introduces and derives some results on unifying (η)− maximal monotonicity
and generalized firm nonexpansiveness of the generalized resolvent operator.
In Section 3, the over-relaxed (η)−proximal point algorithm is introduced, and
then it is applied to approximate the solution to inclusion (1).

2. Maximal η-monotonicity and firm nonexpansiveness

In this section we discus some results based on basic properties of η− mono-
tonicity, and then we derive some results involving η− monotonicity and the
generalized firm nonexpansiveness. Let X denote a real Hilbert space with
the norm ‖ · ‖ and inner product < ·, · > . Let M : X → 2X be a multivalued
mapping on X. We shall denote both the map M and its graph by M, that is,
the set {(x, y) : y ∈ M(x)}. This is equivalent to stating that a mapping is any
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subset M of X ×X, and M(x) = {y : (x, y) ∈ M}. If M is single-valued, we
shall still use M(x) to represent the unique y such that (x, y) ∈ M rather than
the singleton set {y}. This interpretation shall much depend on the context.
The domain of a map M is defined (as its projection onto the first argument)
by

dom(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈ M} = {x ∈ X : M(x) 6= ∅}.
dom(T)=X, shall denote the full domain of M, and the range of M is defined
by

range(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M}.
The inverse M−1 of M is {(y, x) : (x, y) ∈ M}. For a real number ρ and a
mapping M, let ρM = {x, ρy) : (x, y) ∈ M}. If L and M are any mappings,
we define

L + M = {(x, y + z) : (x, y) ∈ L, (x, z) ∈ M}.
Definition 2.1. Let M : X → 2X be a multivalued mapping on X. The map
M is said to be:

(i) Monotone if

〈u∗ − v∗, u− v〉 ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) (r)− strongly monotone if there exists a positive constant r such that

〈u∗ − v∗, u− v〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iii) Strongly monotone if

〈u∗ − v∗, u− v〉 ≥ ‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iv) (r)−strongly pseudomonotone if

〈v∗, u− v〉 ≥ 0

implies

〈u∗, u− v〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(v) Pseudomonotone if
〈v∗, u− v〉 ≥ 0

implies

〈u∗, u− v〉 ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M).

(vi) (m)−relaxed monotone if there exists a positive constant m such that

〈u∗ − v∗, u− v〉 ≥ (−m)‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(vii) (c)− cocoercive if there is a positive constant c such that

〈u∗ − v∗, u− v〉 ≥ c‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).
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Definition 2.2. Let M : X → 2X be a mapping on X. The map M is said to
be:

(i) Nonexpansive if

‖u∗ − v∗‖ ≤ ‖u− v‖ ∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) Firmly nonexpansive if

‖u∗ − v∗‖2 ≤ 〈u∗ − v∗, u− v〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iii) (c)−Firmly nonexpansive if there exists a constant c > 0 such that

‖u∗ − v∗‖2 ≤ c〈u∗ − v∗, u− v〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

Definition 2.3. A map η : X ×X → X is said to be:
(i) Monotone if

〈x− y, η(x, y)〉 ≥ 0∀ (x, y) ∈ X.

(ii) (t)-strongly monotone if there exists a positive constant t such that

〈x− y, η(x, y)〉 ≥ t‖x− y‖2 ∀ (x, y) ∈ X.

(iii) Strongly monotone if

〈x− y, η(x, y)〉 ≥ ‖x− y‖2 ∀ (x, y) ∈ X.

(iii) (τ)-Lipschitz continuous if there exists a positive constant τ such that

‖η(x, y)‖ ≤ τ‖x− y‖.

Definition 2.4. A map M : X → 2X is said to be maximal (η)- monotone if
(i) M is (η)− monotone
(ii) R(I + cM) = X for c > 0.

Proposition 2.1. Let M : X → 2X be a maximal (η)− monotone map-
ping. Then (I + cM) is maximal monotone for c > 0, where I is the identity
mapping.

Proposition 2.2. Let M : X → 2X be a maximal (η)−monotone mapping.
Then generalized resolvent operator (I + cM)−1 is single-valued, where I is
the identity mapping.

Definition 2.5. Let M : X → 2X be a maximal (η)− monotone mapping.
Then the generalized resolvent operator JM,η

c : X → X is defined by

JM,η
c (u) = (I + cM)−1(u).

Definition 2.6. Let M : X → 2X be a multivalued mapping on X, and let
η : X ×X → X be another mapping. The map M is said to be:
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(i) (η)− monotone if

〈u∗ − v∗, η(u, v)〉 ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) (r, η)− strongly monotone if there exists a positive constant r such
that

〈u∗ − v∗, η(u, v)〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iii) (η)− strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ ‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iv) (r, η)−strongly pseudomonotone if

〈v∗, η(u, v)〉 ≥ 0

implies

〈u∗, η(u, v)〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(v) (η)− pseudomonotone if

〈v∗, η(u, v)〉 ≥ 0

implies

〈u∗, η(u, v)〉 ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M).

(vi) (m, η)−relaxed monotone if there exists a positive constant m such
that

〈u∗ − v∗, η(u, v)〉 ≥ (−m)‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(vii) (c, η)− cocoercive if there is a positive constant c such that

〈u∗ − v∗, η(u, v)〉 ≥ c‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

Proposition 2.3. Let X be a real Hilbert space, let M : X → 2X be maximal
(η)− monotone, and let η : X ×X → X be (t)− strongly monotone. Then the
resolvent operator associated with M and defined by

JM,η
ρ (u) = (I + ρM)−1(u)∀u ∈ X,

satisfies the following:

〈u− v, η(JM,η
ρ (u), JM,η

ρ (v))〉 ≥ t‖JM,η
ρ (u)− JM,η

ρ (v)‖2. (5)

Proof. For any u, v ∈ X, it follows from the definition of the resolvent operator
JM,η

ρ that
1
ρ
[u− JM,η

ρ (u)] ∈ M(JM,η
ρ (u)),
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and
1
ρ
[v − JM,η

ρ (v)] ∈ M(JM,η
ρ (v)).

Since M is (η)− monotone, we have

1
ρ
〈u− v − [JM,η

ρ (u)− JM,η
ρ (v)],

η(JM,η
ρ (u), JM,η

ρ (v))〉 ≥ 0. (6)

In light of (6), we have

〈u− v, η(JM,η
ρ (u), JM,η

ρ (v))〉
≥ 〈JM,η

ρ (u)− JM,η
ρ (v), η(JM,η

ρ (u), JM,η
ρ (v))〉

≥ t‖JM,η
ρ (u)− JM,η

ρ (v)‖2.

¤

Proposition 2.4. Let X be a real Hilbert space, let M : X → 2X be maximal
(η)− monotone, and let η : X × X → X be (t)− strongly monotone and
(τ)− Lipschitz continuous. Then the resolvent operator associated with M
and defined by

JM,η
ρ (u) = (I + ρM)−1(u)∀u ∈ X,

satisfies the following:
(i) For τ < 1, we have

〈u− v, η(JM,η
ρ (u), JM,η

ρ (v))〉 ≤ 〈u− v, JM,η
ρ (u)− JM,η

ρ (v)〉 ∀u, v ∈ X. (7)

(ii) For J∗k = I − JM,η
ρ , we have (for t > 1

2)

〈u− v, J∗k (u)− J∗k (v)〉 ≥ t− 1
2t− 1

‖u− v‖2 +
t

2t− 1
‖J∗k (u)− J∗k (v)‖2. (8)

Proof. The proof of (i) follows from the (τ)−Lipschitz continuity of η for τ < 1.
To prove (ii), we apply (i) to Proposition 2.3, and we get

〈u− v, JM,η
ρ (u)− JM,η

ρ (v)〉 ≥ t‖JM,η
ρ (u)− JM,η

ρ (v)‖2. (9)

It further follows that

〈u− v, u− v − (J∗k (u)− J∗k (v))〉
≥ t[‖J∗k (u)− J∗k (v)‖2 + ‖u− v‖2 − 2〈J∗k (u)− J∗k (v), u− v〉].

¤
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3. The over-relaxed (η)−proximal point algorithm

This section deals with the over-relaxed (η)− proximal point algorithm and
its application to approximation solvability of the inclusion problem (1) based
on the maximal (η)-monotonicity. Furthermore, some results connecting the
(η)− monotonicity and corresponding resolvent operator are established, that
generalize the results on the firm nonexpansiveness [7], while the auxiliary
results on maximal (η)− monotonicity and general maximal monotonicity are
obtained.

Theorem 3.1. Let X be a real Hilbert space, and let M : X → 2X be maximal
(η)− monotone. Then the following statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

u = JM,η
c (u) for c > 0, .

where
JM,η

c (u) = (I + cM)−1(u).

Proof. It follows from the definition of the generalized resolvent operator cor-
responding to M. ¤

Note that Theorem 3.1 generalizes [7, Lemma 2] to the case of a maximal
(η)− monotone mapping.

Next, we present a generalization to the relaxed Proximal point algorithm
[26] based on the (η)−monotonicity.

Algorithm 3.1. Let M : X → 2X be a set-valued maximal (η)− monotone
mapping on X with 0 ∈ range(M), and let the sequence {xk} be generated by
the iterative procedure

xk+1 = (1− αk)xk + αky
k ∀ k ≥ 0, (10)

and yk satisfies
‖yk − JM,η

ck
(xk)‖ ≤ δk‖yk − xk‖,

where JM,η
ck = (I + ckM)−1, δk → 0 and

yk+1 = (1− αk)xk + αkJ
M,η
ck

(xk)∀ k ≥ 0.

Here
{δk}, {αk}, {ck} ⊆ [0,∞)

are scalar sequences such that inf αk > 0, sup αk < 2, and
∑∞

k=0 δk < ∞.
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Algorithm 3.2. Let M : X → 2X be a set-valued maximal (η)−monotone
mapping on X with 0 ∈ range(M), and let the sequence {xk} be generated by
the iterative procedure

xk+1 = (1− αk − βk)xk + αky
k ∀ k ≥ 0, (11)

and yk satisfies
‖yk − JM

ρk
(xk)‖ ≤ δk‖yk − xk‖,

where JM
ρk

= (I + ρkM)−1, and

{δk}, {αk}, {βk}{ck} ⊆ [0,∞)

are scalar sequences such that inf αk > 0, sup αk < 2, and
∑∞

k=0 δk < ∞.

For δk = (1 + 1
1+k ) in Algorithm 3.1, for k > 0, we have

Algorithm 3.3. Let M : X → 2X be a set-valued maximal (η)− monotone
mapping on X with 0 ∈ range(M), and let the sequence {xk} be generated by
the iterative procedure

xk+1 = (1− αk)xk + αky
k ∀ k ≥ 0, (12)

and yk satisfies

‖yk − JM,η
ck

(xk)‖ ≤ (1 +
1

1 + k
)‖yk − xk‖,

where JM,η
ck = (I + ckM)−1, and

yk+1 = (1− αk)xk + αkJ
M,η
ck

(xk)∀ k ≥ 0.

Here
{αk}, {ck} ⊆ [0,∞)

are scalar sequences such that inf αk > 0, and sup αk < 2, and
∑∞

k=1
1
k < ∞.

Theorem 3.3. Let X be a real Hilbert space. Let M : X → 2X be maximal
(η)−monotone and x∗ be a zero of M . Let η : X ×X → X be (t)− strongly
monotone and (τ)−Lipschitz continuous. Let the sequence {xk} be generated
by Algorithm 3.1. Suppose that the sequence {xk} is bounded in the sense that
there exists at least one solution to 0 ∈ M(x). Then (for τ < 1 and t > 1

2)

(2t− 1)‖JM,η
ck

(xk)− x∗‖2 ≤ ‖xk − x∗‖2 − ‖J∗k (xk)‖2, (13)
where

J∗k = I − JM,η
ck

.

In addition, assume that M−1 is (a)−Lipschitz continuous at 0, that is,
there exists a unique solution z∗ to 0 ∈ M(z) (equivalently, M−1(0) = {z∗})
and for constants a ≥ 0 and b > 0, we have

‖z − z∗‖ ≤ a‖w‖ whenever z ∈ M−1(w) and ‖w‖ ≤ b. (14)
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Then the sequence {xk} converges linearly to a unique solution x∗ with rate
√

1− α∗(2t− (2t− 1)α∗)
c∗2

a2(2t− 1) + c∗2
< 1 for t >

1
2
,

where α∗ = lim supk→∞ αk, and sequences {αk}, and {ck} satisfy αk ≥ 1,
ck ↗ c∗ ≤ ∞, and infk≥0 αk > 0 and supk≥0 αk < 2t

2t−1 .

Proof. Suppose that x∗ is a zero of M. For all k ≥ 0, we set

J∗k = I − JM,η
ck

.

Therefore, J∗k (x∗) = 0. Then, in light of Theorem 3.1, any solution to (1) is a
fixed point of JM,η

ck , and hence a zero of J∗k . First, we express

yk+1 = (1− αk)xk + αkJ
M,η
ck

(xk)

= (I − αkJ
∗
k )(xk).

Now we begin verifying the boundedness of the sequence {xk} leading to
xk − JM,η

ck (xk) → 0.
Next, we estimate using Proposition 2.4 (for t > 1

2)

‖yk+1 − x∗‖2 = ‖(1− αk)xk + αkJ
M,η
ck

(xk)− x∗‖2

= ‖xk − x∗ − αkJ
∗
k (xk)‖2

≤ ‖xk − x∗‖2 − 2αk〈xk − x∗, J∗k (xk)− J∗k (x∗)〉+ α2
k‖J∗k (xk)‖2

≤ ‖xk − x∗‖2 − 2(t− 1)αk

2t− 1
‖xk − x∗‖2 − 2t

2t− 1
αk‖J∗k (xk)‖2

+α2
k‖J∗k (xk)‖2

= (1− 2(t− 1)αk

2t− 1
)‖xk − x∗‖2 − αk(

2t

2t− 1
− αk)‖J∗k (xk)‖2.

Since under the assumptions αk( 2t
2t−1 − αk) > 0, it follows that

‖yk+1 − x∗‖ ≤ ‖xk − x∗‖.
Therefore,

‖xk+1 − yk+1‖
= ‖(1− αk)xk + αky

k − [(1− αk)xk + αkJ
M,η
ck

(xk)]‖
= ‖αk(yk − JM,η

ρ (xk))‖
≤ αkδk‖yk − xk‖.
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Now we find the estimate leading to the boundedness of the sequence {xk}.
‖xk+1 − x∗‖ ≤ ‖yk+1 − x∗‖+ ‖xk+1 − yk+1‖

≤ ‖xk − x∗‖+ αkδk‖yk − xk‖

≤ ‖x0 − x∗‖+
k∑

j=0

αjδj‖yj − xj‖. (15)

Thus, the sequence {xk} is bounded.
We further examine the estimate

‖xk+1 − x∗‖2

= ‖yk+1 − x∗ + xk+1 − yk+1‖2

= ‖yk+1 − x∗‖2 + 2〈yk+1 − x∗, xk+1 − yk+1〉+ ‖xk+1 − yk+1‖2

≤ ‖yk+1 − x∗‖2 + 2‖yk+1 − x∗‖‖xk+1 − yk+1‖+ ‖xk+1 − yk+1‖2

≤ ‖xk − x∗‖2 − αk(
2t

2t− 1
− αk)‖J∗k (xk)‖2 − 2(t− 1)

2t− 1
‖xk − x∗‖2

+2(‖xk+1 − x∗‖+ ‖xk+1 − yk+1‖)‖xk+1 − yk+1‖+ ‖xk+1 − yk+1‖2

≤ ‖xk − x∗‖2 − αk(
2t

2t− 1
− αk)‖J∗k (xk)‖2 − 2(t− 1)

2t− 1
‖xk − x∗‖2

+2(‖xk+1 − x∗‖+ αkδk‖yk − xk‖)αkδk‖yk − xk‖
+α2

kδ
2
k‖yk − xk‖2, (16)

where αk( 2t
2t−1 − αk) > 0.

Since {δk} is summable, so is {δ2
k}. As k →∞, we have that

k∑

j=0

‖J∗j (xj)‖2 < ∞⇒ lim
k→∞

J∗k (xk) = 0,

that is, xk − JM,η
ck (xk) → 0.

Now we turn our attention (using the above argument) to linear convergence
of the sequence {xk}. Since limk→∞ J∗k (xk) = 0, it implies for k large that

c−1
k J∗k (xk) ∈ M(JM,η

ck
(xk)).

Therefore, in light of (14), by taking w = c−1
k J∗k (xk) and z = JM,η

ck (xk), we
have

‖JM,η
ck

(xk)− x∗‖ ≤ a‖c−1
k J∗k (xk)‖ ∀ k ≥ k′.

Applying (13), we arrive at

‖JM,η
ck

(xk)− x∗‖2 ≤ a2

c2
k + (2t− 1)a2

‖xk − x∗‖2 for t >
1
2
, (17)
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where JM,η
ck (x∗) = x∗. Since yk+1 := (1 − αk)xk + αkJ

M,η
ck (xk), we estimate,

using (17) and (αk ≥ 1) that

‖yk+1 − x∗‖2

= ‖(1− αk)xk + αkJ
M,η
ck

(xk)− x∗‖2

= ‖αk(JM,η
ck

(xk)− x∗) + (1− αk)(xk − x∗)‖2

= α2
k‖JM,η

ck
(xk)− x∗‖2 + (1− αk)2‖xk − x∗‖2 +

2αk(1− αk)〈JM,η
ck

(xk)− x∗, xk − x∗〉
≤ α2

k‖JM,η
ck

(xk)− x∗‖2 + (1− αk)2‖xk − x∗‖2 +

2αk(1− αk)〈η(JM,η
ck

(xk), x∗), xk − x∗〉
≤ α2

k‖JM,η
ck

(xk)− x∗‖2 + (1− αk)2‖xk − x∗‖2 +

2αk(1− αk)t‖JM,η
ck

(xk)− x∗‖2

= [2αk(1− αk)t + α2
k]‖JM,η

ck
(xk)− x∗‖2 + (1− αk)2‖xk − x∗‖2

= αk[2t− (2t− 1)αk)]‖JM,η
ck

(xk)− x∗‖2 + (1− αk)2‖xk − x∗‖2

≤ αk[2t− (2t− 1)αk)]
a2

c2
k + (2t− 1)a2

‖xk − x∗‖2 + (1− αk)2‖xk − x∗‖2

= αk[2t− (2t− 1)αk)]
a2

c2
k + (2t− 1)a2

+ (1− αk)2)‖xk − x∗‖2,

where αk[2t− (2t− 1)αk)] > 0.
Hence, we have

‖yk+1 − x∗‖ ≤ θk‖xk − x∗‖,

where

θk =

√
αk[2t− (2t− 1)αk][

a2

c2
k + (2t− 1)a2

] + (1− αk)2 < 1, (18)

αk[2t− (2t− 1)αk)] > 0 and αk ≥ 1. Since Algorithm 3.1 ensures

‖yk − JM,η
ck

(xk)‖ ≤ δk‖yk − xk‖,

and

αk(yk − xk) = xk+1 − xk,



Relaxed proximal point algorithm 75

we have

‖xk+1 − x∗‖ = ‖yk+1 − x∗ + xk+1 − yk+1‖
≤ ‖yk+1 − x∗‖+ ‖xk+1 − yk+1‖
≤ ‖yk+1 − x∗‖+ αkδk‖yk − xk‖
= ‖yk+1 − x∗‖+ δk‖xk+1 − xk‖
≤ ‖yk+1 − x∗‖+ δk‖xk+1 − x∗‖+ δk‖xk − x∗‖.

It follows that
‖xk+1 − x∗‖ ≤ θk + δk

1− δk
‖xk − x∗‖,

where

lim sup
θk + δk

1− δk
= lim sup θk

=

√
1− α∗[2t− (2t− 1)α∗][

c∗2

c∗2 + (2t− 1)a2
] < 1.

¤

Theorem 3.4. Let X be a real Hilbert space, and let M : X → 2X be
maximal (η)− monotone. Let η : X ×X → X be (t)− strongly monotone and
(τ)− Lipschitz continuous. For an arbitrarily chosen initial point x0, let the
sequence {xk} be bounded (in the sense that there exists at least one solution
to 0 ∈ M(x)) and generated by Algorithm 3.2 as

xk+1 = (1− αk − βk)xk + αky
k for k ≥ 0

with
‖yk − JM,η

ck
(xk)‖ ≤ εk,

where JM,η
ck = (I + ρkM)−1, and sequences

{ck}, {αk}, {ρk} ⊆ [0,∞)

satisfy E1 = Σ∞k=0εk < ∞, 41 = inf αk > 0, 42 = sup αk < 2, and c−1
k =

inf ρk > 0. Then the sequence {xk} converges weakly to a solution of (1).

Proof. The proof is similar to that the first part of Theorem 3.3 and then
applying the generalized Representation Lemma. ¤

Theorem 3.5. Let X be a real Hilbert space, and let M : X → 2X be maximal
(η)−-monotone with 0 ∈ range(M). Let η : X × X → X be (t)− strongly
monotone and (τ)− Lipschitz continuous. Let the sequence {xk} be bounded
(in the sense that there exists at least one solution to 0 ∈ M(x)) and generated
by Algorithm 3.3. Let 0 ∈ M(x) have a solution x∗. Suppose that M−1 is
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(a)−Lipschitz continuous at 0 for a ≥ 0. Then the sequence {xk} converges
linearly to a unique solution x∗ with rate

√
1− α∗(2t− (2t− 1)α∗)

c∗2

a2(2t− 1) + c∗2
< 1,

where α∗ = lim supk→∞ αk, and sequences {αk}, and {ck} satisfy αk ≥ 1,
ck ↗ c∗ ≤ ∞, and t > 1

2 .

Proof. The proof is similar to that of Theorem 3.3. ¤
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