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Abstract. We develop here a strong left fractional calculus theory for Banach space valued

functions of Caputo type. Then we establish many Bochner integral inequalities of various

types.

1. INTRODUCTION

Here we use extensively the Bochner integral for Banach space valued func-
tions, which is a direct generalization of Lebesgue integral to this case. The
reader may read about Bochner integral and its properties from [2], [5], [6],
8], [9], [11], [12] and [13].

Using Bochner integral properties and the great article [13], we develop a
left Caputo type strong fractional theory for the first time in the literature,
which is the direct analog of the real one, but now dealing with Banach space
valued functions.

In the literature there are very few articles about the weak fractional theory
of Banach space valued functions with the best one [1].

However we found the weak theory, using Pettis integral and functionals,
complicated, less clear, dificult and unnecessary.

With this article we try to simplify matters and put the related theory on
its natural grounds and resemble theory on real numbers.
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We define the Riemann-Liouville fractional Bochner integral operator, see
Definition 2.2, and we prove the commutative semigroup property, see Theo-
rem 2.7.

We use the general Fundamental theorem of calculus for Bochner integra-
tion, see Theorem 2.9 here, from [13].

Based on the last we produce a related general Taylor’s formula for Banach
valued functions.

We introduce then the left Caputo type fractional derivative in our setting,
see Definition 2.13. Then we are able to produce the related left fractional
Taylor’s formula in Banach space setting, which involves the Hausdorff mea-
sure. With this developed machinery we derive left fractional: Ostrowski type
inequalities, Landau type inequalities, Poincaré and Sobolev types, we finish
with the Opial type and Hilbert-Pachpatte type.

All these fractional inequalities for Banach space valued functions and using
always the Hausdorff measure. We cover these inequalities to all possible direc-
tions, acting at the introductory basic level, which leaves room for expansions
later.

2. MAIN RESULTS

Definition 2.1. Let U C R be an interval, and X be a Banach space, we
denote by Ly (U, X) the Bochner integrable functions from U into X.

Definition 2.2. Let n € R4, and [a,b] C R, X a Banach space, and f €
Ly ([a,b], X). The Bochner integral operator
n o 1 v n—1
2N @ =g [ @0 (1)
for a < x < b, is called the Riemann-Liouville fractional Bochner integral
operator of order n, where I' is the gamma function. For n = 0, we set
J? := I, the identity operator.

Theorem 2.3. Let f € L; ([a,b],X) and n > 0. Then, the Bochner integral
(J2f) (x) exists for almost every x € [a,b]. Furthermore, J'f € Ly (Ja,b],X).
Proof. We can write (see, [7, p.14])

/x(x—t)"_lf(t)dt:/él (x—t) Dy (t)dt = (D1 % B2) (2),  (2)
a R

which is a convolution, where

u 0<u<b—a,
1 (u) = { 0, elsewhere, (3)
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and
[ f), agus<b,

2 (u) = { 0, elsewhere. (4)
Notice that ®; € Ly (R) and @3 € Ly (R, X), i.e., both functions are Bochner
integrable. Hence the convolution ®; x ®5 exists, and it is Bochner integrable,
according to [11, Theorem 5.1, p.194]. Equivalently, ||®; * ®2|| is Lebesgue in-
tegrable (see [6]), hence finite almost everywhere. Thus (J?f) € L ([a,b] , X)
and exists almost everywhere on [a,b]. The claim is proved. O

Remark 2.4. Let [a,b] C R and (X, ||-||) a Banach space. Let also f : [a,b] —
X. If f is continuous, i.e., f € C([a,b],X), then f is strongly measurable, by
[9, Corollary 2.3, p.5].

Furthermore f ([a,b]) C X is compact, thus it is closed and bounded, hence
f is bounded, i.e. || f (t)|| < M,V t € [a,b], M > 0.

Let x,,z € [a,b] : ©, — z, as n — oo, then f(z,) — f(x) in |-,
that is [[[f (zn)[| = [If (@)l < [[f (2a) = F (2)[| = O, proving |[f]| is contin-
uous, hence bounded, so that |[f|;_(a4.x) == es[subl]) | f ()] < 400, that is

t€la,
f € Ly ([a,b],X), and hence f € Ly ([a,b],X). Consequently, f is Bochner
integrable ([2, p.426]), given that f is continuous.

For the last we used the fact:

/[ O < 1) 0= 0) < +oc,

proving that f € Ly ([a,b], X).
Also, clearly, absolute continuity of f : [a,b] — X, implies uniform continu-
ity and continuity of f.

We denote by AC ([a,b], X) the space of absolutely continuous functions
from [a, b] into X.

We present the following useful result.

Theorem 2.5. Here [a,b] C R, X is a Banach space, F : [a,b] — X. Let
r >0 and F € Ly ([a,b], X), and the Bochner integral

G (s) = / (s— 1)V F () dt, (5)
all s € la,b]. Then G € AC ([a,b],X) forr > 1 and G € C ([a,b],X) for
re(0,1).

Proof. Denote by [[F|o = [F|l,_(jap,x) = essup|[F (t)||x < +oo. Hence
o te[a,b]
F e Ly ([a,b], X). By [11, Theorem 5.4, p.101], (s — )" * F (t) is a strongly
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measurable function in ¢, t € [a,s], s € [a,b]. So that (s—t)""'F(t) e
Ly ([a, 5], X), see [6].

(1) Case r > 1.
We use the definition of absolute continuity. So for every € > 0 we need

d > 0: whenever (a;,b;), ¢ = 1,--- ,n, are disjoint open subintervals of [a, b],
then
S i—a)<s = Y IG0) -G la) <e. (6)
i=1 s

If |F||,, =0, then G (s) =0, for all s € [a,b], the trivial case and all fulfilled.
So we assume ||F|| # 0. Hence we have (see, [5])

G (b)) — G (a;)

b; a;
:/ (b —t)"F (t) dt—/ (a; — )" F () dt
~ [T - [ -0 P

(7)
+ / " (b~ VP (1) dt  (see [2, Theorem 1143, p.426)
_ / (=07 = 0= ) F (1)t + /bi (bi — )"V (¢) dt.
Call iy
. / =6 = (@ — t)H( dt. 8)
Thus ,
I6:0) -G lal < |+ P = )
If » =1, then I; = 0 and
|G (b:) — G (ai)|| < [|1F]lo (b — as) (10)

forall¢:=1,---  n.
If » > 1, then since [(bz — )"t — (a; — t)r_l} > 0 for all ¢ € [a,a;], we find

I = / (60— (=07 ) a

(b= a) = (@i —a) — (b — )’ (11)
_T (€~ a)r_l (bs ; a;) — (b — ai)r, for some £ € (a;, b;) .




A strong fractional calculus theory for Banach space valued functions 499

Therefore, it holds
r(b—a) (b —a;) — (b —a;)"

I; < " (12)
and .
(Ii + w;”) <(b—a)" (b —ai). (13)
That is
Ty < ||Fllo (b—a) ™" (b — i), (14)
so that

IG (b;) = G (ai)|| < ||F|lo, (0 —a) (b —ag), foralli=1,---,n. (15)

So in the case of r = 1, and by choosing ¢ := ||F6|| , we get
Z 1G (bi) — G (a:)]] < 1F ] (Z (b —%)) <|[Fllood =e, (16)
i=1

proving for » = 1 that G is absolutely continuous. In the case of r > 1, and

by choosing ¢ := W, we get

1G (bi) — G (as)]] < 17 (b—a)" ( (bi — ai))

> > ()
<|Flloe (0 —a)" 0=,

proving for r > 1 that G is absolutely continuous again.

(2) Case of 0 < r < 1.
Let ajsx,bix € [a,b] : ajx < bjx. Then (ai. —t)T_1 > (bix —t)T_l, for all
t € [a,a;s]. Then

L = / (a0 =07~ = (s — 1))

. 3 T 3 T . T 3 . T (18)
_ (bz* — az*) 4 <(az* —a) — (bz* — a) > < (bz* — az*) ’
r r T
by (aix —a)” — (bix — a)” < 0. Therefore
bz’* — Ugx "
[Z.* < ﬂ (19)
r
and
2 bz* A%
7, < 20 =) gy (20)
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proving that
2||F|
r

16 (b) — G (a)]] < ( °°) (bie — az.)" (21)

which is proving that G is continuous. The theorem is proved. O

Theorem 2.6. Let m,n € Ry and f € Ly ([a,b],X). Then
Ja' T f = I3 = TR T, (22)

holds almost everywhere on [a,b] .
If f € C([a,b],X) or m+n > 1, then identity in (22) is valid everywhere
on [a,b].

Proof. If m =0, or n =0, or m =n = 0, (22) is trivial. We assume m,n > 0.
See also [7, pp.14-15], for the case X = R. Here a < z < b. We have

(Ja"Ja f) ()

_ 1 * T — m—1 ! _Tn 1 .
= T / (1) /<t )" f (r) drdt 3
1 / / Xia) (7) (& = " (¢ = 7)1 f (7) drdt = (€),

where Xa,f] 18 the indicator function. Hence by Fubini theorem (see, [11,
Theorem 2, p. 93]) we obtain that

O = times . [ e @@= 0" = a2

(m)lr(/zf(f) </ (w8 Lt — )"_1dt>d7-

1 ( ) g m+n—1 -
m) '(n / Y (m —|— n) (=) d (25)
_ m1+ n / f m+n—l dr = (J£n+nf) (x) ’ (26)

almost everywhere on [a,b] .
We have proved that
Ja'Ja f =T ] (27)
almost everywhere on [a, b] . Hence (22) is valid.

By Remark 2.4 if f is continuous, f € C ([a,b], X), then f € Lo ([a,b], X),
and by Theorem 2.5 we get that JI'f € C ([a,b],X), and therefore JJ*JI' f €
C (la,b], X), and J" " f € C ([a,b], X) too.

Because these two continuous functions coincide almost everywhere, see
(27), the must be equal everywhere on [a, b] .
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At the end, if f € Ly ([a,b], X) and m +n > 1, we have by (27) that
T Tgf = T f = L f, (28)

almost everywhere. Here we have that ||f|| € Li ([a,b]) and [ ||f (¢)]| dt is
continuous in x € [a, b].
Let now x,, = x, &y, x € [a,b], n — co. Then,

i) case x, > x : we have
[(Jaf) (zn) = (Jaf) ()] = ‘ /axnf(t) dt — /axf(t) dtH

:’/awf(t)dt—/azf(t)dtJr/:nf(t)dtH: /:nf(t)dtH
< [Tirwia= ([T 1ol [Cirola) o

ii) case x, < x : we have
[(Jaf) (zn) = (Jaf) (2)]| = /axnf(t) dt—/:f(t) dtH
/:"f(t) dt — /:nf(t) dt—/;f(t) dt” = a:f(t) dtH (29)

< [Tirena- ([Turota- [l o

We have proved that J!f € C ([a,b], X). Therefore by Theorem 2.5 we also
have that J"t" f = Jrtn=1 (J3 f) is continuous.

Now looking at (28), all three sides of the equality almost everywhere are
continuous (by Tonelli theorem, [11, p.100]), hence they must be identical over
[a,b] .

For the last statement, also we prove directly that J™ " f is continuous, we
set o :=m+n > 1.

Let x,, — x, as n — oo, where z,,, x € [a,b]. We notice that

(o) <x>=r(1a) / e -2 f (1) dt
) ‘ (30)
T / Xia] (1) (= )71 £ (t) dt
and
b
2D @) = [ Noma @@=t rwan )
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Clearly, here the function X ) () (zn — ) f (£), Xjaa (t) (z =) f(2)
are Bochner integrable, and

Xlawn) () (0 = )7 f (1) = Xjaa) (8) (@ =) 71 f (D),

pointwise almost everywhere in ||-||, as n — oco.
Furthermore, we notice that

[ Xtasea) ) @ =07 £ @) < =17 15 )
<=0 I O € Ly ([asB])

for all n € N. Thus, by Dominated convergence theorem for Bochner integrals,
see [5], we get that

(32)

b
Tim | Xja,) () (70 =07 f (D) dt

[N @0 @ (33)
- /aC (x —t)* L f(t)dt, innorm |||

Hence (J$'f) (zn) = (J&f) (x), as n — oo, in ||-||. That is proving continuity
of J"t"f when f € Ly ([a,b], X) and m +n > 1. The theorem is completely
proved in detail. O

The algebraic version of previous Theorem follows:

Theorem 2.7. The Bochner integral operators
{2 Lo ([a,b), X) = Ly (fa, 5], X) in € Ro}

make a commutative semigroup with respect to composition. The identity op-
erator JO = I is the neutral element of this semigroup.

Definition 2.8. ([13]) A definition of the Hausdorff measure h, goes as fol-
lows: if (T, d) is a metric space, A C T and § > 0, let A(A,J) be the set
of all arbitrary collections (C'), of subsets of T, such that A C U;C; and
diam (C;) < ¢ (diam =diameter) for every i. Now, for every a > 0 define

1 (A) := inf {Z (diamCy)® | (Cy), € A (A, 5)} . (34)
Then there exists limhd, (A) = suph? (A), and hq (A) := limh? (A) gives an
0—0 §5>0 6—0

outer measure on the power set P (1), which is countably additive on the
o-field of all Borel subsets of T. If T = R™, then the Hausdorfl measure
hn, restricted to the o-field of the Borel subsets of R™, equals the Lebesgue
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measure on R™ up to a constant multiple. In particular, hy (C) = p(C) for
every Borel set C' C R, where p is the Lebesgue measure.

We will use the following spectacular result.

Theorem 2.9. ([13], Fundamental Theorem of Calculus for Bochner integra-
tion) Suppose that for the given function f : [a,b] — X, there ezists F': [a,b] —
X, which is continuous, the derivative F' (t) exists and F' (t) = f (t) outside
a p-null Borel set B C [a,b] such that hy (F (B)) = 0. Then f is u-measurable
(i.e., strongly measurable), and if we assume the Bochner integrability of f,

b
F(b)— F(a) = / £ (1) dt. (35)

Notice here that the derivatives of a function f : [a,b] — X, where X is
a Banach space, are defined exactly as the numerical ones, see for definitions
and properties, [12, pp.83-86 and p.93|, that is they are strong derivatives.

We will use the last theorem to give a general Taylor’s formula for Banach
space valued functions with a Bochner integral remainder.

Theorem 2.10. Letn € N and f € C" ([a,b], X), where [a,b] C R and X
1s a Banach space. Set

n—1 ;
(b—2)"
F(x)::ZTf()(:B), z € [a,b]. (36)
i=0
Assume that () exists outside a p-null Borel set B C [a,b] such that
hi (F(B)) =0. (37)
We further assume the Bochner integrability of f™. Then

n—1 —a i b
P = 1@+ 3 PG @+ o [ 0 @) e (59
i=1 @

2!
Proof. We get that F' € C ([a,b], X). Notice that F' (b) = f (b), and
n—1

F(a) = Z Mf(i) (a).

i!

=0
Clearly F’ exists outside B. Infact it holds
b _ n—1
F'(z) = o) f™(x), Vz € la,b] - B. (39)

(n—1)!
Also F’ is Bochner integrable. By Theorem 2.9 now we get that

F(b) - F(a) = / " (t) dt. (40)



504 G. A. Anastassiou

That is, we have

n—1 —a) b (p_ )L
f(0) - <Z e so <a>) = / (b(n_)l)!f(") (r)dz,  (41)

i!
i=0
proving the claim. O
We mention the following classical result of a Taylor’s formula:
Theorem 2.11. ([12, pp.93-94|) Let n € N and f € C" ([a,b], X), [a,b] C R,
X a Banach space. Then

n

1 i
£y =@+ 00 @)

i=1

1
(n—1)!

/ " — 2t £ (o) do. (42)

The remainder here is the Riemann X -valued integral (defined similar to nu-
merical one) given by

1 b nel e(n
Quot = m_w/ (b— )" 1) (2) da, (43)

with the property:
(b—a)"
(n—1)!

1@u-1ll < mas || () (44)

a<z<b

Important Note 2.12. By [8], a Riemann integrable X -valued function is
not necessarily a Bochner integrable one.

Definition 2.13. Let [a,b] C R, X be a Banach space, v > 0; n := [v] € N,
[-] is the ceiling of the number, f : [a,b] — X. We assume that f(® ¢
Li ([a,b],X). We call the Caputo-Bochner left fractional derivative of order
v

(DXuf) (@) = = ! ) / S @yd, Yo fah]. (45)

(n—v
IfveN, weset DY, f = f () the ordinary X-valued derivative, and also set
DY.f = f.

By Theorem 2.3, (D%,f)(x) exists almost everywhere in = € [a,b] and
D, f €Ly ([a7b] 7X)'

We notice that
DY f = T3 . (46)
If Hf(n)HLoo([a,b],X) < o0, then by Theorem 2.5 DY, f € C ([a,b], X).
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Remark 2.14. (to Definition 2.13) We notice that (by Theorem 2.6)
(e D% f) (@) = (T2 T £ (@)

(47)
= (= f ) (@) = (Jef ™) (@),
almost everywhere.
We also notice that
(1) @) = gy | @0 1 0 (48)

and given that f € Ly ([a,b], X), we get again that (J;‘f(”)) € Li ([a, 0], X),
and it exists a.e. on [a, b], by Theorem 2.3. We have proved that

(e DLf) (@) = (J2f™) (@), (49)

for almost all x € [a, b] .

We present the following left fractional Taylor’s formula.

Theorem 2.15. Let n € N and f € C" ! ([a,b], X), where [a,b] C R and X
is a Banach space, and let v > 0:n = [v]. Set

—_

n—

R0=Y Y500, vieps, (50)

2!
i=0

where x € [a,b]. Assume that f) exists outside a p-null Borel set By C [a, ],
such that

by (F (Ba)) =0, (51)
where x € [a,b]. We also assume that f™ € Ly ([a,b],X). Then

n—1 i T
0= @ s [ o 6
i=0 a

for x € [a,b].
Proof. We use Theorem 2.9 and (35). Clearly it holds

n—1 3
. —_ (1/ Z
(f(-) Z;(Z.!)f”(a)> € C((a.b]. X).
that is (by (38)) (J]jf(”)) € C([a,b],X). Hence (49) holds as equality over
[a,b] (by Tonelli’s theorem), therefore (JYDY,f) € C ([a,b],X). Thus (52) is
valid. O

More generally we get
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Theorem 2.16. Let n € N and f € C" ! ([a,b], X), where [a,b] C R and X
is a Banach space, and let v > 0:n = [v]. Set

=

n—

E =3 D500, Ve, (53)

, 7!
=0

where © € [a,b].
Assume that f") exists outside a p-null Borel set B, C [a, x|, such that

hi(Fy(Bg)) =0, Y x€la,b]. (54)
We also assume that f™ € Ly ([a,b], X). Then

n—1

P = Y S @t i [ @0 0L @ 6
i=0 ’ @
for all z € [a,b] .
Proof. By Theorem 2.15. O

Remark 2.17. (to Theorem 2.16) By (55), we notice that

UED5)) @) = 7 [ 0= 27 (Dlaf) (ks € C ([0, X)

as a function of x € [a,b].

We have also

Corollary 2.18. (to Theorem 2.16) All as in Theorem 2.16. Additionally we
assume that f (a) =0,i=0,1,--- ,n—1. Then

f@) =7 [ @ DL Veeld. 60

Next we present an Ostrowski type inequality at left fractional level for
Banach valued functions.

Theorem 2.19. Let v > 0, n = [v]. Here all as in Theorem 2.16. Assume
that f (a)=0,i=1,--- ,n—1, and that D', f € Lo ([a,b], X). Then
‘ < ID%af 1o (fae], x)

‘bia/abf(x)dx—f(a) =T Tw+2)

Proof. By Theorem 2.16 when f®) (a) =0,i=1,--- ,n — 1, we get that

1

P = F0) = [ =2 PN @ de Yot 69

b-a)y.  (57)
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Thus
1f (@) = f (@)
1 v v—1 v
=7 W) /a (x —2)"" " (D%, f)(2)dz|| (by [9, Theorem 2.5, p.7])
] e AP
1 D% f b (0], %) ”
< T+ D) (x —a)”.
We got that
1 D%af Il o (0], x) ”
1f (z) = f(a)] < T+ 1) (x—a)", Vaelab.
Therefore,
b b
bf/ rwis- @] =i [0 - s
||D>I:af||Loo([a,bLX) b v
< a)l|dz < = )F(Z/Jrl)/a(x_a) dx
||D*af||L ([a,b],X) (b - (I)V+1 ||D*af||L ([a,b],X) (b— )V
T b-aT(w+l) (v+l) = T(w+2) “-

This proves (57).

We give next the optimality of (57).
Theorem 2.20. Inequality (57) is sharp; namely it is attained by
f(m):(x—a)”—i), v>0,véN, z€la,bl,
7 € X such that H?H =1.
Proof. (see also [3, pp.621-622]) We observe that
v—2T7

F@)=v@—a 7, ff@)=vv-1)(z—a) 27,

FO (@) =) =2) (v —n+2) (& —a) "7,
FD @) = -1 -2)(v-n+1)(z—a)’ "7,
Clearly here f(™ is continuous on (a,b], and f™ € Ly ([a,b], X).
All assumption of Theorem 2.19 are easily fulfilled.
As in [3, p.622], we get that (see also (45))

Dfaf(a:):l“(y—i—l)?, V€ [a,b].

507

(62)

(63)
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Also we see that

f(k)(a):07 k:():l:"'an_l: and D:afELoo([aab]7X)' (64)
So f fulfills all the assumptions of Theorem 2.19.
Next we find:
1 b
Left hand side of (57) = P ’ / f(z)dx
: (65)
— 1 / (:C—a)ydx—(b_a)y
S b—a/, OE
And we have
r 1 b—a)’
Right hand side of (57) = v+ 1) (b—a) (66)

- 7 —a v — ,

I'v+2) ( ) (v+1)

proving both sides of (57) equal. This completes the proof of the claim. O
When 0 < v < 1, Definition 2.13 becomes

Definition 2.21. Let [A,B] C R, X be a Banach space, 0 < v < 1, f :
[A, B] - X. We assume that f' € Ly ([A, B], X).
We define the Caputo-Bochner left fractional derivative of order v:

(DiAS) (z) == F(ll—y)/j (z—t)"" f'(t)dt, Yze€AB]. (67)

We set D!, f = f, the ordinary X-valued derivative.
One may set

DY, f (x):=0, where 0 € X, if z < A. (68)

Remark 2.22. Let [A, B] C R, X be a Banach space, 0 <v <1, f:[A,B] —
X. We assume that f?) € L; ([4, B],X). Then [v + 1] = 2, and

Diuf @) = =g [ =07 F Ot
_ 1 2=l (69)
_F(2—(1/—|—1))/A (= )" I (1)
= D{'f (x).
That is
DYyf = Dyyf. (70)

We apply Theorem 2.19 when 0 < v < 1.
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Theorem 2.23. Let f € C ([A, B],X), where [A, B] C R and X is a Banach
space, 0 < v < 1. Assume that f' exists outside a p-null Borel set B, C [A, x],
such that

hi(f(Bz)) =0, VxelA B (71)
We also assume that f' € Ly ([A,B],X), and DY ,f € L ([A, B],X). Then

HD:AfHLOO([A,B],)() (B - A)V
I'(v+2)

ABf(x)dx—f(A)HS

A (72)

We present the following left Caputo-Bochner fractional Landau inequality
for HHoo

Theorem 2.24. Let f € C! ([Ag, +00), X), where Ag € R is fived, 0 < v < 1,
X is a Banach space. For any A, B € [Ap,+o0) : A < B, we assume that f
fulfills: assume that f" exists outside a p-null Borel set B, C [A, x] such that

b (f (Ba)) =0, ¥ € [4,B]. (73)

We also assume that f" € Ly ([A, B],X) and D'}'f € Lo ([A,B], X). We
further assume that

[i25%% ”VH <oo, VA> Ay, (74)

Moo < |20 A i oo

(the last left inequality is obvious when v = 1), and

1flloo a0, 400) = sup [If ()] < oo. (75)
te [A0,+OO)
Then
f = sup f (¢
T ]
2 (1) 1
<o+ (2) 7 CerE (76)

1
(V{V»I) v+1 ey
Dz ‘
(HfH [Ag,400) ) <H w0 f Loo([Ao,+00), X)>

Proof. We have that (by Theorem 2.23)

[oval (B—A)
[ oo < P s

BA

HDVHfHLOO (IA,B],X)

I'(v+2)

(77)

(B—A), VABE][A,+o0), A<B
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Subsequently by Theorem 2.9 we derive

+1
f HD:A fHLOO ([4,B],X)
'v+2)
for all A,B € [AO, +oo), A < B. Hence it holds

DY 1] a1

(B-A4)", (78

|7 @] = 5= I (B) - ()] < =270 (5 4y (19
and
1FB) = £ () NP s a0 (B = A
Ir ) < B~ s B
for all A, B € [Ag, +0), A < B. Therefore we obtain
V+1 v
20| lsotoreer , 17730 s aronyn P~
TIE 1 oo 140,+ )+H HLOO ([Ao,+00),X) (81)

B A T (v+2) ’
for all A, B € [Ap,+0), A< B.

The right hand side of (81) depends only on B — A. Consequently, it holds
v (B - A)"

2|1 f 1l 0,140, 400) H Lo ([Ag,+00),X)

17 ot 1o < — 5 Tt %)
We may call t = B — A > 0. Thus by (82),
Dl/—i—lf
21 fll oo, 40,4-00) H *Ao HLOO ([Aos400),X) 1)
17 oo 40, 400) < . ) . Vi>0. (83)
Set
1= 2| fll o1 40,400) »
1/+1
|oesse]
oo ([Ag,+00),X)
0= 4
I'(v+2) ’ (84)
both are greater than 0.
We consider the function
y(t)=%+0t“, 0<v<l, t>0. (85)

As in [4, pp.81-82], y has a global minimum at

- (&) 8

which is

y (to) = (") D (v + 1) (751, (87)
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Consequently it is
1
(v+1)
Dl/+1 H
H o/ Loo([Ag,+00),X)

S CITIS I )

y (to) =

We have proved that

v

2 (v+1 1
£ tpgso <@+ (5) 7 02y
(89)
Drit H @D D
o0 (T2 R L (7 N Loh
establishing the claim. O
Corollary 2.25. All as in Theorem 2.24 for Ag = 0. Then
2 (#1) 1
£z, <@+ (2) 7 w2y
v (90)

(8 ) 7 (10551 )

When v =1, we get

Corollary 2.26. Let f € C!([Ag,+0), X), where Ay € R is fived, X is
a Banach space. For any A,B € [Ap,+) : A < B, we assume that f
fulfills: assume that f" exists outside a p-null Borel set B, C [A, x| such that
hi (f' (Bz)) =0 for all x € [A, B].

We also assume that f" € Loo ([Ao, +00), X), and || f||w (49 100y < 00- Then

1 1
1750 <2 (1 tocron) (1 Npitgromno) ™ OV

Corollary 2.27. (to Corollary 2.26 for Ay = 0) It holds

17, <2 (17002 )* (17, ) @)

When X = R, the last inequality is the Landau inequality [10], with 2 being
the best constant.

We continue with another Ostrowski type fractional inequality:
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Theorem 2.28. Let p,qg > 1 : %—1—% =1, and v > %, n = [v]. Here

all as in Theorem 2.16. Assume that f*)(a) = 0, k = 1,--- ,n — 1, and
DY,f € Ly ([a,b],X), where X is a Banach space. Then

b/f ) da—

Proof. We have that

”D*af”Lq([a,b],X)

1 (b—a)yfé, (93)
F(l/) (p(v—1)+1)r <y+%)

Fa@)=F@) = [ =2 DN @ Vaclabl. (o)
Thus ) .

If @ =@ = 57 | [ =27 (D) ()

: (95)
il e i O P

1 £ q
<t ) ([ 1mzr e d")
pr—1)+1 (96)

T 1D%af Ly (fap), x) -
p

That is we have

If () — f(a)]| < DL SN Ly (a0 )

() (p(v—1)+1)7

(t—a) "7, Yaeelab. (97)

Consequently we get

i o
/nf 0)| da

D%, a b
s [t
b—a)T(v)(p(v—1)+ 1) Ja (98)
1D%af N 2, (a1, %) (b—a)’ "t

(b-a)T () (pv—1)+1)p vy T]
_ D% f N (a0, 5) -
a T ~ a7,
Fw)(p-1)+1)r (”*5)

proving the claim. O
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Corollary 2.29. (to Theorem 2.28, case of p

Here all as in Theorem 2.16. Assume that f*) (a
DY, f € La([a,b],X). Then

q= )Letu>2,n—[u].
)=0,k=1,---,n—1, and

Hl)_lab/abf(x) dw—f(a)H < N Pwadlisqanx) (b—a) 2. (99)

“I(v)(Var—1) (v+13)
It follows the L; case of Ostrowski inequality:

Theorem 2.30. Let v > 1, n = [v]|, and all as in Theorem 2.16. Assume
that f®) (@) =0, k=1,--- ,n—1, and D%, f € L1 ([a,b], X). Then

e

Proof. As before we get

HDfZafHLl([a,b],X)

v—1
< —To+D (b—a)’"". (100)

1 * v—1 v
I @)= £ @l < 555 | @ 10 0]
grzy - ”1/HD B dt
(ZL‘— 1/ 1 (101)
< / 1D, (1) dt
—a v—1
:(F())|D oLy (), x) -
That is, we have
If () - f ()] < (m())HD s> Yoelabl. (102

Therefore, we get

oy

< / If (@) - £ (0] da

HD*afHLl([a,b},X) b vl
=TT 0-a) (/ (e ) (03

D% Ly (fae,x)
N I'(v+1)

proving the claim. O

(b—a)"",

We apply Theorem 2.28 when 0 < v < 1.
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Theorem 2.31. Let p,q > 1 : %—k% =1, and 1 > v > %. Let f €
C([A,B],X), where [A,B] C R and X is a Banach space. Assume that
I’ exists outside a p-null Borel set B, C [A,x] such that

hi(f(Bg)) =0, VxelAB].
We also assume that f' € L1 ([A,B],X) and D% ,f € Ly ([A,B],X). Then
IDZAS L, a,8),3)

H /f dfo)‘ L) (-1 +1)5 (v+1)

We present the following left Caputo-Bochner fractional Landau inequality
for L, norm.

(B—A)""u. (104)

Theorem 2.32. Let p,q > 1 : %4—% =1, (md% < v <1 Let f €

C! ([Ag, +0), X), where Ay € R is fized, X is a Banach space. For any
A,B € [Ag,+0) : A < B, we suppose that [ fulfills: assume that f" exists
outside a p-null Borel set B, C [A,x], such that

hy (' (B)) =0, Yz €A, B (105)
We also assume that f" € Ly ([A,B],X) and D'i'f € L, ([A, B],X). We

further assume that
v+1 1/+1
D25 | 0oy ) < [ PEELS|

(the last left inequality is obvious when v = 1), and

11l o {40,100y < 0©- (107)

<oo, VA>Ay, (106)
Lg([Ao,+00),X)

Then

1 e 0,00

2 (1/—|— %) (:7%) )
o T » : (108)
‘ T @) ) (pv - 1) + 1)@

% (11 (Ao 0) )CQ) (HD:zgf\

Proof. We have that (by Theorem 2.31)

- A/f o - £ ()

1/+1

M =

1

) (+3)
Lq A0,+oo) X)

Al A(4)%) (109)

T (p(V—1)+1)p (V %>
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VA Be[Ay,+x), ALB.
Subsequently by Theorem 2.9 we derive

D23 1l 14,51,

P (-1 +1) (v+1)

Hf(B)— (4)

f
B-A

S (B 4)"F, (110)

V A, B € [Ap,+00), A < B. Hence it holds

I (A H—illf) F A

|D¥3! (111)

Hr,0am.5

T -1+ (V-l-%)

(B—4)"7,

V A, B € [Ap,+0), A< B, and

1£(B) ~ f (A
) < HE=S

1D AN gm0 s (112)
L) (p-1)+1) (v+1)

17 (A

V A, B € [Ap,+0), A < B. Therefore, we obtain

21 f oo, 40,+00)
B-A

|pzis
*A0 T L, (4, 400),X)

+F(l/)(p(l/—1)—|—1)l7 (v+1)

|17 ()] <
(113)

(B—A)"u,

V A, B € [Ap, +o0), A < B. The R.H.S. (113) depends only on B — A. There-

fore

21/ 1|, 0, +00)
1 oo ftoiony € —F—a—

H A0 M| 1 ([40,400),X)

+F(1/)(p(1/—1)+1)1’ (1/ %)
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We may call t = B — A > 0. Thus

21/l 0,40, +-00)

Hf Hoo,[Ao,—l-oo) — t

+1
|pzits]

_l’_

Lq( [A0,+oo) X)

< 1. Call
=2
I 125757

0=

T)(p(v—1)+1)7 (w%)

Notice that 0 < v — é

00,[Ap,+00)

Lq([Ag,+0),X)

P (pw-1)+1) (v+1)

both are positive, and

and 7 has a global minimum at ¢, which is

j(io) = (077) ™ w+ 1)z

Consequently, we derive

+1
|P2is7]

1

Lq A07+Oo)’X)

P (pv-1)+1)» (v+1)

% (21l o o) )<

v—

1
q

v+

%) <u+

1

p

)(

70, Ve (0,00) .

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)
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We have proved that

1 .45, +00)

L1
q
2(1/4—%) (l’*%) 1

=\7= 1 (123)
k @ @) ) (p(v—1) + 1)@
(HfH [Ao,+o0) >(V+g) <H :j‘rol ’Lq ([Ao,+00) X)) o 7

establishing the claim. O
Corollary 2.33. All as in Theorem 2.32 for Ag = 0. Then

2 (1/ + %) <:;I>
1 Ncr, < | === : :
‘ TN -1+ D) (124)

. (lrfroo,R+)<"+%) (122 o) )

Corollary 2.34. All as in Theorem 2.32 for Ay = 0, and p = q = 2. Here
% <v<1. Then

- <(2<”+§))<”5> -

(T ()3 (20 — 1) (125)

1

v—

b=

-
=

1

v=3 1
% (”fHooaM) (ﬁ> (“D:arlf“Lg(R+,X)) (rd)

Case of v = 1 follows:

Corollary 2.35. Let p,g > 1: %%—% =1. Let f € C' ([Ag, +0), X), where
Ay € R is fizred, X is a Banach space. For any A,B € [Ap,+) : A < B,
we assume that [ fulfills: assume that f" exists outside a p-null Borel set
B, C [A, z], such that

hi (f'(Bz)) =0, Yz €[AB]. (126)
We further assume that

f" € Ly ([Ap, +0), X) , (127)
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and
10,40, 4+-00) < 0O (128)
Then
11
2(1+%) (ﬁé)
[V - 1

: (129)
11

% (Il ag 50) G1) (T A—

Corollary 2.36. (to Corollary 2.35) Assume Ao = 0. Then

2(1+l) (E%> (tﬁ

]

i) 1
1 o, < | =72 oz (17 )

q

). (130)

D=

We finish with

Corollary 2.37. (to Corollaries 2.35, 2.36) Assume Ay =0 and p = q = 2.
Then

TS G (T A (T TR a3)

We continue with a Poincaré like fractional inequality:
Theorem 2.38. Let p,g > 1 : %+% =1, and v > %, n = [v]. Here
all as in Theorem 2.16. Assume that f(k)( )=0,k=0,1,---,n—1, and
DY,f € Ly([a,b],X), where X is a Banach space. Then

(b—a)”
1 1 HD:afH a . (132)
T'(v)(p(v—1)+1)7 (qv)s La(fa ). X)

111y (fa,p,) <

Proof. We have that

f () = ng) [ w—ar T 0 Gz Ve elad),
Thus
I @) = 75 [ @ o
<t @D ()l
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< (5 [ lo-ore d,z)’l’ ([ 1zs <z>||qdz);

pw-1)t1 (133)
1 (z—a) »

PO p—-1)+1)r
We have proved that

<

IDZa 1L (0, x) -

1

r—a) e y
@< —E= Dl s YEelwl.  (134)
T () (p(v—1)+1)
Then
@< — =" e gy (135)
— (F (V))q (p (1/ - 1) N 1)% *a Lq([a,b]yx) ’
and
b (b—a)® DY f11% ...
[ i@ ds < ST (136)
a T pv-1)+1)rq
This last results into
1
b 5 b —a v
( / |rf<x>uqda:) < O DY e
a T () (p(v—1) +1)7 (qv)s
proving the claim. O

Next comes a Sobolev like fractional inequality.

Theorem 2.39. All as in the last Theorem 2.38. Let r > 0. Then

(b—a) it

T 1 D%l b, x) - (137)

1Nz, (a0, ) <
Frlieth) L(v)(p (l/—l)-i-l)% (T‘(V-%)-Fl)r

Proof. As in the last theorem’s proof we get that

(x — a)”fé

L) (p(v—1)+1)7

Since r > 0, we get

1f (@)] < 1D%af Ly (o), x) > ¥V 2 € la, bl (138)

r—a T(V_$>
I I < (V)()r . ()V i Pl e Ve lan. (1)
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Hence it holds
(b — a)r(y_é)'H
rW) (p(v=1)+1) (r(v—1

b
1f (@)]|" dx < I D% fIIT, (jap) x) -
/a ( )+1) q([a,b],X)

(140)
That is
b ;
([ i)
(b—a) it ) (141)
< 1 1 1D%afllz, (a1, x)
= 1 T
Fw)(p(v—1)+1)r <7“ (1/— 5) +1)
proving the claim. O

We give the following Opial type fractional inequality:

Theorem 2.40. Let p,q > 1: %—F% =1, and v > %, n:= [v]. Let [a,b] C R,
X a Banach space, and f € C" ' ([a,b], X). Set

n—1 s
F, (t):= Z (= — ) O, Vtelax], where z € [a,b]. (142)

i!
i=0
Assume that ") exists outside a p-null Borel set B, C [a,x], such that
hi(Fy (Bg)) =0, V€ [a,b]. (143)
We also assume that f™ € Lo ([a,b],X). Assume also that f*) (a) = 0,
k=0,1,--- ,n—1. Then
/ 1 () (D f) (w)] dw
g2 2 (144)
(@ —a) . q
< ([ onn @it
2¢aT(w) ((p(v=1)+1) (p (v=1)+2))7 \a
for all x € [a,b].
Proof. Clearly here DY, f € C ([a,b], X ). We have that

f(z)= Fgl/) /3C (. —2)"" N (DY, f) (2)dz, Yz €la,b]. (145)
Let a < w < x, then we have
F) =g [ 0= (D) () (116
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and
I @) < i [ w2 0L @l a:
L) o
(p(v=1)+1) (147)
1 (w—a) 4y,
CTW) -1 +1)» </ IPah) 2 d)
_ (w—a) . zw))%
L) (pv—-1)+1)»
where "
sw) = [ 105D @)1 (148)
all a <w <z, z(a) =0. Thus
2 (w) = (D%, f) (w)]|?, (149)
and
I(DZ ) ()] = (= (w))7 (150)

Therefore, we obtain

1 @) P2 ()] € — 2= T )y @)i. (151)
D) (1) + 1)

Integrating the last inequality we get
x
/ 1f () (DL f) (w)]] dw
a
1

< [ w -0 () # () duw
r<u><p<u—1>+1>p/a ( )

ccorye ([0 ([ cncenn)

(152)
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- (2 —a) " 9 dz 2 153
20T (v) (p (v—1)+1)7 (p (v— 1+2é</ IDf) Gl ) - 159)

proving the claim. O

We finish article with a Hilbert-Pachpatte left fractional inequality:

Theorem 2.41. Let p,qg > 1 : %—&—% =1, and v, > %, vy >

, Ng =
p
[vil, i = 1,2. Here [a;,b] C R, i = 1,2; X is a Banach space. Let f; €

cni—l ([CL“bZ] ,X), i=1,2. Set
ni—l
(

Fy., (t;) == Z _7”

= 90 (), (154)
§i=0 -

Y t; € [a;, x;], where x; € [a;,b;); i = 1,2. Assume that fz-(ni) exists outside a
p-null Borel set By, C [ai, x;], such that

hi (Fy, (Bg,)) =0, YV a; € [ai,bi]; i =1,2. (155)
We also assume that fl-(ni) € Ly ([ai, bi), X), and
¥ @) =0, ki=0,1,-- ,ni—1; i=1,2, (156)
and
(D%, f1) € L (la1, b1], X), (D32, f2) € Lp (a2, b2] , X) . (157)
Then
o /1 @) [l f2 (z2) | dz1da:
/ / xl a1 PO (o a2)q_(u2 1)+1>
p(r1—1)+1) a(q(v2—1)+1) (158)
(blr (ZS <rb?m>a2 1050 11l 2, o g ) 125 P2l ) -
Proof. We have that
fi(xs) = FSW) [ (i — 2)" " (DY f) (2) dz, (159)
YV x; € lai,bi], i =1,2. Then
el < gy [ =0 (D%, Gl
i=1,2, Vx; € [a;,b;]. We get as before,
prp—D+1
e D% Al oy (160)

L) (py —1)+1)
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and
1 ( )q(Vz*l)Jrl
Tro — a9
f2 i) S D*a fg . (161)
2l < 1y T Pl
Hence we have
[ f1 (@) [ f2 (z2)]
1
< T T
L) () (p(r1 — 1)+ )7 (q(re — 1) +1)0
p(ry—1)+1 q(vo— 1)+
X (x1—a1) 7 (22— ap) HD*alleLq([al,bﬂ,X)
HD*azf2HLp([a2,b2],X) (162)

11 b
(using Young’s inequality for a,b > 0, arbe < a + )
p g

| (m — Gy - a2>q‘”_ml>

< +
TT)T () \ plp(ri —1)+1)  qlg(ra—1)+1)
HD*alflqu([al,bl},X) H *azf2HLp(a2 ba],X)
Y z; € [a;, b;]; i = 1,2. So far we have
11 ()| 1 f2 (@2)]

_ g )P(r1—1)+1 _go)2(r2—1)+1
((:C1 a1) (552 aQ) )

PEEA—DF) T qla(a—T)F1)

15l 1.5 "

D* fl D* f2

< 7 hallen,bu).X) v Ly llaz be), X), Va; € la;,bi]; i=1,2.
I'(1) T (v2)

The denominator in (163) can be zero only when 21 = a; and z3 = as.

Therefore, we obtain (158), by integrating (163) over [a1,b;1] X [a2,bo] . O

Remark 2.42. Many variations and generalizations of the above inequalities
are possible, however due to lack of space we stop here.
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