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Abstract. In this paper, hemi-relatively nonexpansive mappings, variational inequalities

and equilibrium problems are considered based on a shrinking projection method. Strong

convergence of iterative sequences is obtained in a uniformly convex and uniformly smooth

Banach space. As an application, the problem of finding zeros of maximal monotone opera-

tors is studied.

1. Introduction

Let E be a Banach space and E∗ the dual space of E. Let C be a nonempty
closed convex subset of E. Let J be the normalized duality mapping from E
into 2E

∗
defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing.

It is known that the duality mapping J has the following properties:
(1) If E is smooth, then J is single-valued.
(2) If E is strictly convex, then J is one-to-one.
(3) If E is reflexive, then J is surjective.
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(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

(5) If E∗ is uniformly convex, then J is uniformly continuous on bounded
subsets of E and J is single-valued and also one-to-one; see, [6, 12, 27,
35].

Let A : C → E∗ be an operator. We consider the following variational
inequality: Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

A point x0 ∈ C is called a solution of the variational inequality (1.1) if 〈Ax0, y−
x0〉 ≥ 0. The solutions set of the variational inequality (1.1) is denoted by
V I(A,C). The variational inequality (1.1) has been intensively considered due
to its various applications in operations research, economic equilibrium and
engineering design. When A has some monotonicity, many iterative methods
for solving the variational inequality (1.1) have been developed; see, [1, 2, 3,
4, 7, 8, 24, 25, 26].

Let C is a nonempty closed and convex subset of a Hilbert space H and
PC : H → C be the metric projection of H onto C, then PC is nonexpansive,
that is,

‖PCx− PCy‖ ≤ ‖x− y‖, ∀x, y ∈ H.
This fact actually characterizes Hilbert spaces, however, it is not available in
more general Banach spaces. In this connection, Alber [1] recently introduced
a generalized projection operator ΠC in a Banach space E which is an analogue
of the metric projection in Hilbert spaces.

Recently, applying the generalized projection operator, Li [16] established
the following Mann type iterative scheme for solving variational inequalities
without assuming the monotonicity of A in compact subset of Banach spaces.

Theorem 1.1. ([16], Theorem 3.1) Let E be a uniformly convex and uniformly
smooth Banach space and C be a compact convex subset of E. Let A : C → E∗

be a continuous mapping on C such that

〈Ax− ξ, J−1(Jx− (Ax− ξ))〉 ≥ 0, ∀x ∈ C,

where ξ ∈ E∗. For any x0 ∈ C, define the Mann type iteration scheme as
follows:

xn+1 = (1− αn)xn + αnΠC(Jxn − (Axn − ξ)), ∀n ≥ 1,

where the sequence {αn} satisfies the following conditions:

(a) 0 ≤ αn ≤ 1 for all n ∈ N ;
(b) Σ∞n=1αn(1− αn) =∞.
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Then the variational inequality 〈Ax − ξ, y − x〉 ≥ 0 for all y ∈ C (when
ξ = 0, the variational inequality (1.1)) has a solution x∗ ∈ C and there exists
a subsequence {ni} ⊂ {n} such that

xni → x∗ (i→∞).

In addition, Fan [11] established some existence results of solutions and the
convergence of the Mann type iterative scheme for the variational inequality
(1.1) in a noncompact subset of a Banach space and proved the following
theorem.

Theorem 1.2. ([11], Theorem 3.3) Let E be a uniformly convex and uniformly
smooth Banach space and C be a compact convex subset of E. Suppose that
there exists a positive number β such that

〈Ax, J−1(Jx− βAx)〉 ≥ 0, ∀x ∈ C,

and J − βA : C → E∗ is compact. if

〈Ax, y〉 ≤ 0, ∀x ∈ C, y ∈ V I(A,C),

then the variational inequality (1.1) has a solution x∗ ∈ C and the sequence
{xn} defined by the following iteration scheme:

xn+1 = (1− αn)xn + αnΠC(Jxn − βAxn), ∀n ≥ 1,

where the sequence {αn} satisfies that 0 < a ≤ αn ≤ b < 1 for all n ≥ 1
(a, b ∈ (0, 1] with a < b), converges strongly to x∗ ∈ C.

Motivated by Li [16] and Fan [11], Liu [17] introduced the iterative sequence
for approximating a common element of the fixed points set of a relatively
weak nonexpansive mapping defined by Kohasaka and Takahashi [15] and the
solutions set of the variational inequality in a noncompact subset of Banach
spaces without assuming the compactness of the operator J − βA. More
precisely, Liu [17] proved the following theorems.

Theorem 1.3. ([17], Lemma 2.5) Let E be a uniformly convex and uniformly
smooth Banach space and C be a nonempty, closed convex subset of E. Suppose
that there exists a positive number β such that

〈Ax, J−1(Jx− βAx)〉 ≥ 0, ∀x ∈ C, (1.2)

and

〈Ax, y〉 ≤ 0, ∀x ∈ C, y ∈ V I(A,C), (1.3)

then V I(A,C) is closed and convex.
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Theorem 1.4. ([17], Theorem 3.1) Let E be a uniformly convex and uniformly
smooth Banach space and C be a nonempty closed convex subset of E. Assume
that A is a continuous operator of C into E∗ satisfying the conditions (1.2)
and (1.3) and S : C → C is a relatively weak nonexpansive mapping with

F := F (S) ∩ V I(A,C) 6= ∅.

Then the sequence {xn} generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJxn + (1− αn)JSxn),

yn = J−1(δnJxn + (1− δn)JΠC(Jzn − βAzn)),

C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},
Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, yn) ≤ φ(z, xn)},
Q0 = C,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈Jx0 − Jxn, xn − z〉 ≥ 0},
xn+1 = ΠCn∩QnJx0, ∀n ≥ 1,

(1.4)

where the sequences {αn} and {δn} satisfy the following conditions:

0 ≤ δn < 1, lim sup
n→∞

δ < 1, 0 < αn < 1, lim inf
n→∞

αn(1− α) > 0,

converges strongly to ΠF (S)∩V I(A,C)Jx0.

A mapping A : D(A) ⊂ E → E∗ is said to be monotone if the following
inequality holds:

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ D(A). (1.5)

A is said to be λ−inverse strongly monotone if there exists a positive real
number λ such that

〈x− y,Ax−Ay〉 ≥ λ‖Ax−Ay‖2, ∀x, y ∈ D(A). (1.6)

If A is λ−inverse strongly monotone, then it is Lipschitz continuous with
constant 1

λ , i.e., ‖Ax − Ay‖ ≤ 1
λ‖x − y‖, ∀x, y ∈ D(A), and hence uniformly

continuous.

For finding an element of a nonexpansive mapping and V I(A,C), Takahashi
and Toyoda [38] introduced the following iterative scheme in a Hilbert space
H:

xn+1 = αnxn + (1− αn)SPC(xn − µnAxn), n ≥ 1, (1.7)

where x0 ∈ C, PC is a metric projection of H onto C, A is a λ−inverse strongly
monotone operator. Furthermore they proved a weak convergence theorem.
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Theorem 1.5. ([38], Theorem 3.1) Let C be a closed convex subset of a real
Hilbert space H. Let λ > 0. Let A be an λ−inverse strongly-monotone map-
ping of C into H, and let S be a nonexpansive mapping of C into itself such
that F (S) ∩ V I(A,C) 6= ∅. Let {xn} be a sequence generated by (1.7) for all
n ∈ N ∪ {0}, where {µn} ⊂ [a, b] for some a, b ∈ (0, 2λ) and {αn} ⊂ [c, d]
for some c, d ∈ (0, 1). Then, {xn} converges weakly to z ∈ F (S) ∩ V I(A,C),
where z = limn→∞ PF (S)∩V I(A,C)xn.

Let f : C × C → R be a bifunction. The equilibrium problem for f is as
follows: Find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀ y ∈ C. (1.8)

The set of solutions of the problem (1.8) is denoted by EP (f). For solving the
equilibrium problem, let us assume that a bifunction f satisfies the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗

and define

f(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.
Then f satisfies (A1)-(A4).

Let f : C × C → R be a bifunction and let B : C → E∗ be a monotone
mapping. The generalized equilibrium problem (for short, GEP) for f and B
is to find x̂ ∈ C such that

f(x̂, y) + 〈Bx̂, y − x̂〉 ≥ 0, ∀ y ∈ C. (1.9)

The set of solutions for the problem (1.9) is denoted by GEP (f,B), i.e.,

GEP (f,B) := {x̂ ∈ C : f(x̂, y) + 〈Bx̂, y − x̂〉 ≥ 0, ∀ y ∈ C}.

If B = 0 in (1.9), then GEP (1.9) reduces to the classical equilibrium problem
and GEP (f, 0) is denoted by EP (f), i.e.,

EP (f) := {x̂ ∈ C : f(x̂, y) ≥ 0, ∀ y ∈ C}.

Equilibrium problems, which were introduced in [5] in 1994, have had a
great impact and influence in the development of several branches of pure and
applied sciences. It has been shown that equilibrium problem theory provides a
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novel and unified treatment of a wide class of problems which arise in econom-
ics, finance, physics, image reconstruction, ecology, transportation, network,
elasticity and optimization. Numerous problems in physics, optimization and
economics reduce to finding a solution of the problem (1.5). Some methods
have been proposed to solve the equilibrium problem in a Hilbert space; See
[5, 20, 21].

In this paper, motivated and inspired by the results mentioned above, we
introduce a new hybrid projection algorithm based on the shrinking projection
method [31, 37] for two hemi-relatively nonexpansive mappings. Using the new
algorithm, we prove some strong convergence theorem which approximate a
common element in the fixed points set of two hemi-relatively nonexpansive
mappings, the solutions set of a variational inequality and the solutions set of
the equilibrium problem in a uniformly convex and uniformly smooth Banach
space. Our results extend and improve the recent ones announced by Li [16],
Fan [11], Liu [17], Takahashi and Toyoda [38], Kamraksa and Wangkeeree [14]
and many others.

2. Preliminaries

A Banach space E is said to be strictly convex if x+y
2 < 1 for all x, y ∈

E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if
limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in E such that
‖xn‖ = ‖yn‖ = 1 and lim→∞ ‖xn+yn2 ‖ = 1.

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach
space E is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ UE . It is also said to be uniformly smooth if the limit
(2.1) is attained uniformly for x, y ∈ UE .

It is well known that, if E is uniformly smooth, then J is uniformly norm-to-
norm continuous on each bounded subset of E and, if E is uniformly smooth
if and only if E∗ is uniformly convex.

A Banach space E is said to have the Kadec-Klee property if, for a sequence
{xn} of E satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, xn → x. It is known
that, if E is uniformly convex, then E has the Kadec-Klee property; see,
[9, 35, 36] for more details.

Let C be a closed convex subset of E and T be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of T if C
contains a sequence {xn} which converges weakly to p such that the strong
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limn→∞(xn−Txn) = 0. The set of asymptotic fixed points of T is denoted by

F̂ (T ).

Recall that an operator T in Banach space is said to be closed if xn → x
and Txn → y implies Tx = y.

A mapping T from C into itself is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

The mapping T is said to be relatively nonexpansive [13, 18, 19] if

F̂ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The asymptotic behavior of a relatively nonexpansive mapping was studied
in [13, 18, 19]. A point p ∈ C is called a strong asymptotic fixed point of
T if C contains a sequence {xn} which converges strongly to p such that
limn→∞(xn − Txn) = 0. The set of strong asymptotic fixed points of T is

denoted by F̃ (T ).
A mapping T from C into itself is said to be relatively weak nonexpansive

if

F̃ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The mapping T is said to be hemi-relatively nonexpansive if

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

It is obvious that a relatively nonexpansive mapping is a relatively and weakly
nonexpansive mapping and, further, a relatively and weakly nonexpansive
mapping is a hemi-relatively nonexpansive mapping, but the converses are
not true as in the following example.

Example 2.1. ([34]) Let E be any smooth Banach space and x0 6= 0 be any
element of E. We define a mapping T : E → E as follows: For all n ≥ 1,

T (x) =

{
(12 + 1

2n+1 )x0, if x = (12 + 1
2n )x0,

−x, if x 6= (12 + 1
2n )x0.

Then T is a hemi-relatively nonexpansive mapping, but it is not relatively
nonexpansive mapping.

Next, we give some important examples which are hemi-relatively nonex-
pansive.

Example 2.2. ([23]) Let E be a strictly convex reflexive smooth Banach
space. Let A be a maximal monotone operator of E into E∗ and Jr be the
resolvent for A with r > 0. Then Jr = (J + rA)−1J is a hemi-relatively
nonexpansive mapping from E onto D(A) with F (Jr) = A−10.
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In [4, 12], Alber introduced the functional V : E∗ × E → R defined by

V (φ, x) = ‖φ‖2 − 2〈φ, x〉+ ‖x‖2, (2.2)

where φ ∈ E∗ and x ∈ E. It is easy to see that

V (φ, x) ≥ (‖φ‖ − ‖x‖)2 (2.3)

and so the functional V : E∗ × E → R+ is nonnegative.

In order to prove our results in the next section, we present several defini-
tions and lemmas here.

Definition 2.3. ([13]) If E be a uniformly convex and uniformly smooth
Banach space, then the generalized projection ΠC : E∗ → C is a mapping
that assigns an arbitrary point φ ∈ E∗ to the minimum point of the functional
V (φ, x), i.e., a solution to the minimization problem

V (φ,ΠC(φ)) = inf
y∈C

V (φ, y). (2.4)

Li [16] proved that the generalized projection operator ΠC : E∗ → C is
continuous if E is a reflexive, strictly convex and smooth Banach space.

Consider the function φ : E × E → R is defined by

φ(x, y) = V (Jy, x), ∀x, y ∈ E.
The following properties of the operator ΠC and V are useful for our paper

(see, for example, [1, 16]).

(B1) V : E∗ × E → R is continuous.
(B2) V (φ, x) = 0 if and only if φ = Jx.
(B3) V (JΠC(φ), x) ≤ V (φ, x) for all φ ∈ E∗ and x ∈ E.
(B4) The operator ΠC is J fixed at each point x ∈ E∗ and x ∈ E.
(B5) If E is smooth, then, for any given φ ∈ E∗ and x ∈ C, x ∈ ΠC(φ) if

and only if
〈φ− Jx, x− y〉 ≥ 0, ∀y ∈ C.

(B6) The operator ΠC : E∗ → c is single valued if and only if E is strictly
convex.

(B7) If E is smooth, then, for any given point φ ∈ E∗ and x ∈ ΠC(φ), the
following inequality holds:

V (Jx, y) ≤ V (φ, y)− V (φ, x), ∀y ∈ C.
(B8) v(φ,X) is convex with respect to φ when x is fixed and with respect

to x when φ is fixed.
(B9) If E is reflexive, then, for any point φ ∈ E∗, ΠC(φ) is a nonempty

closed convex and bounded subset of C.

Using some properties of the generalized projection operator ΠC , Alber [1]
proved the following theorem.
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Lemma 2.4. ([1]) Let E be a strictly convex reflexive smooth Banach space.
Let A be an arbitrary operator from a Banach space E to E∗ and β be an ar-
bitrary fixed positive number. Then x ∈ C ⊂ E is a solution of the variational
inequality (1.1) if and only if x is a solution of the following operator equation
in E:

x = ΠC(Jx− βAx). (2.5)

Lemma 2.5. ([13]) Let E be a uniformly convex smooth Banach space and
{yn}, {zn} be two sequences of E such that either {yn} or {zn} is bounded. If
limn→∞ φ(yn, zn) = 0, then limn→∞ ‖yn − zn‖ = 0.

Lemma 2.6. ([7]) Let E be a uniformly convex and uniformly smooth Banach
space. We have

‖φ+ Φ‖2 ≤ ‖φ‖2 + 2〈Φ, J(φ+ Φ)〉, ∀φ,Φ ∈ E∗. (2.6)

From Qin et al. [22], the following lemma can be obtained immediately.

Lemma 2.7. Let E be a uniformly convex Banach space, s > 0 be a positive
number and Bs(0) be a closed ball of E. Then there exists a continuous, strictly
increasing and convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖ΣN
i=1(αixi)‖2 ≤ ΣN

i=1(αi‖xi‖2)− αiαjg(‖xi − xj‖) (2.7)

for all x1, x2, · · · , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s}, i 6= j for all i, j ∈
{1, 2, · · · , N} and α1, α2, · · · , αN ∈ [0, 1] such that ΣN

i=1αi = 1.

Lemma 2.8. ([5]) Let C be a closed and convex subset of a smooth, strictly
convex and reflexive Banach spaces E, f be a bifunction from C × C to R
satisfying the conditions (B1)-(B4) and let r > 0, x ∈ E. Then there exists
z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C. (2.8)

Lemma 2.9. ([39]) Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach spaces E, let f be a bifunction from C×C
to R satisfying (B1)-(B4). For all r > 0 and x ∈ E, define the mapping

Trx =

{
z ∈ C : f(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C

}
.

Then, the following statements hold:

(C1) Tr is single-valued;
(C2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;



468 Z. M. Wang

(C3) F (Tr) = F̂ (Tr) = EP (f);
(C4) EP (f) is closed and convex.

Lemma 2.10. ([39]) Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let f be a bifunction from C × C to R
satisfying (C1)-(A4), and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x). (2.9)

Remark 2.11. Replacing x with J−1(Jx−rB(x)) in (2.8), where B is mono-
tone mapping from C into E∗, then there exists z ∈ C such that

f(z, y) + 〈Bx, y − z〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C. (2.10)

Lemma 2.12. Let C be a closed and convex subset of a smooth, strictly con-
vex and reflexive Banach space E, B : C → E∗ a monotone and continuous
mapping, f a bifunction from C×C to R satisfying the conditions (A1)–(A4).
For all r > 0, the following statements hold.

(i) for x ∈ E, there exists z ∈ C such that

f(z, y) + 〈Bz, y − z〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C;

(ii) if E is additionally uniformly smooth and Kr : E → C is defined as

Krx =

{
z ∈ C : f(z, y) + 〈Bz, y − z〉+

1

r
〈y − z, Jz − Jx〉

≥ 0, ∀ y ∈ C
}
, ∀x ∈ E.

(2.11)

Then the mapping Kr has the following Properties:

(D1) Kr is single-valued;
(D2) Kr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉; (2.12)

(D3) F (Kr) = F̂ (Kr) = EP (f,B);
(D4) EP (f,B) is closed and convex subset of C;
(D5) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x), ∀ p ∈ F (Kr).

Proof. Define a bifunction F : C × C → R as follows:

F (z, y) = f(z, y) + 〈Bz, y − z〉, ∀ z, y ∈ C.
Then it is easy to imply that F satisfies conditions (A1)–(A4). Therefore, from
Lemma 2.8–2.10, statements (i), (ii) of Lemma 2.12 follow immediately. �
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Lemma 2.13. ([17], Lemma 2.6) If E is a reflexive, strictly convex and smooth
Banach space, then ΠC = J−1.

Lemma 2.14. ([34], Lemma 2.6) Let E be a strictly convex and smooth real
Banach space, C be a closed convex subset of E and T be a hemi-relatively
nonexpansive mapping from C into itself. Then F (T ) is closed and convex.

3. Main results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A1, A2

are two continuous operators of C into E∗ satisfying the conditions (1.2) and
(1.3), B is a continuous and monotone operator of C into E∗and S, T : C → C
are two closed hemi-relatively nonexpansive mappings with F := F (S)∩F (T )∩
V I(A1, C)∩V I(A2, C)∩GEP (f,B) 6= ∅. Let {xn} be a sequence generated by
the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zin = ΠC(Jxn − ηiAixn), i = 1, 2,

yn = ΠC(β0nJxn + β1nJTz
1
n + β2nJSz

2
n),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn :
⋂
i=1,2 φ(z, un) ≤ φ(z, yn)

≤ (1− βin)φ(z, xn) + βinφ(z, zin)

≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

(3.1)

where {β0n}, {β1n} and {β2n} are the sequences in [0, 1] with the following re-
strictions:

(a) β0n + β1n + β2n = 1;
(b) {rn} ⊂ [a,∞) for some a > 0;
(c) lim infn→∞ β

0
nβ

1
n > 0 and lim infn→∞ β

0
nβ

2
n > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

Proof. We divide the proof into five steps.

Step 1. ΠFJx0 and ΠCn+1Jx0 are well defined.
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From Lemma 2.12 (D5), Lemma 2.14 and Theorem 1.1, one has that ΠFJx0
is well defined. Next, we show that Cn is closed and convex for all n ∈ N∪{0}.
From the definitions of Cn, it is obvious that Cn is closed for all n ∈ N ∪ {0}.

Next, we prove that Cn is convex for all n ∈ N ∪ {0}. Since φ(z, un) ≤
φ(z, yn) is equivalent to 2〈z, Jyn−Jun〉 ≤ ‖yn‖2−‖un‖2, for i = 1, 2, we have

φ(z, yn) ≤ (1− βin)φ(z, xn) + βinφ(z, zin)

is equivalent to

2〈z, (1− βin)Jxn + βinJz
i
n − Jyn〉 ≤ (1− βin)‖xn‖2 + βin‖zin‖2 − ‖yn‖2,

and
(1− βin)φ(z, xn) + βinφ(z, zin) ≤ φ(z, xn)

is equivalent to
2〈z, Jxn − Jzin〉 ≤ ‖xn‖2 − ‖zin‖2,

it follows that Cn is convex for all n ∈ N ∪ {0}. Thus, for all n ∈ N ∪ {0}, Cn
is closed and convex and so ΠCn+1Jx0 is well defined.

Step 2. F ⊂ Cn for all n ∈ N ∪ {0}.
Observe that F ⊂ C0 = C is obvious. Suppose that F ⊂ Cn for some n ∈ N.

Let w ∈ F ⊂ Cn. Then, from the definition of φ and V , the property (B3) of
V , Lemma 2.6, the conditions (1.2) and (1.3), for all n ∈ N ∪ {0}, i = 1, 2, it
follows that

φ(w,ΠC(Jxn − ηiAixn))

= V (JΠC(Jxn − ηiAixn), w)

≤ V (Jxn − ηiAixn, w)

= ‖Jxn − ηiAixn‖2 − 2〈Jxn − ηiAixn, w〉+ ‖w‖2

≤ ‖Jxn‖2 − 2ηi〈Aixn, J−1(Jxn − ηiAixn)〉
− 2〈Jxn − ηiAixn, w〉+ ‖w‖2

≤ ‖Jxn‖2 − 2〈Jxn, w〉+ ‖w‖2

= φ(w, xn).

(3.2)

Since un = Krnyn, applying Lemma 2.12, the properties (B3) and (B8) of the
operator V and (3.4), we obtain

φ(w, un) = φ(w,Krnyn) ≤ φ(w, yn) = V (Jyn, w)

≤ β0nV (Jxn, w) + β1nV (JTz1n, w) + β2nV (JSz2n, w)

≤ β0nφ(w, xn) + β1nφ(w, z1n) + β2nφ(w, z2n)

≤ β0nφ(w, xn) + β1nφ(w, xn) + β2nφ(w, xn)

= φ(w, xn),

(3.3)
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which shows that w ∈ Cn+1. This implies that F ⊂ Cn for all n ∈ N ∪ {0}.
Step 3. {xn} is a Cauchy sequence.

Since xn = ΠCnJx0 and F ⊂ Cn, we have V (Jx0, xn) ≤ V (Jx0, w) for all
w ∈ F. Therefore, {V (Jx0, xn)} is bounded. Moreover, from the definition
of V , it follows that {xn} is bounded. Since xn+1 = ΠCn+1Jx0 ∈ Cn+1 and
xn = ΠCnJx0, we have V (Jx0, xn) ≤ V (Jx0, xn+1) for all n ∈ N∪ {0}. Hence
{V (Jx0, xn)} is nondecreasing and so limn→∞ V (Jx0, xn) exists. By the con-
struction of Cn, we have that Cm ⊂ Cn and xm = ΠCmJx0 ∈ Cn for any
positive integer m ≥ n. From the property (B3), we have

V (Jxn, xm) ≤ V (Jx0, xm)− V (Jx0, xn)

for all n ∈ N ∪ {0} and any positive integer m ≥ n. This implies that

V (Jxn, xm)→ 0 as n,m→∞.
The definition of φ implies that

φ(xm, xn)→ 0 as n,m→∞. (3.4)

Applying Lemma 2.5, we obtain

‖xm − xn‖ → 0 as n,m→∞. (3.5)

Hence {xn} is a Cauchy sequence. In view of the completeness of a Banach
space E and the closeness of C, it follows that

lim
n→∞

xn = p (3.6)

for some p ∈ C.

Step 4. p ∈ F.
First, we show that p ∈ F (S) ∩ F (T ). In fact, since xn+1 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn).

Thus, by (3.4) and Lemma 2.5, we have that

‖xn+1 − un‖ → 0 as n→∞,
and hence

‖xn − un‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un‖ → 0 as n→∞, (3.7)

which implies that

lim
n→∞

un = lim
n→∞

xn = p. (3.8)

On the other hand, since J is uniformly norm-to-norm continuous on bounded
sets, one has

lim
n→∞

‖Jxn − Jun‖ = 0. (3.9)
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Since {xn} is bounded, {Jxn}, {JTxn} and {JSxn} are also bounded. Since E
is a uniformly smooth Banach space, one knows that E∗ is a uniformly convex
Banach space. Let r = supn≥0{‖Jxn‖, ‖JTxn‖, ‖JSxn‖}. Therefore, from
Lemma 2.7, it follows that there exists a continuous strictly increasing convex
function g : [0,∞) → [0,∞) satisfying g(0) = 0 and the inequality (2.7). It
follows from the property (B3) of the operator V , (3.2) and the definition of
S and T that

φ(w, yn)

= V (Jyn, w)

≤ V (β0
nJxn + β1

nJTz
1
n + β2

nJSz
2
n, w)

= φ(w, J−1(β0
nJxn + β1

nJTz
1
n + β2

nJSz
2
n))

= ‖w‖2 − 2β0
n〈w, Jxn〉 − 2β1

n〈w, JTz1n〉 − 2β2
n〈w, JSz2n〉

+ ‖β0
nJxn + β1

nJTz
1
n + β2

nJSz
2
n‖2

≤ ‖w‖2 − 2β0
n〈w, Jxn〉 − 2β1

n〈w, JTz1n〉 − 2β2
n〈w, JSz2n〉

+ β0
n‖Jxn‖2 + β1

n‖JTz1n‖2 + β2
n‖JSz2n‖2 − β0

nβ
1
ng(‖Jxn − JTz1n‖)

= β0
nφ(w, xn) + β1

nφ(w, Tz1n) + β2
nφ(w, Sz2n)− β0

nβ
1
ng(‖Jxn − JTz1n‖)

≤ β0
nφ(w, xn) + β1

nφ(w, xn) + β2
nφ(w, xn)− β0

nβ
1
ng(‖Jxn − JTz1n‖)

= φ(w, xn)− β0
nβ

1
ng(‖Jxn − JTz1n‖).

(3.10)

On the other hand, from (3.3), we get that

φ(w, un) = φ(w,Krnyn) ≤ φ(w, yn). (3.11)

Substituting (3.10) into (3.11), we obtain that

φ(w, un) ≤ φ(w, xn)− β0nβ1ng(‖Jxn − JTz1n‖).

The above inequality implies that

β0nβ
1
ng(‖Jxn − JTz1n‖) ≤ φ(w, xn)− φ(w, un), (3.12)

and we have

φ(w, xn)− φ(w, un) = 2〈Jun − Jxn, w〉+ ‖xn‖2 − ‖un‖2

≤ 2〈Jun − Jxn, p〉+ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖)
≤ 2‖Jun − Jxn‖‖w‖+ ‖xn − un‖(‖xn‖+ ‖un‖).

It follows from (3.7) and (3.8) that

lim
n→∞

(φ(w, xn)− φ(w, un)) = 0. (3.13)

In view of lim infn→∞ β
0
nβ

1
n > 0, the inequality (3.12) implies that

g(‖Jxn − JTz1n‖)→ 0 as n→∞.
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Therefore, from the property of g, we get that

‖Jxn − JTz1n‖ → 0 as n→∞.
Furthermore, since J−1 is uniformly norm to norm continuous on bounded
sets, we see that

‖xn − Tz1n‖ → 0 as n→∞. (3.14)

On the other hand, By the construction of Cn, we know that

φ(z, un) ≤ (1− β1n)φ(z, xn) + β1nφ(z, z1n) ≤ φ(z, xn).

From xn+1 = ΠCn+1Jx0 ∈ Cn+1, we have

φ(xn+1, un) ≤ (1− β1n)φ(xn+1, xn) + β1nφ(xn+1, z
1
n) ≤ φ(xn+1, xn).

It follows from (3.8) that

φ(xn+1, z
1
n)→ 0 as n→∞.

Applying Lemma 2.5, one has

‖xn+1 − z1n‖ → 0 as n→∞,
and by (3.5), we obtain that

‖xn − z1n‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − z1n‖ → 0 as n→∞. (3.15)

Thus, from (3.14) and (3.15), we obtain that

‖z1n − Tz1n‖ ≤ ‖z1n − xn‖+ ‖xn − Tz1n‖ → 0 as n→∞.
Similarly, one can obtain that

‖xn − z2n‖ → 0 as n→∞
and

‖z2n − Sz2n‖ → 0 as n→∞.
Thus, from the closedness of S, T , we obtain that p ∈ F (S) ∩ F (T ).

Secondly, we show that p ∈ GEP (f,B), from un = Krnxn and the con-
struction of Cn, one has

φ(un, yn) = φ(Krnyn, yn)

≤ φ(w, yn)− φ(w,Krnyn)

≤ φ(w, xn)− φ(w,Krnyn)

≤ φ(w, xn)− φ(w, un).

And by (3.13) it follows that

φ(un, yn)→ 0 as n→∞.
Applying Lemma 2.5, we obtain

‖un − yn‖ → 0 as n→∞.
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Since J is a uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

‖Jun − Jyn‖ = 0.

From the assumption that rn ≥ a, one has

lim
n→∞

‖Jun − Jyn‖
rn

= 0.

Observing that un = Krnyn, one obtains

F (un, y) +
1

rn
〈y − un, Jun − Jy〉 ≥ 0, ∀ y ∈ C,

where F (un, y) = f(un, y) + 〈Bun, y − un〉. From (A2), one gets

‖yn − un‖
‖Jun − Jyn‖

rn
≥ 1

rn
〈y − un, Jun − Jyn〉

≤ −F (un, y)

≤ F (y, un), ∀ y ∈ C.

Taking n→∞ in above inequality, it follows from (A4) and (3.8) that

F (y, p) ≤ 0, ∀ y ∈ C.

For all 0 < t < 1 and y ∈ C, define yt = ty+ (1− t)p. Note that y, p ∈ C, one
obtains yt ∈ C, which yields that F (yt, p) ≤ 0. It follows from (A1) that

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, p) ≤ tF (yt, y),

that is

F (yt, y) ≥ 0.

Let t ↓ 0. From (A3), we obtain F (p, y) ≥ 0 for all y ∈ C, which imply that
p ∈ GEP (f,B).

Finally, we show that p ∈ V I(A1, C) ∩ V I(A2, C). In fact, by (3.15), we
have

‖ΠC(Jxn − η1A1xn)− xn‖ → 0 as n→∞.
Since limn→∞ xn = p, we obtain

lim
n→∞

z1n = p.

Similarly, one can also have

lim
n→∞

z2n = p.

By the continuity of the operator J , A1, ΠC , we have

lim
n→∞

‖ΠC(Jxn − η1A1xn)−ΠC(Jp− η1A1p)‖ = 0
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Note that

‖ΠC(Jxn − η1A1xn)− p)‖ ≤ ‖ΠC(Jxn − η1A1xn)− xn‖+ ‖xn − p‖
→ 0 as n→∞.

Hence it follows from the uniqueness of the limit that p = ΠC(Jp − η1A1p).
From Lemma 2.4, we have p ∈ V I(A1, C). By the same way, we can also know
that p ∈ V I(A2, C) and so p ∈ V I(A1, C) ∩ V I(A2, C). Therefore, we have
p ∈ F.
Step 5. p = ΠFJx0.

Since p ∈ F , from the property (B3) of the operator ΠC , we have

V (JΠFJx0, p) + V (Jx0,ΠFJx0) ≤ V (Jx0, p). (3.16)

On the other hand, since xn+1 = ΠCn+1Jx0 and F ⊂ Cn+1 for all n ∈ N∪{0},
it follows from the property (B7) of the operator ΠC that

V (Jxx+1,ΠFJx0) + V (Jx0, xn+1) ≤ V (Jx0,ΠFJx0). (3.17)

Furthermore, by the continuity of the operator V , we get

lim
n→∞

V (Jx0, xn+1) = V (Jx0, p). (3.18)

Combining (3.16), (3.17) with (3.18), we obtain

V (Jx0, p) = V (Jx0,ΠFJx0).

Therefore, it follows from the uniqueness of ΠFJx0 that p = ΠFJx0. This
completes the proof. �

Remark 3.2. Theorem 3.1 improves Theorem 3.1 of Liu [17] and Theorem
3.1 of Kamraksa et al. [14] in the following senses.

(1) The hemi-relatively nonexpansive mapping is more general than the
relatively weak nonexpansive one in Liu [17] and Kamraksa et al. [14].

(2) The iteration algorithms of Theorem 3.1 is modified Mann iteration
which is different from the modified Mann iteration given in Liu [17]
and Kamraksa et al. [14]; And, in contrast to Theorem 3.1 of Kam-
raksa et al. [14], our algorithm in Theorem 3.1 contacts with gen-
eralized equilibrium problem which is more general than equilibrium
problem.

Remark 3.3. See Remark 3.1 of Liu [17], Theorem 3.1 also does the corre-
sponding promotions about Liu [17] and Fan [11].

When S = T = I in (3.1), we can obtain the new modified Mann iteration
for the variational inequality (1.1), the generalized equilibrium problem (1.9)
as follows.



476 Z. M. Wang

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A1, A2

are two continuous operators of C into E∗ satisfying the conditions (1.2) and
(1.3), B is a continuous and monotone operator of C into E∗ with F :=
V I(A1, C)∩V I(A2, C)∩GEP (f,B) 6= ∅. Let {xn} be a sequence generated by
the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zin = ΠC(Jxn − ηiAixn), i = 1, 2,

yn = ΠC(β0nJxn + β1nJz
1
n + β2nJz

2
n),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn :
⋂
i=1,2 φ(z, un) ≤ φ(z, yn)

≤ (1− βin)φ(z, xn) + βinφ(z, zin) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {β0n}, {β1n} and {β2n} are the sequences in [0, 1] with the following re-
strictions:

(a) β0n + β1n + β2n = 1;
(b) {rn} ⊂ [a,∞) for some a > 0;
(c) lim infn→∞ β

0
nβ

1
n > 0 and lim infn→∞ β

0
nβ

2
n > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

If β2n = 0 in (3.1), then the iteration scheme (3.1) reduces to the new
modified Mann iteration for one closed hemi-relatively nonexpansive mapping,
the variational inequality (1.1) and the generalized equilibrium problem (1.9)
as follows.

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a
continuous operator of C into E∗ satisfying the conditions (1.2) and (1.3), B
is a continuous and monotone operator of C into E∗and T : C → C is a closed
hemi-relatively nonexpansive mapping with

F := F (T ) ∩ V I(A,C) ∩GEP (f,B) 6= ∅.
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Let {xn} be a sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JTzn),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn)

≤ αnφ(z, xn) + (1− αn)φ(z, zn) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1] with the following restrictions:

(a) lim infn→∞ αn(1− αn) > 0;
(b) {rn} ⊂ [a,∞) for some a > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

If the mapping A is a λ−inverse strongly monotone mapping in Corollary
3.5, then the following result can be also obtained by Corollary 2.5 and The-
orem 3.1.

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a
λ−inverse strongly monotone mapping of C into E∗ satisfying the conditions
(1.2) and (1.3), B is a continuous and monotone operator of C into E∗and
T : C → C is a closed hemi-relatively nonexpansive mapping with F := F (T )∩
V I(A,C)∩GEP (f,B) 6= ∅. Let {xn} be a sequence generated by the following
iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JTzn),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn)

≤ αnφ(z, xn) + (1− αn)φ(z, zn) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,



478 Z. M. Wang

where {αn} is a sequence in [0, 1] with the following restrictions:

(a) lim infn→∞ αn(1− αn) > 0;
(b) {rn} ⊂ [a,∞) for some a > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

Proof. Since A is λ−inverse strongly monotone, by (1.6), we have

‖Ax−Ay‖ ≤ 1

λ
‖x− y‖,

for all x, y ∈ C, then it is Lipschitz continuous with constant 1
λ . By Corollary

3.5, we can directly obtain that the sequence {xn} converges strongly to a
point ΠFJx0. �

Remark 3.7. Corollary 3.6 improves Theorem 3.1 of Takahashi and Toyoda
[38] in the following senses:

(1) The hemi-relatively nonexpansive mapping is more general than a non-
expansive one in Takahashi and Toyoda [38].

(2) Our modified Mann iteration obtains strong convergence result about
a λ−inverse strongly monotone mapping and a closed hemi-relatively
nonexpansive mapping and generalized equilibrium problem (1.9) in a
uniformly convex and uniformly smooth Banach space.

4. Applications to maximal monotone operators

In this section, we apply the our main results to proving some strong con-
vergence theorem concerning maximal monotone operators in a Banach space
E.

Let B be a multi-valued operator from E to E∗ with domain D(B) = {z ∈
E : Bz 6= ∅} and range R(B) = {z ∈ E : z ∈ D(B)}. An operator B is said to
be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0

for all x1, x2 ∈ D(B) and y1 ∈ Bx1, y2 ∈ Bx2. A monotone operator B is said
to be maximal if it’s graph G(B) = {(x, y) : y ∈ Bx} is not properly contained
in the graph of any other monotone operator.

It is well known that, if B is a maximal monotone operator, then B−10 is
closed and convex.

The following result is also well known.

Lemma 4.1. ([30]) Let E be a reflexive, strictly convex and smooth Banach
space and B be a monotone operator from E to E∗. Then B is maximal if
and only if R(J + rB) = E∗ for all r > 0.
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Let E be a reflexive, strictly convex and smooth Banach space and B be a
maximal monotone operator from E to E∗. Using Lemma 4.1 and the strict
convexity of E, it follows that, for all r > 0 and x ∈ E, there exists a unique
xr ∈ D(B) such that

Jx ∈ Jxr + rBxr.

If Jrx = xr, then we can define a single valued mapping Jr : E → D(B) by
Jr = (J + rB)−1J and such a Jr is called the resolvent of B. We know that
B−10 = F (Jr) for all r > 0 (see [21, 35] for more details).

The following lemma plays an important role in our next theorem.

Lemma 4.2. ([33]) Let E be a uniformly convex and uniformly smooth Banach
space, B be a maximal monotone operator from E to E∗ and Jr be a resolvent
of B. Then Jr is closed hemi-relatively nonexpansive mapping.

We consider the problem of strong convergence concerning maximal mono-
tone operators in a Banach space. Such a problem has been also studied in
[28, 29, 32]. Using Theorem 3.1, we obtain the following result.

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C×C to R satisfying the conditions (A1)-(A4). Assume that A1, A2 are
two continuous operators of C into E∗ satisfying the conditions (1.2) and (1.3),
B is a continuous and monotone operator of C into E∗and B1, B2 are two
maximal monotone operators from E to E∗, JB1

r and JB2
r are two resolvents

of B1 and B2 with

F := B−11 0 ∩B−12 0 ∩ V I(A1, C) ∩ V I(A2, C) ∩GEP (f) 6= ∅.

Let {xn} be a sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zin = ΠC(Jxn − ηiAixn), i = 1, 2,

yn = ΠC(β0nJxn + β1nJJ
B1
r z1n + β2nJJ

B2
r z2n),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn :
⋂
i=1,2 φ(z, un) ≤ φ(z, yn)

≤ (1− βin)φ(z, xn) + βinφ(z, zin) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

(4.1)

where {β0n}, {β1n} and {β2n} are the sequences in [0, 1] with the following re-
strictions:
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(a) β0n + β1n + β2n = 1;
(b) {rn} ⊂ [a,∞) for some a > 0;
(c) lim infn→∞ β

0
nβ

1
n > 0 and lim infn→∞ β

0
nβ

2
n > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

Proof. From Lemma 4.2, we know that JB1
r and JB1

r are two closed hemi-
relatively nonexpansive mappings. Furthermore, applying Theorem 3.1, we
can obtain that the sequence {xn} converges strongly to a point ΠFJx0. �

If β2n = 0 in (4.1), then the iteration scheme (4.1) is reduced to the new mod-
ified Mann iteration for zero of maximal monotone operator B1, the variational
inequality (1.1) and the generalized equilibrium problem (1.9) as follows.

Corollary 4.4. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a
continuous operator of C into E∗ satisfying the conditions (1.2) and (1.3),
B is a continuous and monotone operator of C into E∗and B1 is a maximal
monotone operator from E to E∗, JB1

r is a resolvent of B1 with

F := B−11 0 ∩ V I(A,C) ∩GEP (f,B) 6= ∅.

Let {xn} be a sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JJB1
r zn),

un ∈ C such that f(un, y) + 〈Bun, y − un〉
+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn)

≤ αnφ(z, xn) + (1− αn)φ(z, zn) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1] with the following restrictions:

(a) lim infn→∞ αn(1− αn) > 0;
(b) {rn} ⊂ [a,∞) for some a > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .

Considering B = 0 in Corollary 4.4, we can directly obtain the following
corollary by applying Corollary 4.4.
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Corollary 4.5. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a
continuous operator of C into E∗ satisfying the conditions (1.2) and (1.3), B
is a maximal monotone operator from E to E∗, JBr is a resolvents of B with

F := B−10 ∩ V I(A,C) ∩ EP (f) 6= ∅.

Let {xn} be a sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JJBr zn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn)

≤ αnφ(z, xn) + (1− αn)φ(z, zn) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1] with the following restrictions:

(a) lim infn→∞ αn(1− αn) > 0;
(b) {rn} ⊂ [a,∞) for some a > 0.

Then the sequence {xn} converges strongly to a point ΠFJx0, where ΠF is the
generalized projection from C onto F .
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