
Nonlinear Functional Analysis and Applications
Vol. 22, No. 3 (2017), pp. 485-494

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

BALL CONVERGENCE OF NEWTON’S METHOD FOR
GENERALIZED EQUATIONS USING RESTRICTED

CONVERGENCE DOMAINS AND MAJORANT
CONDITIONS

Ioannis K. Argyros1 and Santhosh George2

1Department of Mathematicsal Sciences
Cameron University, Lawton, OK 73505, USA

e-mail: ioannisa@cameron.edu

2Department of Mathematical and Computational Sciences
NIT Karnataka, Surathkal-575025, India

e-mail: sgeorge@nitk.ac.in

Abstract. In this study, we consider Newton’s method for solving the generalized equation

of the form F (x) + T (x) 3 0, in Hilbert space, where F is a Fréchet differentiable operator

and T is a set valued and maximal monotone. Using restricted convergence domains and

Banach Perturbation lemma we prove the convergence of the method with the following

advantages: tighter error estimates on the distances involved and the information on the

location of the solution is at least as precise. These advantages were obtained under the

same computational cost but using more precise majorant functions.

1. Introduction

In this study we consider the problem of approximately solving the gener-
alized equation

F (x) +Q(x) 3 0, (1.1)

where F : D −→ H is a nonlinear Fréchet differentiable operator defined on
the open subset D of the Hilbert space H and Q : H ⇒ H is set-valued and
maximal monotone. It is well known that many problems of practical interest

0Received October 3, 2016. Revised January 11, 2017.
02010 Mathematics Subject Classification: 65G99, 90C30, 49J53.
0Keywords: Generalized equation, Newton’s method, restricted convergence domains,

maximal monotone operator.



486 I. K. Argyros and S. George

can be modeled into an equation of the form (1.1) [17]-[22], [27, 28, 30, 36]. If
ψ : H −→ (−∞,+∞] is a strict lower semi-continuous convex function and

Q(x) = ∂ψ(x) = {u ∈ H : ψ(y) ≥ ψ(x) + 〈u, y − x〉}, ∀ y ∈ H,
then (1.1) becomes the variational inequality problem

F (x) + ∂ψ(x) 3 0,

including linear and nonlinear complementary problems, additional comments
about such problems can be found in [1]-[37].

In the present paper, we consider Newton’s method defined for each n =
0, 1, 2, · · · by

F (xk) + F ′(xk)(xk+1 − xk) + F (xk+1) 3 0 (1.2)

for approximately solving (1.1). We will use the idea of restricted convergence
domains to present a convergence analysis of (1.2). In our analysis we relax the
Lipschitz type continuity of the derivative of the operator involved. The basic
idea of the analysis is to find larger convergence domain for the method (1.2).
Using the restricted convergence domains, we obtained a finer convergence
analysis, with the advantages (A): tighter error estimates on the distances
involved and the information on the location of the solution is at least as
precise. These advantages were obtained (under the same computational cost)
using the same or weaker hypotheses as in [33].

The rest of the paper is organized as follows. Section 2 contains the neces-
sary background needed. In section 3, we present the local convergence. The
numerical examples are presented in the concluding section 4.

2. Preliminaries

In order to make the study as self contained as possible we reintroduce some
standard notations and auxiliary results for the monotonicity of set valued
operators [18, 22, 27]. Denote by U(w, ξ), U(w, ξ), the open and closed balls
in H, respectively, with center w ∈ H and of radius ξ > 0.

Next, we recall notions of monotonicity for set-valued operators.

Definition 2.1. Let Q : H ⇒ H be a set-valued operator. Q is said to be
monotone if for any x, y ∈ domQ and u ∈ Q(y), v ∈ Q(x) implies that the
following inequality holds:

〈u− v, y − x〉 ≥ 0.

A subset of H × H is monotone if it is the graph of a monotone operator.
If ϕ : H −→ (−∞,+∞] is a proper function then the subgradient of ϕ is
monotone.
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Definition 2.2. Let Q : H ⇒ H be monotone. Then Q is maximal monotone
if the following holds for all x, u ∈ H :

〈u− v, y − x〉 ≥ 0 for each y ∈ domQ and v ∈ Q(y)

=⇒ x ∈ domQ and v ∈ Q(x).

We will be using the following results for proving our results.

Lemma 2.3. Let G be a positive operator (i.e. 〈G(x), x〉 ≥ 0). The following
statements about G hold:

• ‖G2‖ = ‖G‖2.
• If G−1 exists, then G−1 is a positive operator.

Lemma 2.4. Let G be a positive operator. Suppose that G−1 exists, then for
each x ∈ H we have

〈G(x), x〉 ≥ ‖x‖2

‖G−1‖
.

Lemma 2.5. Let B : H −→ H be a bounded linear operator and I : H −→ H
the identity operator. If ‖B − I‖ < 1 then B is invertible and ‖B−1‖ ≤

1
(1−‖B−I‖) .

Let G : H −→ H be a bounded linear operator. Then Ĝ := 1
2(G+G∗) where

G∗ is the adjoint of G. Hereafter, we assume that Q : H ⇒ H is a set valued
maximal monotone operator and F : H −→ H is a Fréchet differentiable
operator.

3. Local convergence

In this section, we study the local convergence of the Newton’s method
for solving the generalized equation (1.1) based on the partial linearization of
(1.1) ([30]). Our main result is the following:

Theorem 3.1. Let F : D ⊂ H −→ H be nonlinear operator with a continuous
Fréchet derivative F ′, where D is an open subset of H. Let Q : H ⇒ H be a
set-valued operator and x∗ ∈ D. Suppose that 0 ∈ F (x∗) + Q(x∗), F ′(x∗) is a

positive operator and F̂ ′(x∗)
−1

exists. Let R > 0 and suppose that there exist
f0, f : [0, R) −→ R twice continuously differentiable such that

(h0) for x ∈ D,

‖F̂ ′(x∗)
−1
‖‖F ′(x)− F ′(x∗)‖ ≤ f ′0(‖x− x∗‖)− f ′0(0), (3.1)
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and

‖F̂ ′(x∗)
−1
‖‖F ′(x)− F ′(x∗ + θ(x− x∗))‖

≤ f ′(‖x− x∗‖)− f ′(θ‖x− x∗‖)
(3.2)

for each x ∈ D0 = D ∩ U(x∗, R), θ ∈ [0, 1].
(h1) f(0) = f0(0) and f ′(0) = f ′0(0) = −1, f0(t) ≤ f(t), f ′0(t) ≤ f ′(t) for

each t ∈ [0, R).
(h2) f

′
0, f ′ are convex and strictly increasing.

Let

ν := sup{t ∈ [0, R) : f ′(t) < 0}
and

r := sup

{
t ∈ (0, ν) :

f(t)

tf ′(t)
− 1 < 1

}
.

Then the sequence with starting point x0 ∈ B(x∗, r)/{x∗} and t0 = ‖x∗ − x0‖,
respectively,

0 ∈ F (xk) + F ′(xk)(xk+1 − xk) +Q(xk+1),

tk+1 = |tk −
f(tk)

f ′(tk)
|, k = 0, 1, · · · ,

(3.3)

are well defined, {tk} is strictly decreasing, is contained in (0, r) and converges
to 0, {xk} is contained in U(x∗, r) and converges to the point x∗ which is the
unique solution of the generalized equation F (x)+Q(x) 3 0 in U(x∗, σ̄), where
σ̄ = min{r, σ} and σ := sup{0 < t < R : f(t) < 0}. Moreover, the sequence

{ tk+1

t2k
} is strictly decreasing,

‖x∗ − xk+1‖ ≤
[
tk+1

t2k

]
‖xk − x∗‖2,

tk+1

t2k
≤ f ′′(t0)

2|f ′(t0)|
, k = 0, 1, · · · . (3.4)

If, additionally ρf ′(ρ)−f(ρ)
ρf ′(ρ) = 1 and ρ < R, then r = ρ is the optimal conver-

gence radius. Furthermore, for t ∈ (0, r) and x ∈ Ū(x∗, t),

‖xk+1 − x∗‖ ≤
ef (‖xk − x∗‖, 0)

|f ′0(‖x∗k − x∗‖)|
:= αk

≤
ef (‖xk − x∗‖, 0)

|f ′(‖x∗k − x∗‖)|
≤
|ηf (t)|
t2
‖xk − x∗‖2, (3.5)

where

ef (s, t) := f(t)− (f(s) + f ′(s)(t− s)) for each s, t ∈ [0, R)

and

ηf (t) := t− f(t)

f ′(t)
for each s, t ∈ [0, ν).
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Finally, by the second inequality in (3.5) there exists r∗ ≥ r such that

lim
k−→∞

xk = x∗,

if x0 ∈ U(x∗, r∗)− {x∗}.

From now on we assume that the hypotheses of Theorem 3.1 hold.

Remark 3.2. The introduction of the center-Lipschitz-type condition (3.1)
(i.e., function f0) leads to the introduction of restricted Lipschitz-type condi-
tion (3.2). The condition used in earlier studies [33] is given by

‖F̂ ′(x∗)
−1
‖‖F ′(x)−F ′(x∗+ θ(x−x∗))‖ ≤ f ′1(‖x−x∗‖)−f ′1(θ‖x−x∗‖) (3.6)

for each x ∈ D, θ ∈ [0, 1], where f1 : [0,+∞) −→ R is also twice continuously
differentiable. It follows from (3.1), (3.2) and (3.6) that

f ′0(t) ≤ f ′1(t), (3.7)

f(t) ≤ f ′(t) (3.8)

for each t ∈ [o, ν), since D0 ⊆ D. If f ′0(t) = f ′1(t) = f ′(t) for each t ∈ [0, ν),
then our results reduce to the corresponding ones in [33]. Otherwise, (i.e., if
strict inequality holds in (3.7) or (3.8)) then the new results improve the old
ones. Indeed, let

r1 := sup

{
t ∈ (0, ν̄) : − tf

′
1(t)− f1(t)
tf ′1(t)

< 1

}
,

where ν1 := sup{t ∈ [0,+∞) : f ′1(t) < 0}. Then, the error bounds are (corre-
sponding to (3.5)):

‖xk+1 − x∗‖ ≤
ef1(‖xk − x∗‖, 0)

|f ′1(‖x∗k − x∗‖)|

:= βk ≤
|ηf1(t)|
t2

‖xk − x∗‖2. (3.9)

In view of the definition of r, r1 and estimates (3.5), (3.7), (3.8) and (3.9), we
deduce that

r1 ≤ r (3.10)

and
αk ≤ βk, k = 1, 2, · · · . (3.11)

Hence, we obtain a larger radius of convergence and tighter error estimates
on the distances involved, leading to a wider choice of initial guesses x∗ and
fewer computations of iterates xk in order to achieve a desired error tolerance.
It is also worth noticing:

The advantages are obtained under the same computational cost, since in
practice the computation of function f1 requires the computation of function
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f0 and f as special cases. The introduction of function f was not possible
before (when only function f1 was used). This introduction become possible
using function f0 (i.e., f is a function of f0) (see also the numerical examples).

Next, we present an auxiliary Banach Lemma relating the operator F with
the majorant function f0.

Lemma 3.3. Assume: there exists x∗ ∈ H such that F̂ ′(x∗) is a positive

operator and F̂ ′(x∗)
−1

exists; ‖x−x∗‖ ≤ min{R, ν}. Then, F̂ ′(x∗) is a positive

operator F̂ ′(x∗)
−1

exists and

‖F̂ ′(x)
−1
‖ ≤ ‖F̂ ′(x∗)

−1
‖

|f ′0(‖x− x∗‖)|
. (3.12)

Proof. The proof follows as in [33] but there are vital differences, when the
needed function f0 is used instead of the less precise f. Notice that

‖F̂ ′(x)− F̂ ′(x∗)‖ ≤ 1

2
‖F ′(x)− F ′(x∗)‖+

1

2
‖(F ′(x)− F ′(x∗))∗‖

= ‖F ′(x)− F ′(x∗)‖.
(3.13)

Let x ∈ U(x∗, r). If follows that ‖x − x∗‖ < ν, since r < ν. Consequently,
f ′0(‖x− x∗‖) < 0. Using (h0) and (3.13) we get that

‖F̂ ′(x∗)
−1
‖‖F̂ ′(x)− F̂ ′(x∗)‖ ≤ ‖F̂ ′(x∗)

−1
‖‖F ′(x)− F ′(x∗)‖

≤ f ′0(‖x− x∗‖)− f ′0(0) < 1
(3.14)

for all x ∈ U(x∗, r). It follows from (3.14) and the Banach Lemma, that

F̂ ′(x∗)
−1

exists. Moreover, in view of (3.14)

‖F̂ ′(x)
−1
‖ ≤ ‖F̂ ′(x∗)

−1
‖

1− ‖F̂ ′(x∗)
−1
‖‖F ′(x)− F ′(x∗)‖

≤ ‖F̂ ′(x∗)
−1
‖

1− (f ′0(‖x− x∗‖)− f0(0))

=
‖F̂ ′(x∗)

−1
‖

|f ′0(‖x− x∗‖)|
,

since r = min{R, ν}. Furthermore, using (3.14) we have

‖F̂ ′(x)− F̂ ′(x∗)‖ ≤ 1

‖F̂ ′(x∗)
−1
‖
. (3.15)
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We also from the above inequality for y ∈ H that

〈(F̂ ′(x∗)− F̂ ′(x))y, y〉 ≤ ‖F̂ ′(x∗)− F̂ ′(x)‖‖y‖2 ≤ ‖y‖2

‖F̂ ′(x∗)
−1
‖
,

leading to

F̂ ′(x∗)y, y〉 − ‖y‖2

‖F̂ ′(x∗)
−1
‖
≤ 〈F̂ ′(x)y, y〉.

In view of Lemma 2.5, we get that

〈F̂ ′(x∗)y, y〉 ≥ ‖y‖2

‖F̂ ′(x∗)
−1
‖
.

Hence, by the two last inequalities we deduce that 〈F̂ ′(x)y, y〉 ≥ 0, i.e. F̂ ′(x)

is a positive operator. Lemma 2.4 shows that F̂ ′(x) is a positive operator and

F̂ ′(x)
−1

exists. Hence, by Lemma 2.3 we have that

〈F̂ ′(x)y, y〉 ≥ ‖y‖2

‖F̂ ′(x)
−1
‖

for any y ∈ H. �

We can write that 〈F̂ ′(x)y, y〉 = 〈F ′(x)y, y〉. Then, by the second part of
Lemma 2.4 we conclude that the Newton iteration mapping is well-defined.
Denote by NF+Q, the Newton iteration mapping for f + F in that region. In
particular, NF+Q : U(x∗, r) −→ H is defined by

0 ∈ F (x) + F ′(x)(NF+Q(x)− x) +Q(NF+Q(x)), ∀x ∈ U(x∗, r). (3.16)

Remark 3.4. Under condition (3.6) it was shown in [33] that

‖F̂ ′(x)
−1
‖ ≤ ‖F̂ ′(x∗)

−1
‖

|f ′1(‖x− x∗‖)|
(3.17)

instead of (3.12). However, we have that (3.12) gives a tighter error estimate
than (3.13), since |f ′1(t) ≤ |f ′0(t)|. This is a crucial difference in the proof of
Theorem 3.1.

Proof of Theorem 3.1. Simply follow the proof of Theorem 4 in [33] but notice
that the iterates xk lie in D0 which is a more precise location than D (used
in [33]) allowing the usage of tighter function f than f1 and also the usage
of tighter function f0 that f1 for the computation of the upper bounds of the

inverses ‖F̂ ′(x)
−1
‖ (i.e., we use (3.12) instead of (3.17)). �
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4. Special Cases

Although in Remark 3.4, we have shown the advantages of our new ap-
proach over earlier ones, we also compare our results in the special case of
the Kantorovich theory [8, 11, 27, 29] with the corresponding ones in [16, 29],
Rall [16, 29], Traub and Wozniakowski [35], when F ≡ {0}. Similar favorable
comparisons can be given in the special case of Smale’s theory [34] or Wang’s
theory [37]. Let functions f0, f, f1 be defined by

f ′0(t) =
L0

2
t2 − t,

f ′(t) =
L

2
t2 − t

and

f ′1(t) =
L1

2
t2 − t

for some positive constants L0, L and L1 to be determined using a specialized
operator F.

Example 4.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function
F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T
.

Then the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that L0 = e − 1, L = e

1
L0 , L1 = e and hence f0(t) < f(t) < f1(t).

Therefore, we have that the conditions of Theorem 3.1 hold. Moreover, we
have that

r1 :=
2

3L1
< r :=

2

3L
< r∗ :=

2

2L0 + L
.

Furthermore, the corresponding error bounds are:

‖xk+1 − x∗‖ ≤
L‖xk − x∗‖2

2(1− L0‖xk − x∗‖)
,

‖xk+1 − x∗‖ ≤
L‖xk − x∗‖2

2(1− L‖xk − x∗‖)
and

‖xk+1 − x∗‖ ≤
L1‖xk − x∗‖2

2(1− L1‖xk − x∗‖)
.
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