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Abstract. In this paper, we consider the Robin problem for a nonlinear wave equation
with the source term containing the unknown boundary values. By establishing a high order
iterative scheme, we get a convergent sequence at a rate of order NV to an unique local weak

solution of the model.

1. INTRODUCTION

In this paper, we consider the Robin problem for a nonlinear wave equation
with the source term containing the unknown boundary values as follows

U — Ugy = f(z,t,u(z,t),u(0,t),u(l,t)), 0<z <1, 0<t<T, (1.1)
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uz(0,t) — hou(0,t) = ugy(1,t) + hiu(l,t) = 0, (1.2)

u(x,0) = tp(z), u(z,0)=1u1(z), (1.3)

where f, g, U1 are given functions and hg, h1 > 0 are given constants with
ho + h1 > 0.

One of the methods is used to sovle nonlinear operator equation F(u) = 0
is Newton’s method. Besides, the variants of Newton’s method are also
effectively used to solve this equation. Because of difficulties to find the
exact solution u, constructing an approximating sequence {u,} and show-
ing its convergence, we can not only estimate the error between the exact
solution and the approximating values but also consider speed of conver-
gence. If two consecutive approximating values are estimated by inequality
[upt1 —u| < Cluy, — u]N, for some C' > 0 and N is large, in this case, one
speaks of convergence of order N. For the details, it can be found in, for
example, [1], [16], [18] and references therein.

In [4], Long and Diem studied the linear recursive scheme associated with
the nonlinear wave equation

U — Uge = fx, t,u,up,up), 0 <z <1, 0<t<T, (1.4)

associated with (1.2), (1.3).

In [11], a high order iterative scheme was established in order to get a
convergent sequence at a rate of order N (N > 1) to a local unique weak
solution of a nonlinear wave equation as follows

0
Ut — % (:U’(ﬂ%t)ux) + )\ut = f(fL',t,U), 0<z < 17 0<t< T’ (15)

associated with the homogeneous Dirichlet conditions, where A # 0 is constant
and u, f are given functions.

By a high convergent method given in [11], Ngoc et al. [12] were also
established a local unique weak solution of a nonlinear wave equation

Uy — gy = flz,tu, Ju@®)]?), 0<z <1, 0<t<T, (1.6)

associated with the Dirichlet boundary conditions, where the source term con-
tains a nonlocal term

1
Hu(t)H?:/O o2(, 1) (1.7)

In [17], the authors considered a one dimentional nonlocal nonlinear strongly
damped wave equation with dynamical boundary conditions. In other words,
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they looked to the following problem:

Utt — Uggy — Oltgy + Ef (U(l,t), L\/lg’t)) = 07

u(0,t) =0, (1.8)
uir(1,1) = = [tz (1, 8) o (1,8) +rue(L,6)) =< f (w1, 8), 402 ) |
with z € (0,1), ¢t > 0, a, r > 0 and € > 0. Prob. (1.8) models a spring-

mass-damper system, where the term e f (u(l, t), "t\(/lg’t)) represents a control

acceleration at x = 1. By using the invariant manifold theory, the authors
proved that for small values of the parameter ¢, the solution of (1.8) attracted
to a two dimentional invariant manifold.

Based on the ideas about a high order method for solving the equation
F(u) = 0 as above and based on Faedo-Galerkin method, recently, in [6],
[8]-[13] and in some other works, the authors have constructed a high order
iterative scheme in order to obtain a result of existence where recurrent se-
quences converge at a rate of order N.

In this paper, we consider Prob. (1.1)-(1.3) and associate with Eq. (1.1) a
recurrent sequence {u,,} defined by
0%u,,
ot?
= > DY) (i — ) (n(0,8) = a0, 1))’
0<i+j+s<N—1
X (um(1,t) —um—1(1,1))*, 0<z<1,0<t<T, (1.9)

— Au,y,

where
Dijsf[um,l] (x,t)

= ngDiDgf(x,t,um,l(aj,t),um,l((),t),um,l(l,t)), (1.10)
with u,, satisfying (1.2), (1.3). The first term ug is chosen as uy = 0. If
f € CN(]0,1] xRy xR?) and some other conditions, we prove that the sequence
{um} converges at rate of order N (N > 2) to a weak unique solution of
Prob. (1.1)-(1.3). The main result is given in Theorems 3.1 and 3.3. In our
proofs, the fixed point method and Faedo-Galerkin method and the standard
compactness argument are employed. This result is a relative generalization
of [4]-[15].

2. PRELIMINARIES

First, we put Q = (0,1), Q7 = 2 x (0,7) and denote the usual function
spaces used in this paper by the notations LP = LP(Q), H™ = H™ (§2). Let
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(-,-) be either the scalar product in L? or the dual pairing of a continuous
linear functional and an element of a function space. The notation |[|-|| stands
for the norm in L?, |||y is the norm in the Banach space X, and X’ is the
dual space of X.

We denote LP(0,7;X), 1 < p < oo for the Banach space of real functions
u: (0,7) — X measurable, such that

T 1/p
||u||Lp<o,T;X)=( / ||u<t>rr’;(dt) <o for 1<p< oo,

and
[l oo (0,7, x) = €sssup [[u(t)]| x for p = oco.
0<t<

Let u(t), u'(t) = wy(t) = a(t), w"(t) = ug(t) = i(t), ua(t) = Vu(t), uze(t) =

Au(t), denote u(z,t), %(m,t), %(w,t), gz (x,t), aig (x,t), respectively.

With f € Ck([()’ 1] X R+ x R3)7 f = f(fL' t yl:Z/27y3), we put le =
da:’Df 8{7 D2+if: %,Z: 123and Daf_Dal Dasf;a:

(a1, ,a5) €Z3, la| =1+ +as =k, DO 0 f=DO f = f.
On H', we shall use the following norm
1/2
2 2
oll s = (ol + lloa]1)

We put

1
a(u,v) = /0 g (2)vz (2)dz + hou(0)v(0) + hiu(1)v(1), u,v € HY.  (2.1)

We have the following lemmas, the proofs of which are straightforward hence
we omit the details.

Lemma 2.1. The imbedding H' — C°(Q0) is compact and
[vllcogy < V2|l forall ve H. (2.2)

Lemma 2.2. Let hg, hy > 0, with hg + h1 > 0. Then, the symmetric bilinear
form a(-,-) defined by (2.1) is continuous on H' x H' and coercive on H',
i.e.,

(1) fau, v)] < ayflul g [l g, (2.3)
(i) a(v,v) > agl[v]7 '

for all w, v € H', where a; = 1 + 2hg + 2h; and

1
ag = Zmin{l, max{hg, hi}}. (2.4)
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Remark 2.1. It follows from (2.3) that on H', v — ||v]| g1, v — |v]|, =
v a(v,v) are two equivalant norms satisfying

Vao [[v]l g < vll, < var ||v]l g, Yo € H. (2.5)
Lemma 2.3. Let hg > 0. Then there exists the Hilbert orthonormal base {w;}

of L? consisting of the eigenfunctions w; corresponding to the eigenvalue \;
such that

0<A <A <-<A <o, lim A = +oo,
N _ jbos (2.6)
a(wj,v) = \j(wj,v) forallve H', j=1,2,---.

Furthermore, the sequence {w;/~/A;} is also a Hilbert orthonormal base of
H?' with respect to the scalar product a(-,-).

On the other hand, we also have w; satisfying the following boundary value
problem

{ —A@j = )\jﬁ)/j) mn (O, 1),
@ (0) — howj (0) = Wjo(1) + by (1) = 0, @ € C=([0,1]).

The proof of Lemma 2.3 can be found in ([19, p.87, Theorem 7.7]) with
H=L%?and V = H! a(-,-) as defined by (2.1).

(2.7)

3. THE EXISTENCE OF A RECURRENT SEQUENCE AND ITS CONVERGENCE

We make the following assumptions:
(Hl) (ﬂo,ﬂl) € H? x Hl;
(Ha) f € CY[0,1] x Ry x R?) such that
(i) DiDIDsf € CO([0,1] x Ry xR?),0<i+j+s<N,

(ii) DiDLDIDsf, DS DIDsf € C°([0,1] x Ry x R3),
1<i+j+s<N-1

Fix T* > 0. For each M > 0 given, we set two constants KJ[\(/)I](f), Kp(f) as
follows

KJ[\(BI](f) = Sup{‘f(xvtvyl’y27y3)| :0 <z < 17 0 <t< T*’ 11’2?<X3|y1| < M}a

0 . - 0 -, .
Ku(f)= Y KyDDiDif)+ > Ky(DiDiDiDif)
i+j+s<N ‘1§i+j+S§N—1
+ Y K\ (DS D).
1<itjrs<N-1
For every T € (0,7*] and M > 0, we put

Wr ={ve L>®0,T; H?) : v; € L>=(0,T; H'), vy € L*(Q7)}.
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Then Wy is a Banach space with respect to the norm

||UHWT = maX{||U||Loo(o,T;H2) ) Hvt”Loo(o,T;Hl) ) HvttHLQ(QT)}
(see Lions [2]). We also put

W(M,T) = {v € Wr: [[v]ly, <M},
Wi (M,T) ={veW(M,T) : vy € L>®(0,T; L?)}.

Now, we establish the recurrent sequence {u,,}. The first term is chosen as
ug = 0, suppose that

Um—1 € W(M,T), (3.1)
we associate problem (1.1)-(1.3) with the following problem.
Find uy,, € W1 (M,T') (m > 1) satisfying the linear variational problem

(L o st
where
F(z,t)
_ Z DY Flum—1] (um — tm—1)" (tm(0,1) — upm—1(0,1))’
i+j+s<N-1
X (U (1,8) — um—1(1,%))%, (3.3)

with the notations

iy 1 o
DU f = DIDIDif, 1<i+j+s<N, DYOf=F (3.4)
ilgls!
Then we have the following theorem.
Theorem 3.1. Let (Hy) — (H2) hold. Then there exist a constant M > 0
depending on g, U1, hg, h1 and a constant T > 0 depending on tg, u1, f, ho,

hi, such that, for ug = 0, there exists a recurrent sequence {u,,} C W1(M,T)
defined by (3.2) and (3.3).

Proof. The proof of Theorem 3.1 consists three steps.

Step 1. The Faedo-Galerkin approzimation.
Let {w;} be a basis of H I'as in Lemma 2.3, we find an approximate solution
of Prob. (3.2), (3.3) in the form

k
uB (1) =3 (), (3.5)
j=1



A N-order iterative scheme for the Robin problem for a nonlinear wave equation 579

(k)

where the coefficients ¢, ; satisfy the following system of nonlinear differential

equations

{ <u$n>(t),wj> +a(u® (8), wy) = <F,51>(t),wj>, 1<j <k, 5
ulf(0) = @, @h (0) = g,
in which
_ Foo() _ I
U, = Z o w; — g strongly in H=,
7 (3.7)
= Y. AP w; — @y strongly in H',
7=1
and
P (1)
= > D fua] () — ) (W 0,6) = 1(0,1))
itjrs<N—1
x (ul)(1,) - um_l(l,t))s. (3.8)

The system (3.6) can be written in the form

() F) iy — [ k) , ;
{ Ei(t) + ey (0) = (B (0).w;), 1< G <k, 59)

k k .(k k
8 (0) = al?, ey = sV
It can see that, system (3.9) is equivalent to system of intergal equations
(k) (k) (k) SIn(y/A;t)
i (t) = ac” cos(\/A\jt) + B;
J J J /X

Esin(y/Ai(t—5)) k) :
+/o Noy FLi(s)ds, 1<j<k. (3.10)

Omitting the indexs m, k, it is written as follows

c=Uld, (3.11)
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where Ulc|] = (Ui]c],- -+ ,Uklc]), ¢ = (e1,- -+, cx), and
Ujle](t) = q;(t) + Lyle](D),
sin(y/A;t)
q;(t) = o cos(y/Ajt) + Bj———=—,
J ﬁ)\j

Lwﬂwzﬁﬁm“yg_@NFM@mea1Sjsm -
Flel(e) = 0<i+ <+E<N71Dijsf[um*1] (w(t) = 1)’

) X (u(0,t) — m—1(0,8)) (w(1,t) — um—1(1,1))°,
u(t) = ;ci(t)wi.

\

Applying the contraction principle, we shall prove that the system (3.10) has

an unique solution ") () in [O,Tr(f)], with certain T.%) € (0,T7]. Indeed, for

mj

every T,Sf) € (0,T] and p > 0 that will be chosen later, we set

X =" ([O,T,gf)];Rk> ,S={ceX:|cly<p} (3.13)
where
k
lellx = sup Je(®)]y, le@®)], = le;(t)]- (3.14)
o<t<T® j=1

Clearly, S is a nonempty closed subset of X and U : X — X. We will choose

p >0 and Tf,f )'> 0 such that U : S — S is contractive as follows.
(a) First we note that, for all ¢ = (¢1,--- ,¢x) € S,

[u@)] < le®)]y < llellx < p,

2 2k 2
Ju(®)l o) < V2 </ lul, <42 el < /=,

ol <= 1)1, < 32 el < 2, (315)

k t
L] < \/X/o [1E7e](s)]] ds. (3.16)

On the other hand, by the formula

SO

1 3p
E —— = — forallpeZy, (3.17)
e ilgls! p!
t+j+s=p

and the inequality
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|Fld](z, 1)
< Ku(f) Z

0<itj+s<N—1
X |u(1,t) — um,l(l,t)|s

<Ku(f) )

0<i+j+s<N—1

< (lu(®)lloogy + v2M)

i+j+s
1 2k
<EKu(f) Z sl (Vao p+\/§M>

O<z+]+s<N 1

p
2k
SRS Y o (\/ao”ﬁM)

p=0 i+j+s=p

N—-1 P p
<EKu(f)) ‘Z, (\/2;:/)1‘ ﬂM) : (3.18)

it follows from (3.16) and (3.18) that

k g [ o P
|Ll](t)]; < \/TTTéf)KM(f) > o (\/ kP+fM> : (3.19)

it 100 1) — [ (0.8) — 1 (0.0

(I®)leog@y + v231)" (Jullcoay + v2M1)'

1]181

p=0
Hence
U @)y < lal, + r 8, + VT, vt e 0,1%),  (3.20)
in which . .
oy = \/I%KM(f) pz:(:) ?;j (\/?p%- \/§M) . (3.21)
Consequently
el < lol, + <= 181, + T T (322)

(b) Next, with ¢ = (¢1,-++ ,¢cx) € S, d = (d1,-+- ,d) € S and t € [O,Ty(f)],

considering

u(t) = Z cji(t)wj, v(t) = Z dj(t)w;, (3.23)
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we prove that

[Ule] = Uld]|l x f T le—dllx , Ve,d €S, (3.24)
where
o - 3KM(f)\/?Z;V_02 ‘:’j (\/?p + \/§M)p. (3.25)
Indeed
U[](t) = Uld](£)], = |Llc](t) — L[d](®)],
\/’L/ I1F[] 9lds. (326

On the other hand
Flc|(x,t) — F[d](x,t)
= Y D fum] (ult) — )’

1<i+j+s<N—-1
X (w(0,1) = tpm—1(0,8)) (w(1,t) — upm_1(1,¢))*

- > DY fluga] (v(t) = um-1)’
1<i+j+s<N—-1
X (0(0,1) = Upm—1(0,8))? (v(1,t) — wm—1(1,1))*

= Y D] [(t) = 1)’ = W) = )’

1<i+j+s<N-1
X (1(0,8) = tpm—1(0,)) (w(1,t) — upm—1(1,t))*

+ Z Dijsf[umfl] [(U(O’ t) - umfl(ov t))j - (U(07 t) - umfl(oa t))j
1<i+j+s<N—-1
X (0(t) = Um—1)" (w(1,t) — Um_1(1,t))*

+ > D fluma] [(u(1,t) = um-1(1,8)° = (0(1,8) = um-1(1,1))°]
1<i+j+s<N—-1
X (0(t) = um—1)" (0(0,8) — Upm_1(0,8)) . (3.27)

. . i_l .
We also note that a® — b = (a —b) > a?’b"1"“ foralla, b€ R, i =1,2,---,
v=0
we deduce from (3.15) that
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(u(t) = um-1)" = (v(t) = um-1)'
i—1

Z (w(t) = wm—1)" (V(t) — 1)

v=0

= |u(t) — v(?)]

i—1
< |u(t) —v(t)| Z u(t) — i |” [0(t) — w1 |
v=0

i—1 v i—1—v
2 2\ 2A
<R e—dlx > <,/’“p+ \sz> (1/kp+ \/§M>
a ag ag

v=0

i—1
63 3
=) 2k, (1/kp+\/§M> lle—d| . (3.28)
ap ag

Similarly

((u(o,t) 1 (0, 1)) — (0(0, 1) — tm_1(0, )

7j—1
22 22
< \/Jj (w’“p+ \/§M> llc—dllx;
ag agp

[(u(1,t) = tm-1(1,1))° = (v(1,8) = um-1(1,1))°]

s—1
2\ 2\
</ s (1/kp—|— \@M) e —d|| - (3.29)
ao ao
It implies that
|F[d](,t) — Fld](2,t)]

itjts—1
1 2\ . 2\
< Ku(f) Z stV g (\/%p—i-\@M) e —dllx

1<i+j+s<N-1

i+j+s—1
1 2 [ 2

1<itj+s<N—1

i+j+s—1
1 2 2
+ K (f) Z m\/TOS (\/aoer\/iM) e —dll x

1<itj+s<N—1

i+7+s—1
2 1 oy T
< Ku(f) CTOHC—CZHX Z w(Z*HJrS) CTOPJF\@M

1<itj+s<N—1
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p=1
N—-2 p
2) 3 [ [2X
= 3Ky (f) kl!c—dllxzp,< a()kp—k\@M)
p=0
—(2
= e~ dlly., (3.30)

where 65)2) is defined as in (3.25). Thus

k

A1

UL(t) = U@y, < ——=Cp T |le — d - (3.31)

It follows from (3.31), that (3.24) holds. By choosing p > ||, + \/%—1 |6]; and
T,Sf) € (0, 7] with the properties

0<TYVTH < p—Jal, - Tk <1, (3.32)
thanks to (3.22), (3.24) and (3.32), it is easy to see that U : S — S is
contractive. Then, system (3.10) has an unique solution 052 (t) in [0, T )]. We
deduce that system (3.6) has an unique solution u'h (t) in [0, T )].

The following estimates allow one to take Téf ) =T independent of m and
k. By such a priori estimate of u'h (t), it can be extended outside [0, T, (k )] and
then, a solution defined in [0, 7] will be obtained.

Step 2. A priori estimate.
First, we put

n
e

0= [l i
ool [ o

Then, it follows from (3.6) and (3.33) that

o

SO0 = 500) +2 [ (FD ()i (6
0



A N-order iterative scheme for the Robin problem for a nonlinear wave equation 585

t t 2
+2/ a(F$>(s),u$>(s))ds+/ Hu;’?(s)H ds
0 0

= SW0)+ > I (3.34)

We now estimate the integrals and Sk (0) on the right-hand side of (3.34) as
follows.

First integral I;: Using the inequalities (a + b)P < 2P~1(aP + bP), for all a,
b>0,p>1and

s1<1+sP, Vs >0, Vg e (0,p], (3.35)

we get from (3.8) that
R (@, 1)]

< Ku(f) Z .

515!
0<itj+s<N—1

i

Ug:) (I) t) — Um—1

S

% [u(0,8) = -1 (0.5 [l (1,8) = w1 (1,)

S 5 o (e ) (o] vou)

1ilgl
1.7:8.
0<itits<N—1""

x (|ubd 0, 0] + vam)

<Eu(f) ), Z,jl,s, (ﬁ\/sﬁﬁ)(t) + \/§M> o

0<it+j+s<N—-1 "

o0 iy \V a0
= Kul(/) Nzo?’. (ﬁm . ﬂM)p
xS S [(2) ()« (]
SKMW:_:j?“ (J2) |+ (Vi) +(\@M)p]
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SKM(f):_: . [(\/@p*(@”)p 1+ Sﬁ’i)(t))N_l]
N-1
= 1+< S’g;)(t)> ] (3.36)

Hence

[P < a0

1+ < S (t)> Nl] , (3.37)

p
where A1(M) = Kp/(f) Zév:_()lz?pl [( a20> + (\@M)p} . By (3.37), the

integral I is estimated as follows
t t
n=2 [(EP ). e)ds <2 [ [E0e)] il o)) 4
0 0

< 2A,(M) /Ot -1 + ( Sﬁf)(s)>Nl

—2A1(M)/Ot \/Sﬁ,i“)(s)Jr( Sﬁ,’?(g))N] ds

<amon) [ 1+ (s00) " as

Sk (s)ds

- t N-1
= Al(M)/ [1+ (S§,’§>(s)) ]ds. (3.38)
0
Second integral I : We need to estimate HFT%) (t) o By (3.8), we have
F)(x,1)

= D1 flum—1] + D3 fum—1]Vtm—1
+ > (D1D flum—1] + DsD7* flttm 1] Vitp 1)
1<itj+s<N—1

X (ug,@(a:,t)—um_l)i (u(k)(O,t)—um_l(O,t))j (u§5>(1,t)—um_1(1,t))8

n Z DY flup_1]i <u£,’f) (g:,t)—umg)iil (Ugi;(ﬂc,t)*Vumfl)
1<itj+s<N-1

X (ug’?(o, £) — w1 (0, t))J (ug§>(1, £) — um1(1, t))s . (3.39)
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It follows that

=]

< Ky (f)(1+V2M) {

FL(t)

mx

1<i+j+s <N 1!

1< irite <N ) ']'S' (\/>\/T+WM>
(VA ) (20 o)
« (Vo s vaw)

< Ku(f)(1+V2M)

-1

+ Kyp(f

i+j+s <N 1

']'S' (\/>\/T+ fM) o

o 5 (Eyse v
< Km(f)(N +V2M) ». <N 1 'N <\/>\/T+WM> s
<\/>\/7+ fM)

Z']

’L']'s'
p +J+ =p

= (N +V2M)A (M) |1+

w(MﬁVh+¢AQ+”]

(3.40)
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where Ay(M) = (N + v2M)A(M).
On the other hand, by (2.5), we get

], < var [F0w) . < var [|EO o]+ |ol]
N-1
1+( Sﬁ’?(t)) ] (3.41)

e

< Vai [Ai(M) + A2 (M)

It leads to

12:2/0ta(F,(,f)(s) | ds<2/ | Fes)
<2vatmn + 400 [ 1+(ﬁ>
= 2Ly () + 400 [ VS“”( + (st )N] ds
< 4 [ (01) + 400 | t 1 #(s)"as

As(M) /0 t {1 + (Sﬁ,’f)(s))N_l} ds, (3.42)

where Ag(M) = 4,/ay [A1(M) + Az (M)].
Third integral I3 : We note that the equation (3.6); can be written as follows

<u§,’§>(t)7wj> _ <Au${;>(t),wj> - <F,(f)(t),wj>, 1<j<k. (3.43)

Hence, it follows after replacing w; with uﬁ,’f) (t) and integrating in ¢, we have

b= ol o
0
<2 [ o) as+2 [ o) as
0 0
¢ ¢ N-172
gz/ S,g’§>(s)ds+2A%(M)/ 1+< Sﬁ,’f’(s)> ] ds
0 0

<9 /0 t [1—1— (s,;f)(s))N_l} ds + 4A2(M) /0 t [1+ (s},?(s))N_l] ds

= A3(M) /Ot [1 + (Sﬁ,f)(s))N_l] ds, (3.44)
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where A3(M) = 24 4A2(M). Combining (3.34), (3.38), (3.42) and (3.44) lead
to
- - t N-1
$®(t) < SB(0) + TAM) + A(M) / (W) s, (3.49)
0

where A(M) = A (M)+ Ay(M)+ A3(M). By means of the convergences (3.7),
we can deduce the existence of a constant M > 0 independent of k and m such
that

M2
SW(0) < - VmkeN. (3.46)
Finally, it follows from (3.45) and (3.46) that
M2 B B t N—1
s (1) < %o+ TAM) + A(M) / (W) ds, (a7
0

for0 <t <T, ,(,f ) < T'. Then, by solving a nonlinear Volterra integral inequality
(3.47) (based on the methods in [3]), we prove that there exists a constant
T > 0 independent of k and m such that

Sk )y < M2, Vitelo,T], Vm, keN. (3.48)
So, we can take constant Tr(,f ) — T for all k and m € N. Thus, we have
ulk) e W(M,T), Ym, keN. (3.49)
Step 3. Limiting process.

Thanks to (3.49), there exists a subsequence of {u%)}, still denoted by
{ugf)} such that

ugf) = Uy, in L>(0,T; H?) weakly*,
a®) in L(0,T; H') weakly*,

T in L2(Qr) weakly,
Um € W(M,T).

Thanks to (3.49) and (3.50), we can check from (3.6) and (3.7) that u,, satisfies
(3.2), (3.3) in L?(0,T).
On the other hand, it follows from (3.2) and (3.50) that

ul! = Auy, + Fp, € L0, T; L?). (3.51)
Hence, u,, € W1(M,T) and Theorem 3.1 is proved. U

(3.50)

Next, the main result is given by the following theorem. We consider the
space W1 (T'), defined by

Wi(T) = {v e L>®(0,T; H') : v/ € L>(0,T; L*)}, (3.52)
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then Wi (T) is a Banach space with respect to the norm

HUHWl(T) = HUHLOO(O,T;Hl) + HU/HLOO(QT;L2) : (3'53)

Theorem 3.2. Let (Hy) — (Ha) hold. Then, there exist constants M > 0
and T > 0 such that the problem (1.1)-(1.3) has an unique weak solution u €
Wi(M,T) and the recurrent sequence {um}, defined by (3.2)-(3.3), converges
at a rate of order N to the solution u strongly in the space W1(T) in sense

[t = vy, () < C a1 = ulliy, o1y » (3.54)

for allm > 1, where C is a suitable constant. On the other hand, the following
estimate is fulfilled

[m = ully, (1) < Cr(kr)N™, for all m €N, (3.55)
where C7 > 0 and 0 < kr < 1 are the constants depending only on T.

Proof. Existence of a solution. We shall prove that {u,,} is a Cauchy sequence
in Wi(T'). Indeed, we put vy, = Up+1 — Up,. Then vy, satisfies the variational
problem

W (), w) + a (vm(t), w) = (Fi1(t) — Fn(t),w), Yw € H,
{ vm (0) = 0!, (0) = 0. (3.56)
Taking w = v/, in (3.56), after integrating in ¢, we have
n<z [ s (5) — Fn(5)][[e(5)] s (3.57)
where
pm(®) = o + lom @1 > o @I + a0 lom @)l (3.58)

Next, we shall estimate the integral on the right side of (3.57) as fol-
lows. Using Taylor’s expansion of the functions f(x,t, tm, um/(0,1), um(1,t)) =
f lum] = f [tm—1 + vm—1] around the point (x,t, upm—1, Un—1(0,1), Up— 1(1 t))
up to order N, we obtain

f [um] - f [umfl]
= f(xv t? Um, um(O, t)a Um(la t)) - f(Ia ta Um—1, umfl(oy t)v ’U,mfl(l, t))
= > D flum vl vl (0,805, (1,%)

1<itj+s<N—1

+ Z DY 1 + Ovm 10k, 100, 1 (0,8)v5,1(1,8), (3.59)
i+j+s=N
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where 0 < 6 < 1. Hence, it follows from (3.3) and (3.59) that
Ferl(:E’ t) - Fm(‘r’ t)
= D DU flumo, v} (0, 8)05,(1,t)

1<i+j+s<N—1

n Z DS flup_y +gvm_l]vjn_lvfn_l(o,t)v;;_l(l,t). (3.60)
i+j+s=N

Therefore, we have

| Fsr (1) — E(0)]
< Ku(f) Z L () o ()

ills!
1<itj+s<N—1

1 i+j+s
FEu(f) Y g (VO o (57
i+j+s—N Je8
Z >, lelsl Y llom (&)l

p=1 i+j+s=p

FEu(f) Y i,jﬁg,(ﬁ)Nnvm_muZl
it+jts=N "
N-—1 N
= 5 () 3 O o0l + 53 ) B2 a0l
p=1 ’

<
v/ ag =1 p!

= 05V () + 18 0113, (7 - (3.61)

1 (3v2)r (2M)P ! 3v2)N
where n(Tl) = \/%KM(f) Z;V:ll (3v2) ]g! ) ,ng) = ( N!) K (f). Then

we deduce from (3.57) and (3.61) that

N—-1 p p—1
L Y, BV M S k() Y2 o
(

t
p®) < o2 Jom 1 2N oy + 1) /0 Pm(3)ds, (3.62)

where 17( ) = 277(T) + n(T) By using Gronwall’s lemma, (3.62) leads to

N
vaHWI(T) < pr HUm_lHW1(T) > (3.63)
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1
where ur = <1 + \/>> \/Tngg) exp(Tngf’)). Choosing T > 0 enough small
1
such that kp = Mpp ' < 1, it follows from (3.63) that, for all m and p,
[tm = wmtpllyy, () < (1= k)™ Npr) 5T (k)" (3.64)
Hence, {u,,} is a Cauchy sequence in Wi (T). Then there exists u € W1(T)
such that
Uy — u  strong in Wi (T). (3.65)

Note that u,, € Wi(M,T'), then there exists a subsequence {upm;} of {um}
such that

(e in L>(0,T; H?) weakly*,
u . — u’ in L>®(0,T; H') weakly*,
mg N (3.66)
;o in L*(Qr) weakly,
u E W(M,T).

On the other hand

| Fon -1 8) = £t u(t), u(0, ), u(1, )|
< Hf('?tv um—l(t)7um—l(()?t)?um—l(l?t)) - f( t u( ) (0 t) (1775))”
P ) (an(®) = )’ (i 0.8) = s (0.1))
1<i+j+s<N-1
% (i (1) = -1 (1,1))"]
< Kn(f) [lum—1 — U||W1(T)
SR Y VI w5
1<i+j+s<N-1

N-1

p
< Kt (f) llwm—1—=tllypy oy + K e (f Z

p‘ ) [t —tm—1 [}y, (- (3.67)
Therefore, it implies from (3.65) and ( 67) that
Fin(t) = f(-,t,u(t),u(0,),u(l,t)) strong in  L%(0,T;L?). (3.68)

Finally, passing to limit in (3.2) and (3.3) as m = mj; — oo, there exists
u € W(M,T) satisfying the equation

(u"(t), w) + a(u(t),w) = (f(-,t,u(t),u(0,t),u(1,1)),w), (3.69)
for all w € H! and the initial condition
U(O) = fLo, u’(O) = 711. (370)

On the other hand, it follows from (3.66)4 and (3.69) that
u” = Au+ f(x,t,u(t),u(0,t),u(l,t)) € L>=(0,T; L?), (3.71)
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hence, u € Wy (M, T).

Uniqueness. Applying a similar argument used in the proof of Theorem 3.1,
u € Wi(M,T) is an unique local weak solution of Pro. (1.1)-(1.3).

Passing to the limit in (3.64) as p — oo for fixed m, we get (3.55). Also with
a similar argument, (3.54) follows. Theorem 3.2 is proved completely. O

Remark 3.1. In order to construct a N-order iterative scheme, we need the
assumption (Hj). Then, we get a convergent sequence at a rate of order N to a
local unique weak solution of problem and the existence follows. This condition
of f can be relaxed if we only consider the existence of solutions, see [4], [5],
[7].
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