Nonlinear Functional Analysis and Applications Vol. 22, No. 3 (2017), pp. 525-541 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2017 Kyungnam University Press

GENERALIZED FORM OF TRIPLED FIXED POINT THEOREMS IN PARTIALLY ORDERED METRIC SPACES

Deepa Karichery¹ and Shaini Pulickakunnel²

¹Department of Mathematics, School of Physical Sciences Central University of Kerala, India e-mail: deepakarichery@gmail.com

²Department of Mathematics, School of Physical Sciences Central University of Kerala, India e-mail: shainipv@gmail.com

Abstract. In this paper, we introduce a new concept known as FGH-tripled fixed point and prove existence and uniqueness of fixed points in partially ordered complete metric spaces. This concept is a generalization of tripled fixed point and an extension of FG-coupled fixed point. Our results extends and generalizes several results in literature particularly the results of Berinde and Borcut[Vasile Berinde, Marine Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis, 74 (2011), 4889-4897].

1. INTRODUCTION

The new trends in fixed point theory is to find multidimensional fixed point results. Guo and Lakshmikantham [11] initiated this idea through coupled fixed points in cone metric spaces. Later in 2006 Gnana Bhaskar and Lakshmikantham [10] defined mixed monotone property and proved existence and uniqueness theorems for coupled fixed points in partially ordered metric spaces. Also as an application they discussed the existence of a unique solution to a

⁰Received September 29, 2016. Revised January 16, 2017.

⁰ 2010 Mathematics Subject Classification: 47H10, 54F05, 47H09.

 0 Keywords: FGH-tripled fixed point, tripled fixed point, contractive mappings, partially ordered metric spaces.

periodic boundary value problem associated with a first order ordinary differential equation. From this background several authors have studied multidimensional fixed points and established numerous fixed point theorems. In [6]-[8] Berinde and Borcut extended coupled fixed point results to tripled fixed point results using mixed monotone property and thereafter a lots of studies have taken place in this field [1]-[5]. Similarly Karapinar and Loung [12] defined quadrupled fixed points and they proved some fixed point results in this area. As an extension of coupled fixed points, in a natural way Samet and Vetro [14] introduced the concept of fixed points of N-order. Instead of using mixed monotone property they defined F -invariant set and using this concept proved fixed point theorems of N-order.

In the above mentioned multidimensional fixed points the authors have considered fixed points on the finite Cartesian product of the space X with itself. But recently Prajisha and Shaini[13] introduced FG-coupled fixed points in partially ordered metric spaces, where they used the Cartesian product of different spaces as the ambient space. Using this concept Deepa and Shaini[9] proved existence and uniqueness theorems for FG-coupled fixed points on contractive and generalized quasi-contractive mappings.

In this paper, we define a new concept known as FGH-tripled fixed point which is a generalization of tripled fixed point and an extension of FG-coupled fixed point. Now we recall some basic definitions:

Definition 1.1. ([10]) Let X be a partially ordered metric space and F : $X \times X \to X$. An element $(x, y) \in X \times X$ is said to be a coupled fixed point of F if $F(x, y) = x$ and $F(y, x) = y$.

Definition 1.2. ([6]) Let X be a partially ordered metric space. An element $(x, y, z) \in X \times X \times X$ is said to be tripled fixed point of $F: X \times X \times X \to X$ if $F(x, y, z) = x$, $F(y, x, y) = y$ and $F(z, y, x) = z$.

Definition 1.3. ([13]) Let X and Y be two partially ordered metric spaces, $F: X \times Y \to X$ and $G: Y \times X \to Y$ be two mappings. An element $(x, y) \in X \times Y$ is said to be an FG-coupled fixed point if $F(x, y) = x$ and $G(y, x) = y.$

In next section, we define FGH-tripled fixed point with an example. Also we prove the existence and uniqueness of FGH-tripled fixed point theorems for continuous and discontinuous mappings, which gives extension of the following theorems in [13].

Theorem 1.4. ([13, Theorem 2.4]) Let (X, d_X, \leq_{P_1}) and (Y, d_Y, \leq_{P_2}) be two partially ordered complete metric spaces and $F: X \times Y \to X$, $G: Y \times X \to Y$ be two continuous mappings having the mixed monotone property. Assume that there exist $k, l \in [0, 1); k+l < 1$ with

$$
d_X(F(x,y), F(u,v)) \le k \ d_X(x,u) + l \ d_Y(y,v), \ \ \forall \ x \ge p_1 \ u, \ y \le p_2 \ v,
$$

$$
d_Y(G(y, x), G(v, u)) \le k \ d_Y(y, v) + l \ d_X(x, u), \ \ \forall \ x \leq_{P_1} u, \ y \geq_{P_2} v.
$$

If there exist $(x_0, y_0) \in X \times Y$ such that $x_0 \leq_{P_1} F(x_0, y_0)$ and $y_0 \geq_{P_2} G(y_0, x_0)$, then there exist $(x, y) \in X \times Y$ such that $x = F(x, y)$ and $y = G(y, x)$.

Theorem 1.5. ([13, Theorem 2.5]) Let (X, d_X, \leq_{P_1}) and (Y, d_Y, \leq_{P_2}) be two partially ordered complete metric spaces and $F: X \times Y \to X$, $G: Y \times X \to Y$ be two continuous mappings having the mixed monotone property. For every $(x, y), (x_1, y_1) \in X \times Y$ there exist $a(z_1, z_2) \in X \times Y$ that is comparable to both (x, y) and (x_1, y_1) . Assume that there exist $k, l \in [0, 1)$; $k + l < 1$ with

$$
d_X(F(x,y), F(u,v)) \le k \ d_X(x,u) + l \ d_Y(y,v), \ \ \forall \ x \ge p_1 \ u, \ y \le p_2 \ v,
$$

$$
d_Y(G(y, x), G(v, u)) \le k \ d_Y(y, v) + l \ d_X(x, u), \ \ \forall \ x \leq_{P_1} u, \ y \geq_{P_2} v.
$$

If there exist $x_0 \leq_{P_1} F(x_0, y_0)$ and $y_0 \geq_{P_2} G(y_0, x_0)$, then there exist a unique FG- coupled fixed point.

Theorem 1.6. ([13, Theorem 2.6]) Let (X, d_X, \leq_{P_1}) and (Y, d_Y, \leq_{P_2}) be two partially ordered complete metric spaces. Assume that X and Y having the following properties

- (i) If a non-decreasing sequence $\{x_n\} \to x$ then $x_n \leq_{P_1} x$, $\forall n$.
- (ii) If a non-increasing sequence $\{y_n\} \to y$ then $y \leq_{P_2} y_n$, $\forall n$.

Let $F: X \times Y \to X$, $G: Y \times X \to Y$ be two mappings satisfying the mixed monotone property. Also assume that there exist $k, l \in [0, 1)$ such that $k+l < 1$ with

$$
d_X(F(x, y), F(u, v)) \le k \ d_X(x, u) + l \ d_Y(y, v), \ \forall x \ge p_1 \ u, \ y \le p_2 \ v,
$$

$$
d_Y(G(y, x), G(v, u)) \le k \ d_Y(y, v) + l \ d_X(x, u), \ \forall x \le p_1 \ u, \ y \ge p_2 \ v.
$$

If there exist $x_0 \leq_{P_1} F(x_0, y_0)$ and $y_0 \geq_{P_2} G(y_0, x_0)$, then there exist $(x, y) \in$ $X \times Y$ such that $x = F(x, y)$ and $y = G(y, x)$.

2. FGH-tripled fixed point theorems

Definition 2.1. Let $(X, \leq_{P_1}), (Y, \leq_{P_2}),$ and (Z, \leq_{P_3}) be three partially ordered sets and $F: X \times Y \times Z \to X$, $G: Y \times X \times Y \to Y$ and $H: Z \times Y \times X \to Z$ be three mappings. An element $(x, y, z) \in X \times Y \times Z$ is said to be an FGHtripled fixed point if $F(x, y, z) = x, G(y, x, y) = y$, and $H(z, y, x) = z$.

Definition 2.2. Let $(X, \leq_{P_1}), (Y, \leq_{P_2}),$ and (Z, \leq_{P_3}) be three partially ordered sets and $F : X \times Y \times Z \to X$, $G : Y \times X \times Y \to Y$ and H : $Z \times Y \times X \to Z$. We say that F, G and H have mixed monotone property if for any $x \in X$, $y, y' \in Y$ and $z \in Z$ we have

$$
x_1, x_2 \in X, \quad x_1 \leq_{P_1} x_2 \quad \Rightarrow \quad F(x_1, y, z) \leq_{P_1} F(x_2, y, z),
$$

\n
$$
G(y, x_1, y') \geq_{P_2} G(y, x_2, y'),
$$

\n
$$
H(z, y, x_1) \leq_{P_3} H(z, y, x_2),
$$

\n
$$
y_1, y_2 \in Y, \quad y_1 \leq_{P_2} y_2 \quad \Rightarrow \quad F(x, y_1, z) \geq_{P_1} F(x, y_2, z),
$$

\n
$$
G(y_1, x, y') \leq_{P_2} G(y_2, x, y'),
$$

\n
$$
G(y, x, y_1) \leq_{P_2} G(y, x, y_2),
$$

\n
$$
H(z, y_1, x) \geq_{P_3} H(z, y_2, x),
$$

\n
$$
z_1, z_2 \in Z, \quad z_1 \leq_{P_3} z_2 \quad \Rightarrow \quad F(x, y, z_1) \leq_{P_1} F(x, y, z_2),
$$

\n
$$
H(z_1, y, x) \leq_{P_3} H(z_2, y, x).
$$

Definition 2.3. Partial order \leq in $X \times Y \times Z$ is defined by $(x, y, z) \leq (u, v, w)$ implies that $x \leq_{P_1} u, y \geq_{P_2} v$ and $z \leq_{P_3} w$; where $\leq_{P_1}, \leq_{P_2}, \leq_{P_3} w$ are partial orders in X, Y and Z respectively.

Example 2.4. Let $X = [0, 1], Y = [1, 2]$ and $Z = [2, 4]$ with usual metric and usual ordering. Define $F: X \times Y \times Z \to X$ by $F(x, y, z) = \frac{x + y + z + 1}{12}$, $G:$ $Y \times X \times Y \to Y$ by $G(y, x, y) = \frac{x + y + 1}{2}$ and $H : Z \times Y \times X \to Z$ by $H(z, y, x) = \frac{z + y + x + 1}{2}$ for every $(x, y, z) \in X \times Y \times Z$. Then $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ $\frac{1}{2},\frac{3}{2}$ $\left(\frac{3}{2},3\right)$ is a FGH-tripled fixed point.

Throughout this paper we use the following notations to prove our results. For $n \geq 1$ define

$$
F^{n+1}(x, y, z) = F(F^n(x, y, z), G^n(y, x, y), H^n(z, y, x)),
$$

\n
$$
G^{n+1}(y, x, y) = G(G^n(y, x, y), F^n(x, y, z), G^n(y, x, y)),
$$

\n
$$
H^{n+1}(z, y, x) = H(H^n(z, y, x), G^n(y, x, y), F^n(x, y, z)),
$$

for every $(x, y, z) \in X \times Y \times Z$.

Theorem 2.5. Let (X, \leq_{P_1}, d_X) , (Y, \leq_{P_2}, d_Y) and (Z, \leq_{P_3}, d_Z) be three partially ordered complete metric spaces. Let $F: X \times Y \times Z \rightarrow X$, $G: Y \times X \times Y \rightarrow Y$ Y and $H: Z \times Y \times X \rightarrow Z$ be three continuous functions having the mixed

monotone property. Assume that there exist constants $j, k, l \in [0, 1)$ with $j + k + l < 1$ such that

$$
d_X(F(x, y, z), F(u, v, w))
$$

\n
$$
\leq j d_X(x, u) + k d_Y(y, v) + l d_Z(z, w); \ \forall x \geq_{P_1} u, y \leq_{P_2} v, z \geq_{P_3} w,
$$
\n(2.1)

$$
d_Y(G(y, x, y'), G(v, u, v'))
$$

\n
$$
\leq j d_Y(y, v) + k d_X(x, u) + l d_Y(y', v'); \quad \forall y \geq_{P_2} v, \ x \leq_{P_1} u, \ y' \geq_{P_2} v'.
$$
\n(2.2)

$$
d_Z(H(z, y, x), H(w, v, u))
$$

\n
$$
\leq j d_Z(z, w) + k d_Y(y, v) + l d_X(x, u); \ \forall x \geq_{P_1} u, \ y \leq_{P_2} v, \ z \geq_{P_3} w.
$$
\n(2.3)

If there exist $x_0 \in X$, $y_0 \in Y$ and $z_0 \in Z$ such that $x_0 \leq_{P_1} F(x_0, y_0, z_0)$, $y_0 \geq_{P_2}$ $G(y_0, x_0, y_0)$ and $z_0 \leq_{P_3} H(z_0, y_0, x_0)$. Then there exist $(x, y, z) \in X \times Y \times Z$ such that $x = F(x, y, z)$, $y = G(y, x, y)$ and $z = H(z, y, x)$.

Proof. We have $x_0 \leq_{P_1} F(x_0, y_0, z_0) = x_1$ (say), $y_0 \geq_{P_2} G(y_0, x_0, y_0) = y_1$ (say) and $z_0 \leq_{P_3} H(z_0, y_0, x_0) = z_1$ (say). For $n \geq 1$, denote

$$
x_n = F(x_{n-1}, y_{n-1}, z_{n-1}), y_n = G(y_{n-1}, x_{n-1}, y_{n-1})
$$

and

$$
z_n = H(z_{n-1}, y_{n-1}, x_{n-1}).
$$

Then we get

$$
F^{n+1}(x_0, y_0, z_0) = x_{n+1}, \ G^{n+1}(y_0, x_0, y_0) = y_{n+1}
$$

and

$$
H^{n+1}(z_0, y_0, x_0) = z_{n+1}.
$$

Due to the mixed monotone property, it is easy to show that

$$
x_2 = F(x_1, y_1, z_1) \geq_{P_1} F(x_0, y_1, z_1) \geq_{P_1} F(x_0, y_0, z_1) \geq_{P_1} F(x_0, y_0, z_0) = x_1,
$$

\n
$$
y_2 = G(y_1, x_1, y_1) \leq_{P_2} G(y_0, x_1, y_0) \leq_{P_2} G(y_0, x_0, y_0) = y_1,
$$

\n
$$
z_2 = H(z_1, y_1, x_1) \geq_{P_3} H(z_0, y_1, x_1) \geq_{P_3} H(z_0, y_0, x_1) \geq_{P_3} H(z_0, y_0, x_0) = z_1.
$$

Thus we get three sequences as follows

$$
x_0 \leq_{P_1} x_1 \leq_{P_1} x_2 \leq_{P_1} \cdots \leq_{P_1} x_n \leq_{P_1} \cdots,
$$

\n
$$
y_0 \geq_{P_2} y_1 \geq_{P_2} y_2 \geq_{P_2} \cdots \geq_{P_2} y_n \geq_{P_2} \cdots,
$$

\n
$$
z_0 \leq_{P_3} z_1 \leq_{P_3} z_2 \leq_{P_3} \cdots \leq_{P_3} z_n \leq_{P_3} \cdots.
$$

Denote

$$
D_n^x = d_X(x_{n-1}, x_n), \quad D_n^y = d_Y(y_{n-1}, y_n), \quad D_n^z = d_Z(z_{n-1}, z_n).
$$

530 D. Karichery and S. Pulickakunnel

Then,

$$
D_2^x = d_X(x_1, x_2)
$$

= $d_X(F(x_0, y_0, z_0), F(x_1, y_1, z_1))$
 $\leq j d_X(x_0, x_1) + k d_Y(y_0, y_1) + l d_Z(z_0, z_1)$
= $j D_1^x + k D_1^y + l D_1^z$.

Similarly

$$
D_2^y = d_Y(y_1, y_2)
$$

= $d_Y(G(y_0, x_0, y_0), G(y_1, x_1, y_1))$
 $\leq (j + l) d_Y(y_0, y_1) + k d_X(x_0, x_1)$
= $(j + l) D_1^y + k D_1^x$

and

$$
D_2^z = d_Z(z_1, z_2)
$$

= $d_Z(H(z_0, y_0, x_0), H(z_1, y_1, x_1))$
 $\leq j d_Z(z_0, z_1) + k d_Y(y_0, y_1) + l d_X(x_0, x_1)$
= $j D_1^z + k D_1^y + l D_1^x$.

For the simplicity we will do the calculations by matrix method. Considering the coefficients of D_1^x , D_1^y , D_1^z from the above inequalities we construct A.

$$
A = \begin{pmatrix} j & k & l \\ k & j + l & 0 \\ l & k & j \end{pmatrix} \text{ denoted by } \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & b_1 & h_1 \end{pmatrix},
$$

where $a_1 + b_1 + c_1 = d_1 + e_1 + f_1 = g_1 + b_1 + h_1 = j + k + l < 1$. Therefore

$$
\left(\begin{array}{c} D_2^x \\ D_2^y \\ D_2^z \end{array}\right) \leq \left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & b_1 & h_1 \end{array}\right) \left(\begin{array}{c} D_1^x \\ D_1^y \\ D_1^z \end{array}\right).
$$

Also

$$
D_3^x = d_X(x_2, x_3)
$$

= $d_X(F(x_1, y_1, z_1), F(x_2, y_2, z_2))$
 $\leq j d_X(x_1, x_2) + k d_Y(y_1, y_2) + l d_Z(z_1, z_2)$
= $j D_2^x + k D_2^y + l D_2^z$
 $\leq j [j D_1^x + k D_1^y + l D_1^z] + k [(j + l) D_1^y + k D_1^x]$
+ $l [j D_1^z + k D_1^y + l D_1^x]$
= $(j^2 + k^2 + l^2)D_1^x + (2jk + 2kl) D_1^y + 2jl D_1^z$.

Similarly

$$
D_3^y = d_Y(y_2, y_3)
$$

= $d_Y(G(y_1, x_1, y_1), G(y_2, x_2, y_2))$
 $\leq (j + l) d_Y(y_1, y_2) + k d_X(x_1, x_2)$
= $(j + l) D_2^y + k D_2^x$
 $\leq (j + l) [(j + l) D_1^y + k D_1^x] + k [j D_1^x + k D_1^y + l D_1^z]$
= $(2jk + kl) D_1^x + [(j + l)^2 + k^2] D_1^y + kl D_1^z,$

$$
D_3^z = d_Z(z_2, z_3)
$$

= $d_Z(H(z_1, y_1, x_1), H(z_2, y_2, x_2))$
 $\leq j \ d_Z(z_1, z_2) + k \ d_Y(y_1, y_2) + l \ d_X(x_1, x_2)$
= $j \ D_2^z + k \ D_2^y + l \ D_2^x$
 $\leq j \ [j \ D_1^z + k \ D_1^y + l \ D_1^x] + k \ [(j + l) \ D_1^y + k \ D_1^x]$
+ $l \ [j \ D_1^x + k \ D_1^y + l \ D_1^z]$
= $(jl + jl + k^2) \ D_1^x + [jk + k(j + l) + kl] \ D_1^y + (j^2 + l^2) \ D_1^z$
= $(2jl + k^2) \ D_1^x + (2jk + 2kl) \ D_1^y + (j^2 + l^2) \ D_1^z$.

Considering the coefficients of D_1^x , D_1^y , D_1^z above inequalities we get A^2 .

$$
A^{2} = \begin{pmatrix} j^{2} + k^{2} + l^{2} & 2jk + 2kl & 2jl \\ 2jk + kl & (j + l)^{2} + k^{2} & kl \\ 2jl + k^{2} & 2jk + 2kl & j^{2} + l^{2} \end{pmatrix}
$$
denoted by $\begin{pmatrix} a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2} \\ g_{2} & b_{2} & h_{2} \end{pmatrix}$,

where $a_2 + b_2 + c_2 = d_2 + e_2 + f_2 = g_2 + b_2 + h_2 = (j + k + l)^2 < j + k + l < 1$. Therefore

$$
\left(\begin{array}{c} D_3^x \\ D_3^y \\ D_3^z \end{array}\right) \leq \left(\begin{array}{ccc} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & b_2 & h_2 \end{array}\right) \left(\begin{array}{c} D_1^x \\ D_1^y \\ D_1^z \end{array}\right).
$$

Now we have to prove by induction that

$$
A^n = \begin{pmatrix} a_n & b_n & c_n \\ d_n & e_n & f_n \\ g_n & b_n & h_n \end{pmatrix},
$$

where $a_n + b_n + c_n = d_n + e_n + f_n = g_n + b_n + h_n = (j + k + l)^n < j + k + l < 1$. We already have the result true for $n = 1$. Now we will assume that the result is true upto $n = m$.

Consider

$$
A^{m+1} = A^m \cdot A = \begin{pmatrix} a_m & b_m & c_m \\ d_m & e_m & f_m \\ g_m & b_m & h_m \end{pmatrix} \begin{pmatrix} j & k & l \\ k & j+l & 0 \\ l & k & j \end{pmatrix}
$$

=
$$
\begin{pmatrix} a_m j + b_m k + c_m l & a_m k + b_m (j+l) + c_m k & a_m l + c_m j \\ d_m j + e_m k + f_m l & d_m k + e_m (j+l) + f_m k & d_m l + f_m j \\ g_m j + b_m k + h_m l & g_m k + b_m (j+l) + h_m k & g_m l + h_m j \end{pmatrix},
$$

where

$$
a_{m+1} + b_{m+1} + c_{m+1}
$$

= $a_m j + b_m k + c_m l + a_m k + b_m (j + l) + c_m k + a_m l + c_m j$
= $a_m (j + k + l) + b_m (k + j + l) + c_m (l + k + j)$
= $(a_m + b_m + c_m) (j + k + l)$
= $(j + k + l)^{m+1} < j + k + l < 1$,

$$
d_{m+1} + e_{m+1} + f_{m+1}
$$

= $d_m j + e_m k + f_m l + d_m k + e_m (j + l) + f_m k + d_m l + f_m j$
= $d_m (j + k + l) + e_m (k + j + l) + f_m (l + k + j)$
= $(d_m + e_m + f_m)(j + k + l)$
= $(j + k + l)^{m+1} < j + k + l < 1$,

$$
g_{m+1} + b_{m+1} + h_{m+1}
$$

= $g_{m}j + b_{m}k + h_{m}l + g_{m}k + b_{m}(j + l) + h_{m}k + g_{m}l + h_{m}j$
= $g_{m}(j + k + l) + b_{m}(k + j + l) + h_{m}(l + k + j)$
= $(g_{m} + b_{m} + h_{m})(k + j + l)$
= $(j + k + l)^{m+1} < j + k + l < 1$.

Hence the result is true for every $n \in \mathbb{N}$. Therefore, we will get

$$
\left(\begin{array}{c}D_{n+1}^x\\D_{n+1}^y\\D_{n+1}^z\end{array}\right)\leq\left(\begin{array}{ccc}a_n&b_n&c_n\\d_n&e_n&f_n\\g_n&b_n&h_n\end{array}\right)\left(\begin{array}{c}D_1^x\\D_1^y\\D_1^z\end{array}\right),\right
$$

which implies that

$$
D_{n+1}^x \le a_n D_1^x + b_n D_1^y + c_n D_1^z,
$$
\n(2.4)

$$
D_{n+1}^y \le d_n D_1^x + e_n D_1^y + f_n D_1^z, \tag{2.5}
$$

$$
D_{n+1}^{z} \le g_n D_1^{x} + b_n D_1^{y} + h_n D_1^{z}.
$$
 (2.6)

Now we have to prove that $\{F^{n}(x_0, y_0, z_0)\}, \{G^{n}(y_0, x_0, y_0)\}$ and $\{H^{n}(z_0, y_0, x_0)\}$ are Cauchy sequences in X, Y and Z respectively. For $m > n$, using (2.4) we will get

$$
d_{X}(x_{n}, x_{m}) \leq d_{X}(x_{n}, x_{n+1}) + d_{X}(x_{n+1}, x_{n+2}) + \cdots + d_{X}(x_{m-1}, x_{m})
$$

\n
$$
= D_{n+1}^{x} + D_{n+2}^{x} + \cdots + D_{m}^{x}
$$

\n
$$
\leq a_{n} D_{1}^{x} + b_{n} D_{1}^{y} + c_{n} D_{1}^{z} + a_{n+1} D_{1}^{x} + b_{n+1} D_{1}^{y} + c_{n+1} D_{1}^{z}
$$

\n
$$
+ \cdots + a_{m-1} D_{1}^{x} + b_{m-1} D_{1}^{y} + c_{m-1} D_{1}^{z}
$$

\n
$$
= (a_{n} + a_{n+1} + \cdots + a_{m-1}) D_{1}^{x} + (b_{n} + b_{n+1} + \cdots + b_{m-1}) D_{1}^{y}
$$

\n
$$
+ (c_{n} + c_{n+1} + \cdots + c_{m-1}) D_{1}^{z}
$$

\n
$$
\leq (\alpha^{n} + \alpha^{n+1} + \cdots + \alpha^{m-1}) D_{1}^{x} + (\alpha^{n} + \alpha^{n+1} + \cdots + \alpha^{m-1}) D_{1}^{y}
$$

\n
$$
+ (\alpha^{n} + \alpha^{n+1} + \cdots + \alpha^{m-1}) D_{1}^{z}
$$
 where $\alpha = j + k + l < 1$
\n
$$
= (\alpha^{n} + \alpha^{n+1} + \cdots + \alpha^{m-1}) (D_{1}^{x} + D_{1}^{y} + D_{1}^{z})
$$

\n
$$
\leq \frac{\alpha^{n}}{1 - \alpha} (D_{1}^{x} + D_{1}^{y} + D_{1}^{z})
$$

\n
$$
\to 0 \text{ as } n \to \infty,
$$

which implies that $\{F^n(x_0, y_0, z_0)\}\)$ is a Cauchy sequence in X. Similarly using (2.5) and (2.6) we can prove that $\{G^n(y_0, x_0, y_0)\}\$ and $\{H^n(z_0, y_0, x_0)\}\$ are Cauchy sequences in Y and Z respectively. Since X, Y and Z are complete metric spaces, there exist $(x, y, z) \in X \times Y \times Z$ such that $\lim_{n \to \infty} F^n(x_0, y_0, z_0)$ $= x$, $\lim_{n \to \infty} G^n(y_0, x_0, y_0) = y$ and $\lim_{n \to \infty} H^n(z_0, y_0, x_0) = z$.

Now we have to prove the existence of FGH-tripled fixed points. Consider,

$$
d_X(F(x, y, z), x)
$$

= $\lim_{n \to \infty} d_X(F(F^n(x_0, y_0, z_0), G^n(y_0, x_0, y_0), H^n(z_0, y_0, x_0)), F^n(x_0, y_0, z_0))$
= $\lim_{n \to \infty} d_X(F^{n+1}(x_0, y_0, z_0), F^n(x_0, y_0, z_0))$
= 0.

Therefore, $F(x, y, z) = x$. Similarly we can prove

$$
G(y, x, y) = y
$$
 and $H(z, y, x) = z$.

Setting $X = Y = Z$ and $F = G = H$ in Theorem 2.5 we get the following theorem of Berinde and Borcut as a corollary to our result.

Corollary 2.6. ([6, Theorem 7]) Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X,d) is a complete metric space.

Let $F: X \times X \times X \rightarrow X$ be a continuous mapping having the mixed monotone property on X. Assume that there exist constants j, $k, l \in [0, 1)$ with $j+k+l < 1$ for which

$$
d(F(x, y, z), F(u, v, w)) \leq j \ d(x, u) + k \ d(y, v) + l \ d(z, w);
$$

for all $x \geq u, y \leq v, z \geq w$. If there exist $x_0, y_0, z_0 \in X$ such that $x_0 \leq$ $F(x_0, y_0, z_0), y_0 \ge F(y_0, x_0, y_0)$ and $z_0 \le F(z_0, y_0, x_0)$, then there exist $x, y, z \in$ X such that $x = F(x, y, z)$, $y = F(y, x, y)$ and $z = F(z, y, x)$.

In order to prove the next theorem we define a metric d on the Cartesian product $X \times Y \times Z$ as follows:

$$
d((x, y, z), (u, v, w)) = d_X(x, u) + d_Y(y, v) + d_Z(z, w)
$$

for every $(x, y, z), (u, v, w) \in X \times Y \times Z$.

Theorem 2.7. Let (X, \leq_{P_1}, d_X) , (Y, \leq_{P_2}, d_Y) and (Z, \leq_{P_3}, d_Z) be three partially ordered complete metric spaces. Let $F: X \times Y \times Z \rightarrow X$, $G: Y \times X \times Y \rightarrow Y$ Y and $H: Z \times Y \times X \to Z$ be three continuous functions having the mixed monotone property. Assume that there exist constants j, $k, l \in [0, 1)$ with $j+k+l < 1$ such that

$$
d_X(F(x, y, z), F(u, v, w))
$$

\n
$$
\leq j d_X(x, u) + k d_Y(y, v) + l d_Z(z, w); \forall x \geq_{P_1} u, y \leq_{P_2} v, z \geq_{P_3} w,
$$

\n
$$
d_Y(G(y, x, y'), G(v, u, v'))
$$

\n
$$
\leq j d_Y(y, v) + k d_X(x, u) + l d_Y(y', v'); \forall y \geq_{P_2} v, x \leq_{P_1} u, y' \geq_{P_2} v',
$$

\n
$$
d_Z(H(z, y, x), H(w, v, u))
$$

\n
$$
\leq j d_Z(z, w) + k d_Y(y, v) + l d_X(x, u); \forall x \geq_{P_1} u, y \leq_{P_2} v, z \geq_{P_3} w.
$$

If there exist $(x_0, y_0, z_0) \in X \times Y \times Z$ such that $x_0 \leq_{P_1} F(x_0, y_0, z_0), y_0 \geq_{P_2}$ $G(y_0, x_0, y_0)$ and $z_0 \leq_{P_3} H(z_0, y_0, x_0)$, and for every $(x, y, z), (x^*, y^*, z^*) \in$ $X \times Y \times Z$ there exist a $(u, v, w) \in X \times Y \times Z$ that is comparable to both (x, y, z) and (x^*, y^*, z^*) , then there exist a unique FGH-tripled fixed point.

Proof. Following the proof of Theorem 2.5 we get existence of FGH-tripled fixed point. If $(x^*, y^*, z^*) \in X \times Y \times Z$ is another FGH-tripled fixed point, then we have to show that $d((x, y, z), (x^*, y^*, z^*)) = 0$, where

$$
x = \lim_{n \to \infty} F^n(x_0, y_0, z_0), \ \ y = \lim_{n \to \infty} G^n(y_0, x_0, y_0)
$$

and

$$
z = \lim_{n \to \infty} H^n(z_0, y_0, x_0).
$$

Consider two cases.

Case 1: If (x, y, z) is comparable to (x^*, y^*, z^*) with respect to the ordering in $X \times Y \times Z$, then for every $n = 0, 1, 2, \cdots, (F^n(x, y, z), G^n(y, x, y), H^n(z, y, x)) =$ (x, y, z) is comparable to

$$
(F^{n}(x^*,y^*,z^*),G^{n}(y^*,x^*,y^*),H^{n}(z^*,y^*,x^*)) = (x^*,y^*,z^*).
$$

Also,

$$
d((x, y, z), (x^*, y^*, z^*))
$$

= d_X(x, x^{*}) + d_Y(y, y^{*}) + d_Z(z, z^{*})
= d_X(Fⁿ(x, y, z), Fⁿ(x^{*}, y^{*}, z^{*})) + d_Y(Gⁿ(y, x, y), Gⁿ(y^{*}, x^{*}, y^{*}))
+ d_Z(Hⁿ(z, y, x), Hⁿ(z^{*}, y^{*}, x^{*}))
= D_n^x + D_n^y + D_n^z,

where

$$
D_n^x = d_X(F^n(x, y, z), F^n(x^*, y^*, z^*)),
$$

\n
$$
D_n^y = d_Y(G^n(y, x, y), G^n(y^*, x^*, y^*)),
$$

\n
$$
D_n^z = d_Z(H^n(z, y, x), H^n(z^*, y^*, x^*)).
$$

For $n = 1$,

$$
D_1^x = d_X(F(x, y, z), F(x^*, y^*, z^*)) \le j \ d_X(x, x^*) + k \ d_Y(y, y^*) + l \ d_Z(z, z^*),
$$

\n
$$
D_1^y = d_Y(G(y, x, y), G(y^*, x^*, y^*)) \le (j + l) \ d_Y(y, y^*) + k \ d_X(x, x^*),
$$

\n
$$
D_1^z = d_Z(H(z, y, x), H(z^*, y^*, x^*)) \le j \ d_Z(z, z^*) + k \ d_Y(y, y^*) + l \ d_X(x, x^*).
$$

For the simplicity of calculations we use matrix method. Let

$$
A = \begin{pmatrix} j & k & l \\ k & j+l & 0 \\ l & k & j \end{pmatrix}
$$
 and denote it by
$$
\begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & b_1 & h_1 \end{pmatrix}
$$
,

where $a_1 + b_1 + c_1 = d_1 + e_1 + f_1 = g_1 + b_1 + h_1 = j + k + l < 1$. Therefore

$$
\begin{pmatrix} D_1^x \\ D_1^y \\ D_1^z \end{pmatrix} \le \begin{pmatrix} j & k & l \\ k & j+l & 0 \\ l & k & j \end{pmatrix} \begin{pmatrix} D_1^x \\ D_1^y \\ D_1^z \end{pmatrix}
$$

.

For $n = 2$,

$$
D_2^x = d_X(F^2(x, y, z), F^2(x^*, y^*, z^*))
$$

= $d_X((F(F(x, y, z), G(y, x, y), H(z, y, x)),$
 $F(F(x^*, y^*, z^*), G(y^*, x^*, y^*), H(z^*, y^*, x^*)))$
 $\leq j d_X(F(x, y, z), F(x^*, y^*, z^*)) + k d_Y(G(y, x, y), G(y^*, x^*, y^*))$
+ $l d_Z(H(z, y, x), H(z^*, y^*, x^*))$

$$
\leq j[j d_X(x, x^*) + k d_Y(y, y^*) + l d_Z(z, z^*)]
$$

+ k [(j + l) d_Y(y, y^*) + k d_X(x, x^*)]
+ l [j d_Z(z, z^*) + k d_Y(y, y^*) + l d_X(x, x^*)]
= (j² + k² + l²) d_X(x, x^*) + (2kj + 2kl) d_Y(y, y^*) + 2jl d_Z(z, z^*),

$$
D_2^y = d_Y(G^2(y, x, y), G^2(y^*, x^*, y^*))
$$

= $d_Y((G(G(y, x, y), F(x, y, z), G(y, x, y)), G(G(y^*, x^*, y^*), F(x^*, y^*, z^*, G(y^*, x^*, y^*)))$
 $\leq (j + l) d_Y(G(y, x, y), G(y^*, x^*, y^*)) + k d_X(F(x, y, z), F(x^*, y^*, z^*))$
 $\leq (j + l) [(j + l) d_Y(y, y^*) + k d_X(x, x^*)]$
+ $k [j d_X(x, x^*) + k d_Y(y, y^*) + l d_Z(z, z^*)]$
= $(2kj + lk) d_X(x, x^*) + [(j + l)^2 + k^2] d_Y(y, y^*) + kl d_Z(z, z^*),$

$$
D_2^z = d_Z(H^2(z, y, x), H^2(z^*, y^*, x^*))
$$

= $d_Z((H(H(z, y, x), G(y, x, y), F(x, y, z)),$
 $H(H(z^*, y^*, x^*, G(y^*, x^*, y^*, F(x^*, y^*, z^*)))$
 $\leq j d_Z(H(z, y, x), H(z^*, y^*, x^*)) + k d_Y(G(y, x, y), G(y^*, x^*, y^*))$
+ $l d_X(F(x, y, z), F(x^*, y^*, z^*))$
 $\leq j [j d_Z(z, z^*) + k d_Y(y, y^*) + l d_X(x, x^*)]$
+ $k [(j + l) d_Y(y, y^*) + k d_X(x, x^*)]$
+ $l [j d_X(x, x^*) + k d_Y(y, y^*) + l d_Z(z, z^*)]$
= $(2jl + k^2) d_X(x, x^*) + (2jk + 2kl) d_Y(y, y^*) + (j^2 + l^2) d_Z(z, z^*).$

So we get,

$$
A^{2} = \begin{pmatrix} j^{2} + k^{2} + l^{2} & 2jk + 2kl & 2jl \\ 2kj + lk & (j + l)^{2} + k^{2} & kl \\ 2jl + k^{2} & 2jk + 2kl & j^{2} + l^{2} \end{pmatrix}
$$
denoted by $\begin{pmatrix} a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2} \\ g_{2} & b_{2} & h_{2} \end{pmatrix}$,

where $a_2 + b_2 + c_2 = d_2 + e_2 + f_2 = g_2 + b_2 + h_2 = (j + k + l)^2 < j + k + l < 1$. Therefore

$$
\begin{pmatrix} D_2^x \\ D_2^y \\ D_2^z \end{pmatrix} \le \begin{pmatrix} j & k & l \\ k & j+l & 0 \\ l & k & j \end{pmatrix}^2 \begin{pmatrix} D_1^x \\ D_1^y \\ D_1^z \end{pmatrix}.
$$

As by the same lines of Theorem 2.5 we can prove

$$
A^n = \begin{pmatrix} a_n & b_n & c_n \\ d_n & e_n & f_n \\ g_n & b_n & h_n \end{pmatrix},
$$

where $a_n + b_n + c_n = d_n + e_n + f_n = g_n + b_n + h_n = (j + k + l)^n < j + k + l < 1$. Therefore we have

$$
\begin{pmatrix} D_n^x \\ D_n^y \\ D_n^z \end{pmatrix} \leq \left(\begin{array}{ccc} j & k & l \\ k & j+l & 0 \\ l & k & j \end{array} \right)^n \left(\begin{array}{c} D_1^x \\ D_1^y \\ D_1^z \end{array} \right),
$$

that is,

$$
\begin{pmatrix}\nD_n^x \\
D_n^y \\
D_n^z\n\end{pmatrix}\n\le\n\begin{pmatrix}\na_n & b_n & c_n \\
d_n & e_n & f_n \\
g_n & b_n & h_n\n\end{pmatrix}\n\begin{pmatrix}\nD_1^x \\
D_1^y \\
D_1^z\n\end{pmatrix}
$$
\n
$$
=\n\begin{pmatrix}\na_n & D_1^x + b_n & D_1^y + c_n & D_1^z \\
d_n & D_1^x + e_n & D_1^y + f_n & D_1^z \\
g_n & D_1^x + b_n & D_1^y + h_n & D_1^z\n\end{pmatrix}
$$
\n
$$
\leq (a_n + b_n + c_n) \begin{pmatrix}\nD_1^x + D_1^y + D_1^z \\
D_1^x + D_1^y + D_1^z \\
D_1^x + D_1^y + D_1^z\n\end{pmatrix}
$$
\n
$$
=\n\begin{pmatrix}\nj + k + l\n\end{pmatrix}^n \begin{pmatrix}\nD_1^x + D_1^y + D_1^z \\
D_1^x + D_1^y + D_1^z \\
D_1^x + D_1^y + D_1^z\n\end{pmatrix},
$$

that is,

$$
D_n^x \le (j + k + l)^n \ (D_1^x + D_1^y + D_1^z),
$$

\n
$$
D_n^y \le (j + k + l)^n \ (D_1^x + D_1^y + D_1^z),
$$

\n
$$
D_n^z \le (j + k + l)^n \ (D_1^x + D_1^y + D_1^z).
$$

Therefore

$$
D_n^x + D_n^y + D_n^z \le 3 (j + k + l)^n (D_1^x + D_1^y + D_1^z) \n\to 0 \text{ as } n \to \infty.
$$

Therefore $d((x, y, z), (x^*, y^*, z^*)) = 0.$

Case 2: If (x, y, z) are not comparable to (x^*, y^*, z^*) then there exist an upper bound or a lower bound $(u, v, w) \in X \times Y \times Z$ of (x, y, z) and (x^*, y^*, z^*) . Then for every $n = 1, 2, 3, \cdots$, $(F^n(u, v, w), G^n(v, u, v), H^n(w, v, u))$ is comparable to

$$
(F^{n}(x, y, z), G^{n}(y, x, y), H^{n}(z, y, x)) = (x, y, z)
$$

and to

$$
(F^{n}(x^{\ast},y^{\ast},z^{\ast}),G^{n}(y^{\ast},x^{\ast},y^{\ast}),H^{n}(z^{\ast},y^{\ast},x^{\ast}))=(x^{\ast},y^{\ast},z^{\ast}).
$$

538 D. Karichery and S. Pulickakunnel

$$
d((x, y, z), (x^*, y^*, z^*))
$$

= $d((F^n(x, y, z), G^n(y, x, y), H^n(z, y, x)),$
 $(F^n(x^*, y^*, z^*, G^n(y^*, x^*, y^*, H^n(z^*, y^*, x^*)))$
 $\leq d((F^n(x, y, z), G^n(y, x, y), H^n(z, y, x)),$
 $(F^n(u, v, w), G^n(v, u, v), H^n(w, v, u)))$
+ $d((F^n(u, v, w), G^n(v, u, v), H^n(w, v, u)),$
 $(F^n(x^*, y^*, z^*, G^n(y^*, x^*, y^*, H^n(z^*, y^*, x^*)))$
= $d_X((F^n(x, y, z), F^n(u, v, w)) + d_Y(G^n(y, x, y), G^n(v, u, v))$
+ $d_Z(H^n(z, y, x), H^n(w, v, u)) + d_X((F^n(u, v, w), F^n(x^*, y^*, z^*))$
+ $d_Y(G^n(v, u, v), G^n(y^*, x^*, y^*)) + d_Z(H^n(w, v, u), H^n(z^*, y^*, x^*))$
 $\leq 3 (j + k + l)^n [(d_X(x, u) + d_Y(y, v) + d_Z(z, w)) + d_X(u, x^*) + d_Y(v, y^*) + d_Z(w, z^*)]$
 $\rightarrow 0$ as $n \rightarrow \infty$.

Therefore, $d((x, y, z), (x^*, y^*, z^*)) = 0.$

Setting $X = Y = Z$ and $F = G = H$ in Theorem 2.7 we get the following theorem of Berinde and Borcut as a corollary to our result.

Corollary 2.8. ([6, Theorem 9]) Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \times X \rightarrow X$ be a continuous mapping having the mixed monotone mapping on X. Assume that there exist constants $j, k, l \in [0, 1)$ with $j+k+l < 1$ for which

$$
d(F(x, y, z), F(u, v, w)) \leq j \ d(x, u) + k \ d(y, v) + l \ d(z, w);
$$

for all $x \geq u, y \leq v, z \geq w$. If there exist $x_0, y_0, z_0 \in X$ such that

 $x_0 \leq F(x_0, y_0, z_0), y_0 \geq F(y_0, x_0, y_0), z_0 \leq F(z_0, y_0, x_0)$

and for every $(x, y, z), (x_1, y_1, z_1) \in X \times X \times X$, there exist a $(u, v, w) \in Y$ $X \times X \times X$ that is comparable to (x, y, z) and (x_1, y_1, z_1) then we obtain a unique tripled fixed point of F.

Remark 2.9. We can replace the continuity of F , G and H in Theorem 2.5 by other properties in order to get the existence of FGH-tripled fixed point as we see in the following theorem.

Theorem 2.10. Let (X, \leq_{P_1}, d_X) , (Y, \leq_{P_2}, d_Y) and (Z, \leq_{P_3}, d_Z) be three partially ordered complete metric spaces and $F: X \times Y \times Z \rightarrow X, G: Y \times X \times Y \rightarrow Y$

Y and $H: Z \times Y \times X \to Z$ be three mappings having the mixed monotone property on X. Assume that there exist constants $j, k, l \in [0, 1)$ with $j + k + l < 1$ such that

$$
d_X(F(x, y, z), F(u, v, w))
$$

\n
$$
\leq j d_X(x, u) + k d_Y(y, v) + l d_Z(z, w); \forall x \geq_{P_1} u, y \leq_{P_2} v, z \geq_{P_3} w,
$$

\n
$$
d_Y(G(y, x, y'), G(v, u, v'))
$$

\n
$$
\leq j d_Y(y, v) + k d_X(x, u) + l d_Y(y', v'); \forall y \geq_{P_2} v, x \leq_{P_1} u, y' \geq_{P_2} v',
$$

\n
$$
d_Z(H(z, y, x), H(w, v, u))
$$

\n
$$
\leq j d_Z(z, w) + k d_Y(y, v) + l d_X(x, u); \forall x \geq_{P_1} u, y \leq_{P_2} v, z \geq_{P_3} w.
$$

Further assume that X, Y and Z have the following properties:

- (i) if a non-decreasing sequence $\{x_n\} \to x$, then $x_n \leq_{P_1} x$ for every n.
- (ii) if a non-increasing sequence $\{y_n\} \to y$, then $y_n \geq_{P_2} y$ for every n.
- (iii) if a non-decreasing sequence $\{z_n\} \to z$, then $z_n \leq_{P_3} z$ for every n.

If there exist $(x_0, y_0, z_0) \in X \times Y \times Z$ such that

$$
x_0 \leq_{P_1} F(x_0, y_0, z_0), y_0 \geq_{P_2} G(y_0, x_0, y_0)
$$
 and $z_0 \leq_{P_3} H(z_0, y_0, x_0),$

then there exist FGH-tripled fixed point.

Proof. Following as in the proof of Theorem 2.5, we get

 $\lim_{n \to \infty} F^n(x_0, y_0, z_0) = x$, $\lim_{n \to \infty} G^n(y_0, x_0, y_0) = y$ and $\lim_{n \to \infty} H^n(z_0, y_0, x_0) = z$. We have,

$$
d_X(F(x, y, z), x)
$$

\n
$$
\leq d_X(F(x, y, z), F^{n+1}(x_0, y_0, z_0)) + d_X(F^{n+1}(x_0, y_0, z_0), x)
$$

\n
$$
= d_X(F(x, y, z), F(F^n(x_0, y_0, z_0), G^n(y_0, x_0, y_0), H^n(z_0, y_0, x_0)))
$$

\n
$$
+ d_X(F^{n+1}(x_0, y_0, z_0), x)
$$

\n
$$
\leq j d_X(x, F^n(x_0, y_0, z_0)) + k d_Y(y, G^n(y_0, x_0, y_0))
$$

\n
$$
+ l d_Z(z, H^n(z_0, y_0, x_0)) + d_X(F^{n+1}(x_0, y_0, z_0), x)
$$

\n
$$
\to 0 \text{ as } n \to \infty.
$$

Therefore $F(x, y, z) = x$. Similarly we can prove that

$$
G(y, x, y) = y \quad \text{and} \quad H(z, y, x) = z.
$$

 \Box

Setting $X = Y = Z$ and $F = G = H$ in Theorem 2.10 we get following result as a corollary.

Corollary 2.11. ([6, Theorem 8]) Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \times X \rightarrow X$ be a mapping having the mixed monotone mapping on X. Assume that there exist the constants $i, k, l \in [0, 1)$ with $j + k + l < 1$ for which

$$
d(F(x, y, z), F(u, v, w)) \leq j \ d(x, u) + k \ d(y, v) + l \ d(z, w);
$$

for all $x \geq u, y \leq v, z \geq w$. Assume that X has the following properties:

- (i) if a non-decreasing sequence $\{x_n\} \to x$, then $x_n \leq x$ for every n.
- (ii) if a non-increasing sequence $\{y_n\} \to y$, then $y_n \geq y$ for every n.

If there exist $x_0, y_0, z_0 \in X$ such that

$$
x_0 \le F(x_0, y_0, z_0), y_0 \ge F(y_0, x_0, y_0)
$$
 and $z_0 \le F(z_0, y_0, x_0),$

then there exist $x, y, z \in X$ such that

$$
x = F(x, y, z), y = F(y, x, y) \text{ and } z = F(z, y, x).
$$

Remark 2.12. By adding the following condition to Theorem 2.10 we get the uniqueness of FGH-tripled fixed point: "for every $(x, y, z), (x^*, y^*, z^*) \in$ $X \times Y \times Z$ there exist a $(u, v, w) \in X \times Y \times Z$ that is comparable to both (x, y, z) and (x^*, y^*, z^*) ".

Acknowledgments: The first author acknowledges financial support from Kerala State Council for Science, Technology and Environment(KSCSTE), in the form of fellowship with reference number 064/FSHP-MSS/2013/KSCSTE.

REFERENCES

- [1] M. Abbas, H. Aydi and E. Karapinar, Tripled fixed Points of multivalued nonlinear contraction mappings in partially ordered metric spaces, Abstract and Applied Analysis, (2011), Article ID 812690, doi:10.1155/2011/812690.
- [2] S.M. Abusalim and M.S.M. Noorani, Tripled fixed point theorems in cone metric spaces under F-invariant set and c-distance, J. Nonlinear Sci. Appl., 8 (2015), 750–762.
- [3] H. Aydi, E. Karapnar and C. Vetro, Meir-Keeler type contractions for tripled fixed points, Acta Mathematica Scientia, 32B(6) (2012), 2119–2130.
- [4] H. Aydi, E. Karapinar and S. Radenovic, Tripled coincidence fixed point results for BoydWong and Matkowski type contractions, RACSAM, doi:10.1007/s13398-012-0077- 3.
- [5] H. Aydi, E. Karapnar and W. Shatanawi, Tripled coincidence point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory and Applications, 2012(101) (2012).
- [6] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis, 74 (2011), 4889–4897.

- [7] M. Borcut and V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comp., 218 (2012), 5929-5936.
- [8] M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comp., **218** (2012), 7339-7346.
- [9] K. Deepa and P. Shaini, FG -coupled fixed point theorems for contractive and generalized quasi-contractive mappings, http://arxiv.org/abs/1604.02669.
- [10] T.G. Bhasakar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA., 65(7) (2006), 1379–1393.
- [11] D. Guo and V. Lakshmikantham, Coupled fixed points of non-linear operators with applications, Nonlinear Analysis TMA., 11(5) (1987), 623–632.
- [12] E. Karapnar and N.V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comp. Math. Appl., 64 (2012), 1839–1848
- [13] E. Prajisha and P. Shaini, FG -coupled fixed point theorems for various contractions in partially ordered metric spaces, http://arxiv.org/abs/1602.00543.
- [14] B. Samet and C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal., 1(2) (2010), 46–56.