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Abstract. The aim of this paper is to study modified S-iteration process for generalized

asymptotically nonexpansive mappings and establish demiclosed principle, existence and

convergence theorems for the iteration scheme and mappings in the setting of CAT(κ) spaces

with k > 0. Our results extend and generalize the previous works from the current existing

literature.

1. Introduction

A CAT(κ) space is a geodesic metric space whose geodesic triangle is thinner
than the corresponding comparison triangle in a model space with curvature κ
for κ ∈ R. The initials are in honour of E. Cartan, A.D. Alexandrov and V.A.
Toponogov, who have made important contribution to the understanding of
curvature via inequalities for the distance function.
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Fixed point theory in CAT(κ) space was first studied by Kirk (see [16, 17]).
His works were followed by a series of new works by many authors, mainly
focusing on CAT(0) spaces (see, e.g., [4, 8, 9, 10, 12, 20, 21]). It is worth
mentioning that the results in CAT(0) spaces can be applied to any CAT(κ)
space with κ ≤ 0 since any CAT(κ) space is a CAT(m) space for every m ≥ κ
(see [5], “Metric spaces of non-positive curvature”).

The class of asymptotically nonexpansive mapping was introduced by Goebel
and Kirk [13] in 1972, as an important generalization of the class of nonexpan-
sive mapping and they proved that if K is a nonempty closed and bounded
subset of a uniformly convex Banach space, then every asymptotically nonex-
pansive self mapping of K has a fixed point.

There are number of papers dealing with the approximation of fixed points
of asymptotically nonexpansive mapping and their generalizations in uniformly
convex Banach spaces using modified Mann and Ishikawa iteration processes
were studied by many authors (see, e.g., [23, 24, 29, 30, 33, 34, 35, 36]).

The concept of ∆-convergence in a general metric space was introduced by
Lim [22]. In 2008, Kirk and Panyanak [18] used the notion of ∆-convergence
introduced by Lim [22] to prove in the CAT(0) space and analogous of some
Banach space results which involve weak convergence. Further, Dhompongsa
and Panyanak [11] obtained ∆-convergence theorems for the Picard, Mann
and Ishikawa iterations in a CAT(0) space. Since then, the existence problem
and the ∆-convergence problem of iterative sequences to a fixed point for
nonexpansive mapping, asymptotically nonexpansive mapping, asymptotically
quasi- nonexpansive mapping, total asymptotically nonexpansive mapping,
generalized asymptotically quasi-nonexpansive mapping and asymptotically
quasi-nonexpansive type mappings through Picard, Mann [25], Ishikawa[14],
modified Agarwal et al. [2] have been rapidly developed in the framework
of CAT(0) space and many papers have appeared in this direction (see, e.g.,
[1, 8, 11, 15, 19, 26, 28, 31]).

Recently, Kumam, Saluja and Nashine [19] studied modified S-iteration
process involving two mappings and investigate the existence and convergence
theorems in the setting of CAT(0) spaces for a class of mapping which is wider
than that of asymptotically nonexpansive mappings.

Very recently, Saluja and Postolache [32] studied modified S-iteration pro-
cess for two asymptotically nonexpansive mappings in the intermediate sense
in the framework of CAT(0) spaces and investigate the existence and conver-
gence theorems for the mentioned iteration scheme and mappings.

The purpose of this article is to establish ∆-convergence and strong conver-
gence of modified modified S-iteration process for a class of mappings which is
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wider than that of nonexpansive and asymptotically nonexpansive mappings
in CAT(κ) spaces with κ > 0. Our results extend and generalize several results
given in the currnt existing literature.

Let F (T ) = {x ∈ K : Tx = x} denotes the set of fixed point of the mapping
T . We begin with the following definitions.

Definition 1.1. Let (X, d) be a metric space and K be its nonempty subset.
Then the mapping T : K → K said to be:

(1) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K;
(2) asymptotically nonexpansive if there exists a sequence {un} ⊂ [0,∞)

with limn→∞ un = 0 such that d(Tnx, Tny) ≤ (1 + un)d(x, y) for all
x, y ∈ K and n ≥ 1;

(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that
d(Tnx, Tny) ≤ Ld(x, y) for all x, y ∈ K and n ≥ 1;

(4) semi-compact if for a sequence {xn} in K with limn→∞ d(xn, Txn) = 0,
there exists a subsequence {xnk} of {xn} such that xnk → p ∈ K as
k →∞;

(5) a sequence {xn} in K is called approximate fixed point sequence for T
(AFPS, in short) if limn→∞ d(xn, Txn) = 0.

It is easy to see that every nonexpansive mapping is asymptotically non-
expansive with the constant sequence {1}. The class of asymptotically non-
expansive mappings was introduced by Goebel and Kirk [13] in 1972, as an
important generalization of the class of nonxpansive mappings and they proved
that if K is a nonempty closed convex subset of a real uniformly convex Ba-
nach space, then every asymptotically nonexpansive self mapping on K has a
fixed point.
T is said to be asymptotically nonexpansive in the intermediate sense if it

is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈K

(
d(Tnx, Tny)− d(x, y)

)
≤ 0. (1.1)

Putting cn = max
{

0, supx,y∈K(d(Tnx, Tny) − d(x, y))
}

, we see that cn → 0
as n→∞. Then (1.1) is reduced to the following:

d(Tnx, Tny) ≤ d(x, y) + cn, ∀ x, y ∈ K, n ≥ 1.

The class of asymptotically nonexpansive mappings in the intermediate sense
was introduced by Bruck et al. [6] as a generalization of the class of asymp-
totically nonexpansive mappings. It is known that if K is a nonempty closed
convex and bounded subset of a real Hilbert space, then every asymptotically
nonexpansive self-mapping in the intermediate sense has a fixed point (see
[38], for more details).
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T is said to be generalized asymptotically nonexpansive [3] if it is continuous
and there exists a positive sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞
such that

lim sup
n→∞

sup
x,y∈K

(
d(Tnx, Tny)− kn d(x, y)

)
≤ 0. (1.2)

Putting cn = max
{

0, supx,y∈K(d(Tnx, Tny)−kn d(x, y))
}

, we see that cn → 0
as n→∞. Then (1.2) is reduced to the following:

d(Tnx, Tny) ≤ kn d(x, y) + cn, ∀ x, y ∈ K, n ≥ 1.

We remark that if kn = 1 for all n, then the class of generalized asymptotically
nonexpansive mappings is reduced to the class of asymptotically nonexpansive
mappings in the intermediate sense.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R
to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l].
In particular, c is an isometry, and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. We say that X is (i) a geodesic
space if any two points of X are joined by a geodesic and (ii) a uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X,
which we will denote by [x, y], called the segment joining x to y. This means
that z ∈ [x, y] if and only if d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y).
In this case, we write z = αx ⊕ (1 − α)y. The space (X, d) is said to be a
geodesic space (D-geodesic space) if every two points of X (every two points of
distance smaller than D) are joined by a geodesic, and X is said to be uniquely
geodesic (D-uniquely geodesic) if there is exactly one geodesic joining x and y
for each x, y ∈ X (for x, y ∈ X with d(x, y) < D). A subset K of X is said to
be convex if K includes every geodesic segment joining any two of its points.
The set K is said to be bounded if diam(K) := sup{d(x, y) : x, y ∈ K} <∞.

The model spaces M2
κ are defined as follows.

Definition 1.2. Given a real number κ, we denote by M2
κ the following metric

spaces:

(i) if κ = 0 then M2
κ is Euclidean space En;

(ii) if κ > 0 then M2
κ is obtained from the sphere Sn by multiplying the

distance function by 1√
κ

;

(iii) if κ < 0 then M2
κ is obtained from hyperbolic space Hn by by multi-

plying the distance function by 1√
−κ .

The metric space (X, d) is called a CAT(κ) space if it is Dκ-geodesic and
any geodesic triangle in X of perimeter less than 2Dκ satisfies the CAT(κ)
inequality.
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A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for geodesic
triangle 4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in
M2
k such that d(x1, x2) = dM2

k
(x1, x2), d(x2, x3) = dM2

k
(x2, x3) and d(x3, x1) =

dM2
k
(x3, x1). If κ ≤ 0, then such a comparison triangle always exists in M2

κ . If

κ > 0, then such a triangle exists whenever d(x1, x2) + d(x2, x3) + d(x3, x1) <
2Dκ, where Dκ = π/

√
κ. A point p̄ ∈ [x̄, ȳ] is called a comparison point for

p ∈ [x, y] if d(x, p) = dM2
κ
(x̄, p̄).

A geodesic triangle 4(x1, x2, x3) in X is said to satisfy the CAT(κ) in-
equality if for any p, q ∈ 4(x1, x2, x3) and for their comparison points p̄, q̄ ∈
4(x̄1, x̄2, x̄3), one has d(p, q) = dM2

κ
(p, q).

Definition 1.3. If k ≤ 0, then X is called a CAT(κ) space if and only if X
is a geodesic space such that all of its geodesic triangles satisfy the CAT(κ)
inequality.

If κ > 0, then X is called a CAT(κ) space if and only if X is Dκ-geodesic and
any geodesic triangle4(x1, x2, x3) in X with d(x1, x2)+d(x2, x3)+d(x3, x1) <
2Dκ satisfies the CAT(κ) inequality.

Notice that in a CAT(0) space (X, d) if x, y, z ∈ X, then the CAT(0) in-
equality implies

d2
(
x,
y ⊕ z

2

)
≤ 1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d2(y, z). (CN)

This is the (CN) inequality of Bruhat and Tits [7]. This inequality is extended
by Dhompongsa and Panyanak in [11] as

d2(z, αx⊕ (1− α)y)

≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y),
(CN∗)

for all α ∈ [0, 1] and x, y, z ∈ X. In fact, if X is a geodesic space, then the
following statements are equivalent:

(i) X is a CAT(0);
(ii) X satisfies (CN) inequality;

(iii) X satisfies (CN∗) inequality.

Let R ∈ (0, 2]. Recall that a geodesic space (X, d) is said to be R-convex
for R (see [27]) if for any three points x, y, z ∈ X, we have

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−R
2
α(1− α)d2(x, y). (1.3)
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It follows from (CN∗) that a geodesic space (X, d) is a CAT(0) space if and
only if (X, d) is R-convex for R=2.

In the sequel we need the following lemma.

Lemma 1.4. ([5, p.176]) Let k > 0 and (X, d) be a complete CAT(k) space

with diam(X) = π/2−ε√
k

for some ε ∈ (0, π/2). Then

d((1− α)x⊕ α y, z) ≤ (1− α)d(x, z) + αd(y, z)

for all x, y, z ∈ X and α ∈ [0, 1].

We now recall some elementary facts about CAT(κ) spaces. Most of them
are proved in the framework of CAT(1) spaces. For completeness, we state
the results in CAT(κ) with κ > 0.

Let {xn} be a bounded sequence in a CAT(κ) space (X, d). For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known from Proposition 4.1 of [12] that in a CAT(k) space with
diam(X) = π

2
√
κ

, A({xn}) consists of exactly one point. We now give the

concept of ∆-convergence and collect some of its basic properties.

Definition 1.5. ([18, 22]) A sequence {xn} in X is said to ∆-converge to
x ∈ X if x is the unique asymptotic center of {xn} for every subsequence {un}
of {xn}. In this case we write ∆-limn xn = x and call x is the ∆-limit of {xn}.

Recall that a subset K in a metric space X is said to be ∆-compact [22]
if every sequence in K has a ∆-convergent subsequence. A mapping T from
a metric space X to a metric space Y is said to be completely continuous if
T (K) is a compact subset of Y whenever K is a ∆-compact subset of X.

Lemma 1.6. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X) =
π/2−ε√

κ
for some ε ∈ (0, π/2). Then the following statements hold:

(i) ([12, Corollary 4.4]) Every sequence in X has a ∆-convergent subse-
quence.

(ii) ([12, Proposition 4.5]) If {xn} ⊆ X and ∆-limn→∞ xn = x, then

x ∈
∞⋂
k=1

conv{xk, xk+1, . . . },
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where conv(A) =
⋂
{B : B ⊇ Aand B is closed and convex}.

By the uniqueness of asymptotic center, we can obtain the following lemma
in [11].

Lemma 1.7. ([11, Lemma 2.8]) Let κ > 0 and (X, d) be a complete CAT(κ)

space with diam(X) = π/2−ε√
κ

for some ε ∈ (0, π/2). If {xn} is a bounded

sequence in X with A({xn}) = {x} and {un} is a subsequence of {xn} with
A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Lemma 1.8. ([35]) Let {pn}∞n=1, {qn}∞n=1 and {rn}∞n=1 be sequences of non-
negative numbers satisfying the inequality

pn+1 ≤ (1 + qn)pn + rn, ∀n ≥ 1.

If
∑∞

n=1 qn <∞ and
∑∞

n=1 rn <∞, then limn→∞ pn exists.

Algorithm 1. The sequence {xn} defined by x1 ∈ K and

yn = (1− βn)xn ⊕ βnTnxn,
xn+1 = (1− αn)Tnxn ⊕ αnTnyn, n ≥ 1, (1.4)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in (0,1) is called mod-
ified S-iterative sequence (see [2]).

If Tn = T for all n ≥ 1, then Algorithm 1 reduces to the following.

Algorithm 2. The sequence {xn} defined by x1 ∈ K and

yn = (1− βn)xn ⊕ βnTxn,
xn+1 = (1− αn)Txn ⊕ αnTyn, n ≥ 1, (1.5)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in (0,1) is called S-
iterative sequence (see [2]).

Algorithm 3. The sequence {xn} defined by x1 ∈ K and

yn = (1− βn)xn ⊕ βnTnxn,
xn+1 = (1− αn)xn ⊕ αnTnyn, n ≥ 1, (1.6)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in [0,1] is called an
Ishikawa iterative sequence (see [14]).

If βn = 0 for all n ≥ 1, then Algorithm 3 reduces to the following.

Algorithm 4. The sequence {xn} defined by x1 ∈ K and

xn+1 = (1− αn)xn ⊕ αnTnxn, n ≥ 1, (1.7)
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where {αn}∞n=1 is a sequence in (0,1) is called a Mann iterative sequence (see
[25]).

2. Main results

2.1. Existence theorems.

Theorem 2.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of

X and let T : K → K be a generalized asymptotically nonexpansive mapping.
Then T has a fixed point.

Proof. Fix x ∈ K. We can consider the sequence {Tnx}∞n=1 as a bounded
sequence in K. Let φ be a function defined by

φ : K → [0,∞), φ(u) = lim sup
n→∞

d(Tnx, u), for all u ∈ K.

Then there exists z ∈ K such that φ(z) = inf{Φ(u) : u ∈ K}. Since T is
generalized asymptotically nonexpansive mapping, for each n,m ∈ N, we have

d(Tn+mx, Tmz) ≤ km d(Tnx, z) + cm.

On taking limit as n→∞, we obtain

φ(Tmz) ≤ km φ(z) + cm (2.1)

for any m ∈ N. This implies that

lim
m→∞

φ(Tmz) ≤ φ(z). (2.2)

In view of inequality (1.3), we obtain

d
(
Tnx,

Tmz ⊕ T hz
2

)2
≤ 1

2
d(Tnx, Tmz)2 +

1

2
d(Tnx, T hz)2

−R
8
d(Tmz, T hz)2

which on taking limit as n→∞ gives

φ(z)2 ≤ Φ
(Tmz ⊕ T hz

2

)2
≤ 1

2
φ(Tmz)2 +

1

2
φ(T hz)2 − R

8
d(Tmz, T hz)2. (2.3)

The above inequality yields

R

8
d(Tmz, T hz)2 ≤ 1

2
φ(Tmz)2 +

1

2
φ(T hz)2 − φ(z)2. (2.4)
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By (2.2) and (2.4), we have lim supm,h→∞ d(Tmz, T hz) ≤ 0. Therefore, {Tnz}∞n=1

is a Cauchy sequence in K and hence converges to some point v ∈ K. Since
T is continuous,

Tv = T
(

lim
n→∞

Tnz
)

= lim
n→∞

Tn+1z = v.

This shows that T has a fixed point in K. This completes the proof. �

From Theorem 2.1 we shall now derive a result for CAT(0) space as follows.

Corollary 2.2. Let (X, d) be a complete CAT(0) space and K be a nonempty
bounded, closed convex subset of X. If T : K → K is a generalized asymptoti-
cally nonexpansive mapping, then T has a fixed point.

Proof. It is well known that every convex subset of a CAT(0) space, equipped
with the induced metric, is a CAT(κ) space (see, [5]). Then (K, d) is a CAT(0)
space and hence it is a CAT(κ) space for all κ > 0. Also note that K is R-
convex for R = 2. Since K is bounded, we can chose ε ∈ (0, π/2) and κ > 0

so that diam(K) ≤ π/2−ε√
κ

. The conclusion follows from Theorem 2.1. This

completes the proof. �

2.2. Demiclosed principle.

Theorem 2.3. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X

and let T : K → K be a generalized asymptotically nonexpansive mapping. If
{xn} is an AFPS for T such that ∆-limn→∞ xn = z, then z ∈ K and z = Tz.

Proof. By Lemma 1.6, we get that z ∈ K. As in Theorem 2.1, we define
φ(u) = lim supn→∞ d(xn, u) for each u ∈ K. Since limn→∞ d(xn, Txn) = 0,
by induction we can show that limn→∞ d(xn, T

mxn) = 0 for some m ∈ N (cf.
[37]). This implies that

φ(u) = lim sup
n→∞

d(Tmxn, u) for each u ∈ K and m ∈ N. (2.5)

Taking u = Tmz in (2.5), we have

φ(Tmz) = lim sup
n→∞

d(Tmxn, T
mz)

≤ lim sup
n→∞

[km d(xn, z) + cm]. (2.6)

Hence

lim sup
m→∞

φ(Tmz) ≤ φ(z). (2.7)
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In view of inequality (1.3), we have

d
(
xn,

z ⊕ Tmz
2

)2
≤ 1

2
d(xn, z)

2 +
1

2
d(xn, T

mz)2 − R

8
d(z, Tmz)2,

where R = (π − 2ε)tan(ε). Since ∆− limn→∞ xn = z, letting n→∞, we get

φ(z)2 ≤ Φ
(z ⊕ Tmz

2

)2
≤ 1

2
φ(z)2 +

1

2
φ(Tmz)2 − R

8
d(z, Tmz)2. (2.8)

This yields

d(z, Tmz)2 ≤ 4

R
[φ(Tmz)2 − φ(z)2]. (2.9)

By (2.7) and (2.9), we have limm→∞ d(z, Tmz) = 0. Since T is continuous,

Tz = T
(

lim
m→∞

Tmz
)

= lim
n→∞

Tm+1z = z.

This shows that T has a fixed point in K. This completes the proof. �

From Theorem 2.3 we can derive the following result as follows.

Corollary 2.4. Let (X, d) be a complete CAT(0) space, K be a nonempty
bounded, closed convex subset of X and T : K → K be a generalized asymp-
totically nonexpansive mapping. If {xn} is an AFPS for T such that ∆-
limn→∞ xn = z, then z ∈ K and z = Tz.

2.3. Convergence theorems. In this section, we prove the following lemmas
using iteration scheme (1.4) needed in the sequel.

Lemma 2.5. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of

X and let T : K → K be a generalized asymptotically nonexpansive mapping
with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞ and

∑∞
n=1 cn <∞.

Let {xn} be a sequence in K defined by (1.4). Then limn→∞ d(xn, p) exists for
each p ∈ F (T ).

Proof. It follows from Theorem 2.1 that F (T ) 6= ∅. Let p ∈ F (T ) and since T
is generalized asymptotically nonexpansive, by (1.4) and Lemma 1.4, we have

d(yn, p) = d((1− βn)xn ⊕ βnTnxn, p)
≤ (1− βn)d(xn, p) + βnd(Tnxn, p)

≤ (1− βn)d(xn, p) + βn[kn d(xn, p) + cn]

≤ (1− βn)knd(xn, p) + βnknd(xn, p) + βncn

≤ kn d(xn, p) + cn. (2.10)
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Finally, using (1.4), (2.10) and Lemma 1.4, we get

d(xn+1, p) = d((1− αn)Tnxn ⊕ αnTnyn, p)
≤ (1− αn)d(Tnxn, p) + αnd(Tnyn, p)

≤ (1− αn)[kn d(xn, p) + cn] + αn[kn d(yn, p) + cn]

= (1− αn)kn d(xn, p) + αnkn d(yn, p) + cn

≤ (1− αn)kn d(xn, p) + αnkn[kn d(xn, p) + cn] + cn

≤ k2n[(1− αn)d(xn, p) + αn d(xn, p)] + (1 + kn)cn

= k2n d(xn, p) + (1 + kn)cn

= (1 + vn)d(xn, p) + pn, (2.11)

where vn = (k2n−1) = (kn+ 1)(kn−1) and pn = (1 +kn)cn. Since
∑∞

n=1(kn−
1) < ∞ and

∑∞
n=1 cn < ∞, it follows that

∑∞
n=1 vn < ∞ and

∑∞
n=1 pn < ∞.

Hence by Lemma 1.8, we get that limn→∞ d(xn, p) exists. This completes the
proof. �

Lemma 2.6. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of

X and let T : K → K be a generalized asymptotically nonexpansive mapping
with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞ and

∑∞
n=1 cn <∞.

Let {xn} be a sequence in K defined by (1.4). Let {αn} and {βn} be sequences
in (0, 1) such that lim infn→∞ αn(1− αn) > 0 and lim infn→∞ βn(1− βn) > 0.
Then limn→∞ d(xn, Txn) = 0.

Proof. It follows from Theorem 2.1 that F (T ) 6= ∅. Let p ∈ F (T ). From
Lemma 2.5, we obtain limn→∞ d(xn, p) exists for each p ∈ F (T ). We claim
that limn→∞ d(Txn, xn) = 0. Since {xn} is bounded, there exists R′ > 0 such
that {xn}, {yn} ⊂ BR′(p) for all n ≥ 1 with R′ < Dκ/2. In view of (1.3), we
have

d(yn, p)
2

= d2((1− βn)xn ⊕ βnTnxn, p)2

≤ βnd(Tnxn, p)
2 + (1− βn)d2(xn, p)

2 − R

2
βn(1− βn)d(Tnxn, xn)2

≤ βn[kn d(xn, p) + cn]2 + (1− βn)d(xn, p)
2 − R

2
βn(1− βn)d(Tnxn, xn)2

≤ k2nβnd(xn, p)
2 +M cn + (1− βn)d(xn, p)

2

−R
2
βn(1− βn)d(Tnxn, xn)2

≤ k2n d2(xn, p) +M cn −
R

2
βn(1− βn)d(Tnzn, xn)2 (2.12)
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for some M > 0. This implies that

d(yn, p)
2 ≤ k2n d

2(xn, p) +M cn. (2.13)

Finally, from (1.3) and using (2.13), we have

d(xn+1, p)
2 = d((1− αn)Tnxn ⊕ αnTnyn, p)2

≤ αnd(Tnyn, p)
2 + (1− αn)d(Tnxn, p)

2

−R
2
αn(1− αn)d(Tnxn, T

nyn)2

≤ αn[kn d(yn, p) + cn]2 + (1− αn)[kn d(xn, p) + cn]2

−R
2
αn(1− αn)d(Tnxn, T

nyn)2

≤ αnk
2
nd

2(yn, p) + Pcn + (1− αn)k2nd
2(xn, p)

+Qcn −
R

2
αn(1− αn)d(Tnxn, T

nyn)2

≤ αnk
2
n[k2n d

2(xn, p) +M cn]

+(P +Q)cn + (1− αn)k2nd
2(xn, p)

−R
2
αn(1− αn)d(Tnxn, T

nyn)2

≤ k4n d
2(xn, p) + (P +Q+M)k2ncn

−R
2
αn(1− αn)d(Tnxn, T

nyn)2

= [1 + (kn − 1)δ]d2(xn, p) + (P +Q+M)k2ncn

−R
2
αn(1− αn)d(Tnxn, T

nyn)2 (2.14)

for some P, Q, δ > 0. This implies that

R

2
αn(1− αn)d(Tnxn, T

nyn)2

≤ d(xn, p)
2 − d(xn+1, p)

2 + (kn − 1)δ d(xn, p)
2 + (P +Q+M)k2ncn.

Since
∑∞

n=1 cn <∞,
∑∞

n=1(kn − 1) <∞ and d(xn, p) < R′, we have

R

2
αn(1− αn)d(Tnxn, T

nyn)2 <∞.

Hence by the fact that lim infn→∞ αn(1− αn) > 0, we have

lim
n→∞

d(Tnxn, T
nyn) = 0. (2.15)
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Now, consider (2.12), we have

d(yn, p)
2

≤ [1 + (k4n − 1)]d(xn, p)
2 +Mcn −

R

2
βn(1− βn)d(Tnxn, xn)2

≤ [1 + (kn − 1)ν]d(xn, p)
2 +Mcn −

R

2
βn(1− βn)d(Tnxn, xn)2 (2.16)

for some ν > 0. Equation (2.16) yields

R

2
βn(1− βn)d(Tnxn, xn)2

≤ d(xn, p)
2 − d(yn, p)

2 + (kn − 1)ν d(xn, p)
2 +Mcn.

Since
∑∞

n=1 cn <∞,
∑∞

n=1(kn − 1) <∞, d(xn, p) < R′ and d(yn, p) < R′, we
have

R

2
βn(1− βn)d(Tnxn, xn)2 <∞.

Thus by the fact that lim infn→∞ βn(1− βn) > 0, we have

lim
n→∞

d(Tnxn, xn) = 0. (2.17)

By the uniform continuity of T , we have

lim
n→∞

d(Tn+1xn, Txn) = 0. (2.18)

It follows from (2.17) and the definition of xn+1 and yn, we have

d(xn, xn+1) ≤ d(xn, T
nyn)

≤ d(xn, T
nxn) + d(Tnxn, T

nyn)

≤ d(xn, T
nxn) + kn d(xn, yn) + cn

≤ (1 + knβn)d(xn, T
nxn) + cn

→ 0 as n→∞. (2.19)

By (2.17), (2.19) and uniform continuity of T , we have

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(Tn+1xn+1, T
n+1xn) + d(Tn+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+kn+1 d(xn+1, xn) + cn+1 + d(Tn+1xn, Txn)

= (1 + kn+1) d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(Tn+1xn, Txn) + cn+1 → 0 as n→∞. (2.20)

This completes the proof. �
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Now, we are in a position to prove the ∆-convergence and strong conver-
gence theorems.

Theorem 2.7. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X

and let T : K → K be a uniformly continuous generalized asymptotically non-
expansive mapping with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞

and
∑∞

n=1 cn < ∞. Let {xn} be a sequence in K defined by (1.4). Let {αn}
and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0 and
lim infn→∞ βn(1− βn) > 0. Then {xn} ∆-converges to a fixed point of T .

Proof. Let ωw(xn) :=
⋃
A({un}) where the union is taken over all subse-

quences {un} of {xn}. We can complete the proof by showing that ωw(xn) ⊆
F (T ) and ωw(xn) consists of exactly one point. Let u ∈ ωw(xn), then there
exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma 1.6,
there exists a subsequence {vn} of {un} such that ∆-limn vn = v ∈ K. Hence
v ∈ F (T ) by Lemma 2.5 and Theorem 2.3. Since limn→∞ d(xn, v) exists, so
by Lemma 1.7, v = u, i.e., ωw(xn) ⊆ F (T ).

To show that {xn} ∆-converges to a fixed point of T , it is sufficient to show
that ωw(xn) consists of exactly one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) =
{x}. Since w ∈ ωw(xn) ⊆ F (T ) and by Lemma 2.5, limn→∞ d(xn, w) exists.
Again by Lemma 2.5, we have x = w ∈ F (T ). Thus ωw(xn) = {x}. This shows
that {xn} ∆-converges to a fixed point of T . This completes the proof. �

Theorem 2.8. Let κ > 0 and (X, d) be a complete CAT(κ) space with diam(X)

= π/2−ε√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X

and let T : K → K be a uniformly continuous generalized asymptotically non-
expansive mapping with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞

and
∑∞

n=1 cn < ∞. Let {xn} be a sequence in K defined by (1.4). Let {αn},
{βn} and {γn} be sequences in (0, 1) such that lim infn→∞ αn(1−αn) > 0 and
lim infn→∞ βn(1−βn) > 0. Suppose that Tm is semi-compact for some m ∈ N.
Then the sequence {xn} converges strongly to a fixed point of T .

Proof. By Lemma 2.6, limn→∞ d(xn, Txn) = 0. Since T is uniformly continu-
ous, we have

d(xn, T
mxn) ≤ d(xn, Txn) + d(Txn, T

2xn) + · · ·+ d(Tm−1xn, T
mxn)→ 0

as n→∞. That is, {xn} is an AFPS for Tm. By the semi-compactness of Tm,
there exists a subsequence {xnj} of {xn} and p ∈ K such that limj→∞ xnj = p.
Again, by the uniform continuity of T , we have

d(Tp, p) ≤ d(Tp, Txnj ) + d(Txnj , xnj ) + d(xnj , p)→ 0 as j →∞.
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That is p ∈ F (T ). By Lemma 2.5, limn→∞ d(xn, p) exists, thus p is the strong
limit of the sequence {xn} itself. This shows that the sequence {xn} converges
strongly to a fixed point of T . This completes the proof. �

From Theorem 2.8 we can derive the following result as corollary.

Corollary 2.9. Let (X, d) be a complete CAT(0) space, K be a nonempty
bounded, closed convex subset of X and T : K → K be a uniformly continuous
generalized asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞)
such that

∑∞
n=1(kn − 1) < ∞ and

∑∞
n=1 cn < ∞. Let {xn} be a sequence

in K defined by (1.4). Let {αn} and {βn} be sequences in (0, 1) such that
lim infn→∞ αn(1− αn) > 0 and lim infn→∞ βn(1− βn) > 0. Suppose that Tm

is semi-compact for some m ∈ N. Then the sequence {xn} converges strongly
to a fixed point of T .

Example 2.10. Let X = R, K = [−1, 1] and T : K → K be a mapping
defined by

T (x) =
x

2
, if x ∈ [−1, 1].

Thus, T is a nonexpansive mapping and hence it is asymptotically nonexpan-
sive mapping with constant sequence {1}. Also, T is uniformly continuous on
[−1, 1]. Thus T is asymptotically nonexpansive mapping in the intermediate
sene and hence it is generalized asymptotically nonexpansive mapping.

3. Conclusion

In this paper, we prove an existence result and a demiclosed principle for
generalized asymptotically nonexpansive mapping. Also we establish a ∆ con-
vergence and some strong convergence theorems using iteration scheme (1.4)
which contains modified Mann iteration scheme for a wider class of nonex-
pansive and asymptotically nonexpansive mappings in the setting of CAT(κ)
space with κ > 0. The results presented in this paper extend and generalize
the previous works from the current existing literature.
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[28] A. Şahin and M. Başarir, On the strong convergence of a modified S-iteration process

for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory
Appl., (2013), 2013:12.

[29] G.S. Saluja, Strong convergence theorem for two asymptotically quasi-nonexpansive map-
pings with errors in Banach space, Tamkang J. Math., 38(1) (2007), 85–92.

[30] G.S. Saluja, Convergence result of (L,α)-uniformly Lipschitz asymptotically quasi-
nonexpansive mappings in uniformly convex Banach spaces, Jñānābha 38 (2008), 41–48.
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