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Abstract. In this paper, we introduce a new concept known as FGH-tripled fixed point

and prove existence and uniqueness of fixed points in partially ordered complete metric

spaces. This concept is a generalization of tripled fixed point and an extension of FG-coupled

fixed point. Our results extends and generalizes several results in literature particularly the

results of Berinde and Borcut[Vasile Berinde, Marine Borcut, Tripled fixed point theorems

for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis, 74

(2011), 4889-4897].

1. Introduction

The new trends in fixed point theory is to find multidimensional fixed point
results. Guo and Lakshmikantham [11] initiated this idea through coupled
fixed points in cone metric spaces. Later in 2006 Gnana Bhaskar and Laksh-
mikantham [10] defined mixed monotone property and proved existence and
uniqueness theorems for coupled fixed points in partially ordered metric spaces.
Also as an application they discussed the existence of a unique solution to a
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periodic boundary value problem associated with a first order ordinary dif-
ferential equation. From this background several authors have studied multi-
dimensional fixed points and established numerous fixed point theorems. In
[6]-[8] Berinde and Borcut extended coupled fixed point results to tripled fixed
point results using mixed monotone property and thereafter a lots of studies
have taken place in this field [1]-[5]. Similarly Karapinar and Loung [12] de-
fined quadrupled fixed points and they proved some fixed point results in this
area. As an extension of coupled fixed points, in a natural way Samet and
Vetro [14] introduced the concept of fixed points of N -order. Instead of using
mixed monotone property they defined F -invariant set and using this concept
proved fixed point theorems of N -order.

In the above mentioned multidimensional fixed points the authors have con-
sidered fixed points on the finite Cartesian product of the space X with itself.
But recently Prajisha and Shaini[13] introduced FG-coupled fixed points in
partially ordered metric spaces, where they used the Cartesian product of dif-
ferent spaces as the ambient space. Using this concept Deepa and Shaini[9]
proved existence and uniqueness theorems for FG-coupled fixed points on con-
tractive and generalized quasi-contractive mappings.

In this paper, we define a new concept known as FGH-tripled fixed point
which is a generalization of tripled fixed point and an extension of FG-coupled
fixed point. Now we recall some basic definitions:

Definition 1.1. ([10]) Let X be a partially ordered metric space and F :
X ×X → X. An element (x, y) ∈ X ×X is said to be a coupled fixed point
of F if F (x, y) = x and F (y, x) = y.

Definition 1.2. ([6]) Let X be a partially ordered metric space. An element
(x, y, z) ∈ X ×X ×X is said to be tripled fixed point of F : X ×X ×X → X
if F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Definition 1.3. ([13]) Let X and Y be two partially ordered metric spaces,
F : X × Y → X and G : Y × X → Y be two mappings. An element
(x, y) ∈ X × Y is said to be an FG-coupled fixed point if F (x, y) = x and
G(y, x) = y.

In next section, we define FGH-tripled fixed point with an example. Also
we prove the existence and uniqueness of FGH-tripled fixed point theorems for
continuous and discontinuous mappings, which gives extension of the following
theorems in [13].
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Theorem 1.4. ([13, Theorem 2.4]) Let (X, dX ,≤P1) and (Y, dY ,≤P2) be two
partially ordered complete metric spaces and F : X×Y → X, G : Y ×X → Y
be two continuous mappings having the mixed monotone property. Assume
that there exist k, l ∈ [0, 1); k + l < 1 with

dX(F (x, y), F (u, v)) ≤ k dX(x, u) + l dY (y, v), ∀ x ≥P1 u, y ≤P2 v,

dY (G(y, x), G(v, u)) ≤ k dY (y, v) + l dX(x, u), ∀ x ≤P1 u, y ≥P2 v.

If there exist (x0, y0) ∈ X×Y such that x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0),
then there exist (x, y) ∈ X × Y such that x = F (x, y) and y = G(y, x).

Theorem 1.5. ([13, Theorem 2.5]) Let (X, dX ,≤P1) and (Y, dY ,≤P2) be two
partially ordered complete metric spaces and F : X×Y → X, G : Y ×X → Y
be two continuous mappings having the mixed monotone property. For every
(x, y), (x1, y1) ∈ X × Y there exist a (z1, z2) ∈ X × Y that is comparable to
both (x, y) and (x1, y1). Assume that there exist k, l ∈ [0, 1); k + l < 1 with

dX(F (x, y), F (u, v)) ≤ k dX(x, u) + l dY (y, v), ∀ x ≥P1 u, y ≤P2 v,

dY (G(y, x), G(v, u)) ≤ k dY (y, v) + l dX(x, u), ∀ x ≤P1 u, y ≥P2 v.

If there exist x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0), then there exist a unique
FG- coupled fixed point.

Theorem 1.6. ([13, Theorem 2.6]) Let (X, dX ,≤P1) and (Y, dY ,≤P2) be two
partially ordered complete metric spaces. Assume that X and Y having the
following properties

(i) If a non-decreasing sequence {xn} → x then xn ≤P1 x, ∀ n.
(ii) If a non-increasing sequence {yn} → y then y ≤P2 yn, ∀ n.

Let F : X × Y → X, G : Y × X → Y be two mappings satisfying the mixed
monotone property. Also assume that there exist k, l ∈ [0, 1) such that k+l < 1
with

dX(F (x, y), F (u, v)) ≤ k dX(x, u) + l dY (y, v), ∀ x ≥P1 u, y ≤P2 v,

dY (G(y, x), G(v, u)) ≤ k dY (y, v) + l dX(x, u), ∀ x ≤P1 u, y ≥P2 v.

If there exist x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0), then there exist (x, y) ∈
X × Y such that x = F (x, y) and y = G(y, x).

2. FGH-tripled fixed point theorems

Definition 2.1. Let (X,≤P1), (Y,≤P2), and (Z,≤P3) be three partially or-
dered sets and F : X×Y ×Z → X, G : Y ×X×Y → Y and H : Z×Y ×X → Z
be three mappings. An element (x, y, z) ∈ X × Y × Z is said to be an FGH-
tripled fixed point if F (x, y, z) = x,G(y, x, y) = y, and H(z, y, x) = z.
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Definition 2.2. Let (X,≤P1), (Y,≤P2), and (Z,≤P3) be three partially or-
dered sets and F : X × Y × Z → X, G : Y × X × Y → Y and H :
Z × Y ×X → Z. We say that F,G and H have mixed monotone property if
for any x ∈ X, y, y′ ∈ Y and z ∈ Z we have

x1, x2 ∈ X, x1 ≤P1 x2 ⇒ F (x1, y, z) ≤P1 F (x2, y, z),

G(y, x1, y
′) ≥P2 G(y, x2, y

′),

H(z, y, x1) ≤P3 H(z, y, x2),

y1, y2 ∈ Y, y1 ≤P2 y2 ⇒ F (x, y1, z) ≥P1 F (x, y2, z),

G(y1, x, y
′) ≤P2 G(y2, x, y

′),

G(y, x, y1) ≤P2 G(y, x, y2),

H(z, y1, x) ≥P3 H(z, y2, x),

z1, z2 ∈ Z, z1 ≤P3 z2 ⇒ F (x, y, z1) ≤P1 F (x, y, z2),

H(z1, y, x) ≤P3 H(z2, y, x).

Definition 2.3. Partial order ≤ in X×Y ×Z is defined by (x, y, z) ≤ (u, v, w)
implies that x ≤P1 u, y ≥P2 v and z ≤P3 w; where ≤P1 , ≤P2 , ≤P3 are partial
orders in X,Y and Z respectively.

Example 2.4. Let X = [0, 1], Y = [1, 2] and Z = [2, 4] with usual metric and

usual ordering. Define F : X×Y ×Z → X by F (x, y, z) =
x+ y + z + 1

12
, G :

Y × X × Y → Y by G(y, x, y) =
x+ y + 1

2
and H : Z × Y × X → Z by

H(z, y, x) =
z + y + x+ 1

2
for every (x, y, z) ∈ X × Y ×Z. Then

(
1

2
,
3

2
, 3

)
is

a FGH-tripled fixed point.

Throughout this paper we use the following notations to prove our results.
For n ≥ 1 define

Fn+1(x, y, z) = F (Fn(x, y, z), Gn(y, x, y), Hn(z, y, x)),

Gn+1(y, x, y) = G(Gn(y, x, y), Fn(x, y, z), Gn(y, x, y)),

Hn+1(z, y, x) = H(Hn(z, y, x), Gn(y, x, y), Fn(x, y, z)),

for every (x, y, z) ∈ X × Y × Z.

Theorem 2.5. Let (X,≤P1 , dX), (Y,≤P2 , dY ) and (Z,≤P3 , dZ) be three par-
tially ordered complete metric spaces. Let F : X×Y ×Z → X, G : Y ×X×Y →
Y and H : Z × Y ×X → Z be three continuous functions having the mixed



Generalized form of tripled fixed point theorems in partially ordered metric spaces 529

monotone property. Assume that there exist constants j, k, l ∈ [0, 1) with
j + k + l < 1 such that

dX(F (x, y, z), F (u, v, w))

≤ jdX(x, u) + kdY (y, v) + l dZ(z, w); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w,
(2.1)

dY (G(y, x, y′), G(v, u, v′))

≤ jdY (y, v)+kdX(x, u)+l dY (y′, v′); ∀ y ≥P2 v, x ≤P1 u, y
′ ≥P2 v

′,
(2.2)

dZ(H(z, y, x), H(w, v, u))

≤ jdZ(z, w) + kdY (y, v) + l dX(x, u); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w.
(2.3)

If there exist x0 ∈ X, y0 ∈ Y and z0 ∈ Z such that x0 ≤P1 F (x0, y0, z0), y0 ≥P2

G(y0, x0, y0) and z0 ≤P3 H(z0, y0, x0). Then there exist (x, y, z) ∈ X × Y × Z
such that x = F (x, y, z), y = G(y, x, y) and z = H(z, y, x).

Proof. We have x0 ≤P1 F (x0, y0, z0) = x1 (say), y0 ≥P2 G(y0, x0, y0) = y1
(say) and z0 ≤P3 H(z0, y0, x0) = z1 (say).
For n ≥ 1, denote

xn = F (xn−1, yn−1, zn−1), yn = G(yn−1, xn−1, yn−1)

and

zn = H(zn−1, yn−1, xn−1).

Then we get

Fn+1(x0, y0, z0) = xn+1, Gn+1(y0, x0, y0) = yn+1

and

Hn+1(z0, y0, x0) = zn+1.

Due to the mixed monotone property, it is easy to show that

x2 = F (x1, y1, z1) ≥P1 F (x0, y1, z1) ≥P1 F (x0, y0, z1) ≥P1 F (x0, y0, z0) = x1,

y2 = G(y1, x1, y1) ≤P2 G(y0, x1, y0) ≤P2 G(y0, x0, y0) = y1,

z2 = H(z1, y1, x1) ≥P3 H(z0, y1, x1) ≥P3 H(z0, y0, x1) ≥P3 H(z0, y0, x0) = z1.

Thus we get three sequences as follows

x0 ≤P1 x1 ≤P1 x2 ≤P1 · · · ≤P1 xn ≤P1 · · · ,
y0 ≥P2 y1 ≥P2 y2 ≥P2 · · · ≥P2 yn ≥P2 · · · ,
z0 ≤P3 z1 ≤P3 z2 ≤P3 · · · ≤P3 zn ≤P3 · · · .

Denote

Dx
n = dX(xn−1, xn), Dy

n = dY (yn−1, yn), Dz
n = dZ(zn−1, zn).
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Then,

Dx
2 = dX(x1, x2)

= dX(F (x0, y0, z0), F (x1, y1, z1))

≤ j dX(x0, x1) + k dY (y0, y1) + l dZ(z0, z1)

= j Dx
1 + k Dy

1 + l Dz
1.

Similarly

Dy
2 = dY (y1, y2)

= dY (G(y0, x0, y0), G(y1, x1, y1))

≤ (j + l) dY (y0, y1) + k dX(x0, x1)

= (j + l) Dy
1 + k Dx

1

and

Dz
2 = dZ(z1, z2)

= dZ(H(z0, y0, x0), H(z1, y1, x1))

≤ j dZ(z0, z1) + k dY (y0, y1) + l dX(x0, x1)

= j Dz
1 + k Dy

1 + l Dx
1 .

For the simplicity we will do the calculations by matrix method. Considering
the coefficients of Dx

1 , D
y
1 , D

z
1 from the above inequalities we construct A.

A =

 j k l
k j + l 0
l k j

 denoted by

 a1 b1 c1
d1 e1 f1
g1 b1 h1

 ,

where a1 + b1 + c1 = d1 + e1 + f1 = g1 + b1 + h1 = j + k + l < 1. Therefore Dx
2

Dy
2

Dz
2

 ≤
 a1 b1 c1

d1 e1 f1
g1 b1 h1

 Dx
1

Dy
1

Dz
1

 .

Also

Dx
3 = dX(x2, x3)

= dX(F (x1, y1, z1), F (x2, y2, z2))

≤ j dX(x1, x2) + k dY (y1, y2) + l dZ(z1, z2)

= j Dx
2 + k Dy

2 + l Dz
2

≤ j [j Dx
1 + k Dy

1 + l Dz
1] + k [(j + l) Dy

1 + k Dx
1 ]

+ l [j Dz
1 + k Dy

1 + l Dx
1 ]

= (j2 + k2 + l2)Dx
1 + (2jk + 2kl) Dy

1 + 2jl Dz
1.



Generalized form of tripled fixed point theorems in partially ordered metric spaces 531

Similarly

Dy
3 = dY (y2, y3)

= dY (G(y1, x1, y1), G(y2, x2, y2))

≤ (j + l) dY (y1, y2) + k dX(x1, x2)

= (j + l) Dy
2 + k Dx

2

≤ (j + l) [(j + l) Dy
1 + k Dx

1 ] + k [j Dx
1 + k Dy

1 + l Dz
1]

= (2jk + kl) Dx
1 + [(j + l)2 + k2] Dy

1 + kl Dz
1,

Dz
3 = dZ(z2, z3)

= dZ(H(z1, y1, x1), H(z2, y2, x2))

≤ j dZ(z1, z2) + k dY (y1, y2) + l dX(x1, x2)

= j Dz
2 + k Dy

2 + l Dx
2

≤ j [j Dz
1 + k Dy

1 + l Dx
1 ] + k [(j + l) Dy

1 + k Dx
1 ]

+ l [j Dx
1 + k Dy

1 + l Dz
1]

= (jl + jl + k2) Dx
1 + [jk + k(j + l) + kl] Dy

1 + (j2 + l2) Dz
1

= (2jl + k2) Dx
1 + (2jk + 2kl) Dy

1 + (j2 + l2) Dz
1.

Considering the coefficients of Dx
1 , D

y
1 , D

z
1 above inequalities we get A2.

A2 =

 j2 + k2 + l2 2jk + 2kl 2jl
2jk + kl (j + l)2 + k2 kl
2jl + k2 2jk + 2kl j2 + l2

 denoted by

 a2 b2 c2
d2 e2 f2
g2 b2 h2

 ,

where a2 + b2 + c2 = d2 + e2 + f2 = g2 + b2 + h2 = (j + k+ l)2 < j + k+ l < 1.
Therefore  Dx

3

Dy
3

Dz
3

 ≤
 a2 b2 c2

d2 e2 f2
g2 b2 h2

 Dx
1

Dy
1

Dz
1

 .

Now we have to prove by induction that

An =

an bn cn
dn en fn
gn bn hn

 ,

where an + bn + cn = dn +en +fn = gn + bn +hn = (j+k+ l)n < j+k+ l < 1.
We already have the result true for n = 1. Now we will assume that the result
is true upto n = m.
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Consider

Am+1 = Am ·A =

 am bm cm
dm em fm
gm bm hm

 j k l
k j + l 0
l k j


=

 amj + bmk + cml amk + bm(j + l) + cmk aml + cmj
dmj + emk + fml dmk + em(j + l) + fmk dml + fmj
gmj + bmk + hml gmk + bm(j + l) + hmk gml + hmj

 ,

where

am+1 + bm+1 + cm+1

= amj + bmk + cml + amk + bm(j + l) + cmk + aml + cmj

= am(j + k + l) + bm(k + j + l) + cm(l + k + j)

= (am + bm + cm) (j + k + l)

= (j + k + l)m+1 < j + k + l < 1,

dm+1 + em+1 + fm+1

= dmj + emk + fml + dmk + em(j + l) + fmk + dml + fmj

= dm(j + k + l) + em(k + j + l) + fm(l + k + j)

= (dm + em + fm)(j + k + l)

= (j + k + l)m+1 < j + k + l < 1,

gm+1 + bm+1 + hm+1

= gmj + bmk + hml + gmk + bm(j + l) + hmk + gml + hmj

= gm(j + k + l) + bm(k + j + l) + hm(l + k + j)

= (gm + bm + hm)(k + j + l)

= (j + k + l)m+1 < j + k + l < 1.

Hence the result is true for every n ∈ N. Therefore, we will get Dx
n+1

Dy
n+1

Dz
n+1

 ≤
 an bn cn

dn en fn
gn bn hn

 Dx
1

Dy
1

Dz
1

 ,

which implies that

Dx
n+1 ≤ an Dx

1 + bn D
y
1 + cn D

z
1, (2.4)

Dy
n+1 ≤ dn D

x
1 + en D

y
1 + fn D

z
1, (2.5)

Dz
n+1 ≤ gn Dx

1 + bn D
y
1 + hn D

z
1. (2.6)
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Now we have to prove that {Fn(x0, y0, z0)}, {Gn(y0, x0, y0)} and {Hn(z0, y0, x0)}
are Cauchy sequences in X,Y and Z respectively. For m > n, using (2.4) we
will get

dX(xn, xm) ≤ dX(xn, xn+1) + dX(xn+1, xn+2) + · · ·+ dX(xm−1, xm)

= Dx
n+1 +Dx

n+2 + · · ·+Dx
m

≤ an Dx
1 + bn D

y
1 + cn D

z
1 + an+1 D

x
1 + bn+1 D

y
1 + cn+1 D

z
1

+ · · ·+ am−1 D
x
1 + bm−1 D

y
1 + cm−1 D

z
1

= (an + an+1 + · · ·+ am−1) D
x
1 + (bn + bn+1 + · · ·+ bm−1)D

y
1

+ (cn + cn+1 + · · ·+ cm−1)D
z
1

≤ (αn + αn+1 + · · ·+ αm−1) Dx
1 + (αn + αn+1 + · · ·+ αm−1)Dy

1

+ (αn + αn+1 + · · ·+ αm−1)Dz
1 where α = j + k + l < 1

= (αn + αn+1 + · · ·+ αm−1) (Dx
1 +Dy

1 +Dz
1)

≤ αn

1− α
(Dx

1 +Dy
1 +Dz

1)

→ 0 as n→∞,

which implies that {Fn(x0, y0, z0)} is a Cauchy sequence in X. Similarly using
(2.5) and (2.6) we can prove that {Gn(y0, x0, y0)} and {Hn(z0, y0, x0)} are
Cauchy sequences in Y and Z respectively. Since X,Y and Z are complete
metric spaces, there exist (x, y, z) ∈ X×Y ×Z such that limn→∞ F

n(x0, y0, z0)
= x, limn→∞G

n(y0, x0, y0) = y and limn→∞H
n(z0, y0, x0) = z.

Now we have to prove the existence of FGH-tripled fixed points. Consider,

dX(F (x, y, z), x)

= lim
n→∞

dX(F (Fn(x0, y0, z0), G
n(y0, x0, y0), H

n(z0, y0, x0)), F
n(x0, y0, z0))

= lim
n→∞

dX(Fn+1(x0, y0, z0), F
n(x0, y0, z0))

= 0.

Therefore, F (x, y, z) = x. Similarly we can prove

G(y, x, y) = y and H(z, y, x) = z.

�

Setting X = Y = Z and F = G = H in Theorem 2.5 we get the following
theorem of Berinde and Borcut as a corollary to our result.

Corollary 2.6. ([6, Theorem 7]) Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
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Let F : X×X×X → X be a continuous mapping having the mixed monotone
property on X. Assume that there exist constants j, k, l ∈ [0, 1) with j+k+l < 1
for which

d(F (x, y, z), F (u, v, w)) ≤ j d(x, u) + k d(y, v) + l d(z, w);

for all x ≥ u, y ≤ v, z ≥ w. If there exist x0, y0, z0 ∈ X such that x0 ≤
F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0), then there exist x, y, z ∈
X such that x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x).

In order to prove the next theorem we define a metric d on the Cartesian
product X × Y × Z as follows:

d((x, y, z), (u, v, w)) = dX(x, u) + dY (y, v) + dZ(z, w)

for every (x, y, z), (u, v, w) ∈ X × Y × Z.

Theorem 2.7. Let (X,≤P1 , dX), (Y,≤P2 , dY ) and (Z,≤P3 , dZ) be three par-
tially ordered complete metric spaces. Let F : X×Y ×Z → X, G : Y ×X×Y →
Y and H : Z×Y×X → Z be three continuous functions having the mixed mono-
tone property. Assume that there exist constants j, k, l ∈ [0, 1) with j+k+l < 1
such that

dX(F (x, y, z), F (u, v, w))

≤ j dX(x, u) + k dY (y, v) + l dZ(z, w); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w,

dY (G(y, x, y′), G(v, u, v′))

≤ j dY (y, v) + k dX(x, u) + l dY (y′, v′); ∀ y ≥P2 v, x ≤P1 u, y
′ ≥P2 v

′,

dZ(H(z, y, x), H(w, v, u))

≤ j dZ(z, w) + k dY (y, v) + l dX(x, u); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w.

If there exist (x0, y0, z0) ∈ X × Y × Z such that x0 ≤P1 F (x0, y0, z0), y0 ≥P2

G(y0, x0, y0) and z0 ≤P3 H(z0, y0, x0), and for every (x, y, z), (x∗, y∗, z∗) ∈
X × Y × Z there exist a (u, v, w) ∈ X × Y × Z that is comparable to both
(x, y, z) and (x∗, y∗, z∗), then there exist a unique FGH-tripled fixed point.

Proof. Following the proof of Theorem 2.5 we get existence of FGH-tripled
fixed point. If (x∗, y∗, z∗) ∈ X × Y × Z is another FGH-tripled fixed point,
then we have to show that d((x, y, z), (x∗, y∗, z∗)) = 0, where

x = lim
n→∞

Fn(x0, y0, z0), y = lim
n→∞

Gn(y0, x0, y0)

and

z = lim
n→∞

Hn(z0, y0, x0).

Consider two cases.
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Case 1: If (x, y, z) is comparable to (x∗, y∗, z∗) with respect to the ordering in
X×Y×Z, then for every n = 0, 1, 2, · · · , (Fn(x, y, z), Gn(y, x, y), Hn(z, y, x)) =
(x, y, z) is comparable to

(Fn(x∗, y∗, z∗), Gn(y∗, x∗, y∗), Hn(z∗, y∗, x∗)) = (x∗, y∗, z∗).

Also,

d((x, y, z), (x∗, y∗, z∗))

= dX(x, x∗) + dY (y, y∗) + dZ(z, z∗)

= dX(Fn(x, y, z), Fn(x∗, y∗, z∗)) + dY (Gn(y, x, y), Gn(y∗, x∗, y∗))

+ dZ(Hn(z, y, x), Hn(z∗, y∗, x∗))

= Dx
n +Dy

n +Dz
n,

where

Dx
n = dX(Fn(x, y, z), Fn(x∗, y∗, z∗)),

Dy
n = dY (Gn(y, x, y), Gn(y∗, x∗, y∗)),

Dz
n = dZ(Hn(z, y, x), Hn(z∗, y∗, x∗)).

For n = 1,

Dx
1 = dX(F (x, y, z), F (x∗, y∗, z∗)) ≤ j dX(x, x∗) + k dY (y, y∗) + l dZ(z, z∗),

Dy
1 = dY (G(y, x, y), G(y∗, x∗, y∗)) ≤ (j + l) dY (y, y∗) + k dX(x, x∗),

Dz
1 = dZ(H(z, y, x), H(z∗, y∗, x∗)) ≤ j dZ(z, z∗) + k dY (y, y∗) + l dX(x, x∗).

For the simplicity of calculations we use matrix method. Let

A =

 j k l
k j + l 0
l k j

 and denote it by

 a1 b1 c1
d1 e1 f1
g1 b1 h1

 ,

where a1 + b1 + c1 = d1 + e1 + f1 = g1 + b1 + h1 = j + k + l < 1. ThereforeDx
1

Dy
1

Dz
1

 ≤
 j k l

k j + l 0
l k j

 Dx
1

Dy
1

Dz
1

 .

For n = 2,

Dx
2 = dX(F 2(x, y, z), F 2(x∗, y∗, z∗))

= dX((F (F (x, y, z), G(y, x, y), H(z, y, x)),

F (F (x∗, y∗, z∗), G(y∗, x∗, y∗), H(z∗, y∗, x∗)))

≤ j dX(F (x, y, z), F (x∗, y∗, z∗)) + k dY (G(y, x, y), G(y∗, x∗, y∗))

+ l dZ(H(z, y, x), H(z∗, y∗, x∗))
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≤ j[j dX(x, x∗) + k dY (y, y∗) + l dZ(z, z∗)]

+ k [(j + l) dY (y, y∗) + k dX(x, x∗)]

+ l [j dZ(z, z∗) + k dY (y, y∗) + l dX(x, x∗)]

= (j2 + k2 + l2) dX(x, x∗) + (2kj + 2kl) dY (y, y∗) + 2jl dZ(z, z∗),

Dy
2 = dY (G2(y, x, y), G2(y∗, x∗, y∗))

= dY ((G(G(y, x, y), F (x, y, z), G(y, x, y)),

G(G(y∗, x∗, y∗), F (x∗, y∗, z∗), G(y∗, x∗, y∗)))

≤ (j + l) dY (G(y, x, y), G(y∗, x∗, y∗)) + k dX(F (x, y, z), F (x∗, y∗, z∗))

≤ (j + l) [(j + l) dY (y, y∗) + k dX(x, x∗)]

+ k [j dX(x, x∗) + k dY (y, y∗) + l dZ(z, z∗)]

= (2kj + lk) dX(x, x∗) + [(j + l)2 + k2] dY (y, y∗) + kl dZ(z, z∗),

Dz
2 = dZ(H2(z, y, x), H2(z∗, y∗, x∗))

= dZ((H(H(z, y, x), G(y, x, y), F (x, y, z)),

H(H(z∗, y∗, x∗), G(y∗, x∗, y∗), F (x∗, y∗, z∗)))

≤ j dZ(H(z, y, x), H(z∗, y∗, x∗)) + k dY (G(y, x, y), G(y∗, x∗, y∗))

+ l dX(F (x, y, z), F (x∗, y∗, z∗))

≤ j [j dZ(z, z∗) + k dY (y, y∗) + l dX(x, x∗)]

+ k [(j + l) dY (y, y∗) + k dX(x, x∗)]

+ l [j dX(x, x∗) + k dY (y, y∗) + l dZ(z, z∗)]

= (2jl + k2) dX(x, x∗) + (2jk + 2kl) dY (y, y∗) + (j2 + l2) dZ(z, z∗).

So we get,

A2 =

 j2 + k2 + l2 2jk + 2kl 2jl
2kj + lk (j + l)2 + k2 kl
2jl + k2 2jk + 2kl j2 + l2

 denoted by

 a2 b2 c2
d2 e2 f2
g2 b2 h2

 ,

where a2 + b2 + c2 = d2 + e2 + f2 = g2 + b2 + h2 = (j + k+ l)2 < j + k+ l < 1.
Therefore Dx

2

Dy
2

Dz
2

 ≤
 j k l

k j + l 0
l k j

2 Dx
1

Dy
1

Dz
1

 .

As by the same lines of Theorem 2.5 we can prove

An =

an bn cn
dn en fn
gn bn hn

 ,
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where an + bn + cn = dn +en +fn = gn + bn +hn = (j+k+ l)n < j+k+ l < 1.
Therefore we have Dx

n

Dy
n

Dz
n

 ≤
 j k l

k j + l 0
l k j

n Dx
1

Dy
1

Dz
1

 ,

that is, Dx
n

Dy
n

Dz
n

 ≤
 an bn cn

dn en fn
gn bn hn

 Dx
1

Dy
1

Dz
1



=

 an D
x
1 + bn D

y
1 + cn D

z
1

dn D
x
1 + en D

y
1 + fn D

z
1

gn D
x
1 + bn D

y
1 + hn D

z
1



≤
(
an + bn + cn

) Dx
1 +Dy

1 +Dz
1

Dx
1 +Dy

1 +Dz
1

Dx
1 +Dy

1 +Dz
1



=
(
j + k + l

)n Dx
1 +Dy

1 +Dz
1

Dx
1 +Dy

1 +Dz
1

Dx
1 +Dy

1 +Dz
1

 ,

that is,

Dx
n ≤ (j + k + l)n (Dx

1 +Dy
1 +Dz

1),

Dy
n ≤ (j + k + l)n (Dx

1 +Dy
1 +Dz

1),

Dz
n ≤ (j + k + l)n (Dx

1 +Dy
1 +Dz

1).

Therefore

Dx
n +Dy

n +Dz
n ≤ 3 (j + k + l)n (Dx

1 +Dy
1 +Dz

1)

→ 0 as n→∞.

Therefore d((x, y, z), (x∗, y∗, z∗)) = 0.

Case 2: If (x, y, z) are not comparable to (x∗, y∗, z∗) then there exist an upper
bound or a lower bound (u, v, w) ∈ X×Y ×Z of (x, y, z) and (x∗, y∗, z∗). Then
for every n = 1, 2, 3, · · · , (Fn(u, v, w), Gn(v, u, v), Hn(w, v, u)) is comparable
to

(Fn(x, y, z), Gn(y, x, y), Hn(z, y, x)) = (x, y, z)

and to

(Fn(x∗, y∗, z∗), Gn(y∗, x∗, y∗), Hn(z∗, y∗, x∗)) = (x∗, y∗, z∗).
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d((x, y, z), (x∗, y∗, z∗))

= d((Fn(x, y, z), Gn(y, x, y), Hn(z, y, x)),

(Fn(x∗, y∗, z∗), Gn(y∗, x∗, y∗), Hn(z∗, y∗, x∗)))

≤ d((Fn(x, y, z), Gn(y, x, y), Hn(z, y, x)),

(Fn(u, v, w), Gn(v, u, v), Hn(w, v, u)))

+ d((Fn(u, v, w), Gn(v, u, v), Hn(w, v, u)),

(Fn(x∗, y∗, z∗), Gn(y∗, x∗, y∗), Hn(z∗, y∗, x∗)))

= dX((Fn(x, y, z), Fn(u, v, w)) + dY (Gn(y, x, y), Gn(v, u, v))

+ dZ(Hn(z, y, x), Hn(w, v, u)) + dX((Fn(u, v, w), Fn(x∗, y∗, z∗))

+ dY (Gn(v, u, v), Gn(y∗, x∗, y∗)) + dZ(Hn(w, v, u), Hn(z∗, y∗, x∗))

≤ 3 (j + k + l)n [(dX(x, u) + dY (y, v) + dZ(z, w)) + dX(u, x∗)

+ dY (v, y∗) + dZ(w, z∗)]

→ 0 as n→∞.

Therefore, d((x, y, z), (x∗, y∗, z∗)) = 0. �

Setting X = Y = Z and F = G = H in Theorem 2.7 we get the following
theorem of Berinde and Borcut as a corollary to our result.

Corollary 2.8. ([6, Theorem 9]) Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Let F : X×X×X → X be a continuous mapping having the mixed monotone
mapping on X. Assume that there exist constants j, k, l ∈ [0, 1) with j+k+l < 1
for which

d(F (x, y, z), F (u, v, w)) ≤ j d(x, u) + k d(y, v) + l d(z, w);

for all x ≥ u, y ≤ v, z ≥ w. If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0), z0 ≤ F (z0, y0, x0)

and for every (x, y, z), (x1, y1, z1) ∈ X × X × X, there exist a (u, v, w) ∈
X × X × X that is comparable to (x, y, z) and (x1, y1, z1) then we obtain a
unique tripled fixed point of F.

Remark 2.9. We can replace the continuity of F,G and H in Theorem 2.5
by other properties in order to get the existence of FGH-tripled fixed point as
we see in the following theorem.

Theorem 2.10. Let (X,≤P1 , dX), (Y,≤P2 , dY ) and (Z,≤P3 , dZ) be three par-
tially ordered complete metric spaces and F : X×Y ×Z → X,G : Y ×X×Y →
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Y and H : Z×Y ×X → Z be three mappings having the mixed monotone prop-
erty on X. Assume that there exist constants j, k, l ∈ [0, 1) with j + k + l < 1
such that

dX(F (x, y, z), F (u, v, w))

≤ j dX(x, u) + k dY (y, v) + l dZ(z, w); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w,

dY (G(y, x, y′), G(v, u, v′))

≤ j dY (y, v) + k dX(x, u) + l dY (y′, v′); ∀ y ≥P2 v, x ≤P1 u, y
′ ≥P2 v

′,

dZ(H(z, y, x), H(w, v, u))

≤ j dZ(z, w) + k dY (y, v) + l dX(x, u); ∀ x ≥P1 u, y ≤P2 v, z ≥P3 w.

Further assume that X,Y and Z have the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ≤P1 x for every n.
(ii) if a non-increasing sequence {yn} → y, then yn ≥P2 y for every n.

(iii) if a non-decreasing sequence {zn} → z, then zn ≤P3 z for every n.

If there exist (x0, y0, z0) ∈ X × Y × Z such that

x0 ≤P1 F (x0, y0, z0), y0 ≥P2 G(y0, x0, y0) and z0 ≤P3 H(z0, y0, x0),

then there exist FGH-tripled fixed point.

Proof. Following as in the proof of Theorem 2.5, we get

lim
n→∞

Fn(x0, y0, z0) = x, lim
n→∞

Gn(y0, x0, y0) = y and lim
n→∞

Hn(z0, y0, x0) = z.

We have,

dX(F (x, y, z), x)

≤ dX(F (x, y, z), Fn+1(x0, y0, z0)) + dX(Fn+1(x0, y0, z0), x)

= dX(F (x, y, z), F (Fn(x0, y0, z0), G
n(y0, x0, y0), H

n(z0, y0, x0)))

+ dX(Fn+1(x0, y0, z0), x)

≤ j dX(x, Fn(x0, y0, z0)) + k dY (y,Gn(y0, x0, y0))

+ l dZ(z,Hn(z0, y0, x0)) + dX(Fn+1(x0, y0, z0), x)

→ 0 as n→∞.

Therefore F (x, y, z) = x. Similarly we can prove that

G(y, x, y) = y and H(z, y, x) = z.

�

Setting X = Y = Z and F = G = H in Theorem 2.10 we get following
result as a corollary.
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Corollary 2.11. ([6, Theorem 8]) Let (X,≤) be a partially ordered set and
suppose there is a metric d on X such that (X, d) is a complete metric space.
Let F : X ×X ×X → X be a mapping having the mixed monotone mapping
on X. Assume that there exist the constants j, k, l ∈ [0, 1) with j + k + l < 1
for which

d(F (x, y, z), F (u, v, w)) ≤ j d(x, u) + k d(y, v) + l d(z, w);

for all x ≥ u, y ≤ v, z ≥ w. Assume that X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x for every n.
(ii) if a non-increasing sequence {yn} → y, then yn ≥ y for every n.

If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x).

Remark 2.12. By adding the following condition to Theorem 2.10 we get
the uniqueness of FGH-tripled fixed point: “for every (x, y, z), (x∗, y∗, z∗) ∈
X × Y × Z there exist a (u, v, w) ∈ X × Y × Z that is comparable to both
(x, y, z) and (x∗, y∗, z∗)”.
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