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Abstract. In this paper, we consider the Robin problem for a nonlinear wave equation

with the source term containing the unknown boundary values. By establishing a high order

iterative scheme, we get a convergent sequence at a rate of order N to an unique local weak

solution of the model.

1. Introduction

In this paper, we consider the Robin problem for a nonlinear wave equation
with the source term containing the unknown boundary values as follows

utt − uxx = f(x, t, u(x, t), u(0, t), u(1, t)), 0 < x < 1, 0 < t < T, (1.1)
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ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where f, ũ0, ũ1 are given functions and h0, h1 ≥ 0 are given constants with
h0 + h1 > 0.

One of the methods is used to sovle nonlinear operator equation F (u) = 0
is Newton’s method. Besides, the variants of Newton’s method are also
effectively used to solve this equation. Because of difficulties to find the
exact solution u, constructing an approximating sequence {un} and show-
ing its convergence, we can not only estimate the error between the exact
solution and the approximating values but also consider speed of conver-
gence. If two consecutive approximating values are estimated by inequality
|un+1 − u| ≤ C |un − u|N , for some C > 0 and N is large, in this case, one
speaks of convergence of order N. For the details, it can be found in, for
example, [1], [16], [18] and references therein.

In [4], Long and Diem studied the linear recursive scheme associated with
the nonlinear wave equation

utt − uxx = f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T, (1.4)

associated with (1.2), (1.3).
In [11], a high order iterative scheme was established in order to get a

convergent sequence at a rate of order N (N ≥ 1) to a local unique weak
solution of a nonlinear wave equation as follows

utt −
∂

∂x
(µ(x, t)ux) + λut = f(x, t, u), 0 < x < 1, 0 < t < T, (1.5)

associated with the homogeneous Dirichlet conditions, where λ 6= 0 is constant
and µ, f are given functions.

By a high convergent method given in [11], Ngoc et al. [12] were also
established a local unique weak solution of a nonlinear wave equation

utt − uxx = f(x, t, u, ‖u(t)‖2), 0 < x < 1, 0 < t < T, (1.6)

associated with the Dirichlet boundary conditions, where the source term con-
tains a nonlocal term

‖u(t)‖2 =

∫ 1

0
u2(x, t)dx. (1.7)

In [17], the authors considered a one dimentional nonlocal nonlinear strongly
damped wave equation with dynamical boundary conditions. In other words,
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they looked to the following problem:
utt − uxx − αutxx + εf

(
u(1, t), ut(1,t)√

ε

)
= 0,

u(0, t) = 0,

utt(1, t) = −ε [ux(1, t)+αutx(1, t)+rut(1, t)]−εf
(
u(1, t), ut(1,t)√

ε

)
,

(1.8)

with x ∈ (0, 1), t > 0, α, r > 0 and ε ≥ 0. Prob. (1.8) models a spring-

mass-damper system, where the term εf
(
u(1, t), ut(1,t)√

ε

)
represents a control

acceleration at x = 1. By using the invariant manifold theory, the authors
proved that for small values of the parameter ε, the solution of (1.8) attracted
to a two dimentional invariant manifold.

Based on the ideas about a high order method for solving the equation
F (u) = 0 as above and based on Faedo-Galerkin method, recently, in [6],
[8]-[13] and in some other works, the authors have constructed a high order
iterative scheme in order to obtain a result of existence where recurrent se-
quences converge at a rate of order N .

In this paper, we consider Prob. (1.1)-(1.3) and associate with Eq. (1.1) a
recurrent sequence {um} defined by

∂2um
∂t2

−∆um

=
∑

0≤i+j+s≤N−1

Dijsf [um−1] (um − um−1)i (um(0, t)− um−1(0, t))j

× (um(1, t)− um−1(1, t))s , 0 < x < 1, 0 < t < T, (1.9)

where

Dijsf [um−1](x, t)

=
1

i!j!s!
Di

3D
j
4D

s
5f(x, t, um−1(x, t), um−1(0, t), um−1(1, t)), (1.10)

with um satisfying (1.2), (1.3). The first term u0 is chosen as u0 ≡ 0. If
f ∈ CN ([0, 1]×R+×R3) and some other conditions, we prove that the sequence
{um} converges at rate of order N (N ≥ 2) to a weak unique solution of
Prob. (1.1)-(1.3). The main result is given in Theorems 3.1 and 3.3. In our
proofs, the fixed point method and Faedo-Galerkin method and the standard
compactness argument are employed. This result is a relative generalization
of [4]-[15].

2. Preliminaries

First, we put Ω = (0, 1), QT = Ω × (0, T ) and denote the usual function
spaces used in this paper by the notations Lp = Lp(Ω), Hm = Hm (Ω). Let
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〈·, ·〉 be either the scalar product in L2 or the dual pairing of a continuous
linear functional and an element of a function space. The notation ‖·‖ stands
for the norm in L2, ‖·‖X is the norm in the Banach space X, and X ′ is the
dual space of X.

We denote Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =

(∫ T

0
‖u(t)‖pX dt

)1/p

<∞ for 1 ≤ p <∞,

and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X for p =∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t), ∂u∂t (x, t), ∂
2u
∂t2

(x, t), ∂u∂x(x, t), ∂
2u
∂x2

(x, t), respectively.

With f ∈ Ck([0, 1] × R+ × R3), f = f(x, t, y1, y2, y3), we put D1f =
∂f
∂x , D2f = ∂f

∂t , D2+if = ∂f
∂yi
, i = 1, 2, 3 and Dαf = Dα1

1 · · ·D
α5
5 f ; α =

(α1, · · · , α5) ∈ Z5
+, |α| = α1 + · · ·+ α5 = k, D(0,··· ,0)f = D(0)f = f.

On H1, we shall use the following norm

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
.

We put

a(u, v) =

∫ 1

0
ux(x)vx(x)dx+ h0u(0)v(0) + h1u(1)v(1), u, v ∈ H1. (2.1)

We have the following lemmas, the proofs of which are straightforward hence
we omit the details.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 for all v ∈ H1. (2.2)

Lemma 2.2. Let h0, h1 ≥ 0, with h0 + h1 > 0. Then, the symmetric bilinear
form a(·, ·) defined by (2.1) is continuous on H1 × H1 and coercive on H1,
i.e.,

(i) |a(u, v)| ≤ a1 ‖u‖H1 ‖v‖H1 ,

(ii) a(v, v) ≥ a0 ‖v‖2H1 ,
(2.3)

for all u, v ∈ H1, where a1 = 1 + 2h0 + 2h1 and

a0 =
1

4
min{1, max{h0, h1}}. (2.4)
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Remark 2.1. It follows from (2.3) that on H1, v 7−→ ‖v‖H1 , v 7−→ ‖v‖a =√
a(v, v) are two equivalant norms satisfying

√
a0 ‖v‖H1 ≤ ‖v‖a ≤

√
a1 ‖v‖H1 , ∀v ∈ H1. (2.5)

Lemma 2.3. Let h0 ≥ 0. Then there exists the Hilbert orthonormal base {w̃j}
of L2 consisting of the eigenfunctions w̃j corresponding to the eigenvalue λj
such that {

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , lim
j→+∞

λj = +∞,

a(w̃j , v) = λj〈w̃j , v〉 for all v ∈ H1, j = 1, 2, · · · .
(2.6)

Furthermore, the sequence {w̃j/
√
λj} is also a Hilbert orthonormal base of

H1 with respect to the scalar product a(·, ·).
On the other hand, we also have w̃j satisfying the following boundary value

problem{
−∆w̃j = λjw̃j , in (0, 1),
w̃jx(0)− h0w̃j(0) = w̃jx(1) + h1w̃j(1) = 0, w̃j ∈ C∞([0, 1]).

(2.7)

The proof of Lemma 2.3 can be found in ([19, p.87, Theorem 7.7]) with
H = L2 and V = H1, a(·, ·) as defined by (2.1).

3. The existence of a recurrent sequence and its convergence

We make the following assumptions:

(H1) (ũ0, ũ1) ∈ H2 ×H1;
(H2) f ∈ C0([0, 1]× R+ × R3) such that

(i) Di
3D

j
4D

s
5f ∈ C0([0, 1]× R+ × R3), 0 ≤ i+ j + s ≤ N,

(ii) D1D
i
3D

j
4D

s
5f, D

i+1
3 Dj

4D
s
5f ∈ C0([0, 1]× R+ × R3),

1 ≤ i+ j + s ≤ N − 1.

Fix T ∗ > 0. For each M > 0 given, we set two constants K
[0]
M (f), KM (f) as

follows
K

[0]
M (f) = sup{|f(x, t, y1, y2, y3)| : 0 ≤ x ≤ 1, 0 ≤ t ≤ T ∗, max

1≤i≤3
|yi| ≤M},

KM (f) =
∑

i+j+s≤N
K

[0]
M (Di

3D
j
4D

s
5f) +

∑
1≤i+j+s≤N−1

K
[0]
M (D1D

i
3D

j
4D

s
5f)

+
∑

1≤i+j+s≤N−1

K
[0]
M (Di+1

3 Dj
4D

s
5f).

For every T ∈ (0, T ∗] and M > 0, we put

WT = {v ∈ L∞(0, T ;H2) : vt ∈ L∞(0, T ;H1), vtt ∈ L2(QT )}.



578 N. H. Nhan, N. T. Than, L. T. P. Ngoc and N. T. Long

Then WT is a Banach space with respect to the norm

‖v‖WT
= max{‖v‖L∞(0,T ;H2) , ‖vt‖L∞(0,T ;H1) , ‖vtt‖L2(QT )}

(see Lions [2]). We also put{
W (M,T ) = {v ∈WT : ‖v‖WT

≤M},
W1(M,T ) = {v ∈W (M,T ) : vtt ∈ L∞(0, T ;L2)}.

Now, we establish the recurrent sequence {um}. The first term is chosen as
u0 ≡ 0, suppose that

um−1 ∈W (M,T ), (3.1)

we associate problem (1.1)-(1.3) with the following problem.

Find um ∈W1(M,T ) (m ≥ 1) satisfying the linear variational problem{
〈u′′m(t), w〉+ a(um(t), w) = 〈Fm(t), w〉 , ∀w ∈ H1,
um(0) = ũ0, u

′
m(0) = ũ1,

(3.2)

where

Fm(x, t)

=
∑

i+j+s≤N−1

Dijsf [um−1] (um − um−1)i (um(0, t)− um−1(0, t))j

× (um(1, t)− um−1(1, t))s , (3.3)

with the notations

Dijsf =
1

i!j!s!
Di

3D
j
4D

s
5f, 1 ≤ i+ j + s ≤ N, D000f = f. (3.4)

Then we have the following theorem.

Theorem 3.1. Let (H1) − (H2) hold. Then there exist a constant M > 0
depending on ũ0, ũ1, h0, h1 and a constant T > 0 depending on ũ0, ũ1, f, h0,
h1, such that, for u0 ≡ 0, there exists a recurrent sequence {um} ⊂W1(M,T )
defined by (3.2) and (3.3).

Proof. The proof of Theorem 3.1 consists three steps.

Step 1. The Faedo-Galerkin approximation.
Let {wj} be a basis of H1 as in Lemma 2.3, we find an approximate solution

of Prob. (3.2), (3.3) in the form

u(k)
m (t) =

k∑
j=1

c
(k)
mj(t)wj , (3.5)
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where the coefficients c
(k)
mj satisfy the following system of nonlinear differential

equations

{ 〈
ü

(k)
m (t), wj

〉
+ a(u

(k)
m (t), wj) =

〈
F

(k)
m (t), wj

〉
, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

(3.6)

in which 
ũ0k =

k∑
j=1

α
(k)
j wj −→ ũ0 strongly in H2,

ũ1k =
k∑
j=1

β
(k)
j wj −→ ũ1 strongly in H1,

(3.7)

and

F (k)
m (x, t)

=
∑

i+j+s≤N−1

Dijsf [um−1]
(
u(k)
m − um−1

)i (
u(k)
m (0, t)− um−1(0, t)

)j
×
(
u(k)
m (1, t)− um−1(1, t)

)s
. (3.8)

The system (3.6) can be written in the form

{
c̈

(k)
mj(t) + λjc

(k)
mj(t) =

〈
F

(k)
m (t), wj

〉
, 1 ≤ j ≤ k,

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j .

(3.9)

It can see that, system (3.9) is equivalent to system of intergal equations

c
(k)
mj(t) = α

(k)
j cos(

√
λjt) + β

(k)
j

sin(
√
λjt)√
λj

+

∫ t

0

sin(
√
λj(t− s))√
λj

F
(k)
mj (s)ds, 1 ≤ j ≤ k. (3.10)

Omitting the indexs m, k, it is written as follows

c = U [c], (3.11)
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where U [c] = (U1[c], · · · , Uk[c]), c = (c1, · · · , ck), and

Uj [c](t) = qj(t) + Lj [c](t),

qj(t) = αj cos(
√
λjt) + βj

sin(
√
λjt)√
λj

,

Lj [c](t) =
∫ t

0

sin(
√
λj(t− s))√
λj

〈F [c](s), wj〉 ds, 1 ≤ j ≤ k,

F [c](t) =
∑

0≤i+j+s≤N−1

Dijsf [um−1] (u(t)− um−1)i

× (u(0, t)− um−1(0, t))j (u(1, t)− um−1(1, t))s ,

u(t) =
k∑
i=1

ci(t)wi.

(3.12)

Applying the contraction principle, we shall prove that the system (3.10) has

an unique solution c
(k)
mj(t) in [0, T

(k)
m ], with certain T

(k)
m ∈ (0, T ]. Indeed, for

every T
(k)
m ∈ (0, T ] and ρ > 0 that will be chosen later, we set

X = C0
(

[0, T (k)
m ];Rk

)
, S = {c ∈ X : ‖c‖X ≤ ρ}, (3.13)

where

‖c‖X = sup
0≤t≤T (k)

m

|c(t)|1 , |c(t)|1 =

k∑
j=1

|cj(t)| . (3.14)

Clearly, S is a nonempty closed subset of X and U : X → X. We will choose

ρ > 0 and T
(k)
m > 0 such that U : S → S is contractive as follows.

(a) First we note that, for all c = (c1, · · · , ck) ∈ S,

‖u(t)‖ ≤ |c(t)|1 ≤ ‖c‖X ≤ ρ,

‖u(t)‖C0(Ω) ≤
√

2 ‖u(t)‖H1 ≤
√

2

a0
‖u(t)‖a ≤

√
2λk
a0
|c(t)|1 ≤

√
2λk
a0

ρ,

‖u(t)‖H1 ≤
√

1

a0
‖u(t)‖a ≤

√
λk
a0
|c(t)|1 ≤

√
λk
a0
ρ, (3.15)

so

|L[c](t)|1 ≤
k√
λ1

∫ t

0
‖F [c](s)‖ ds. (3.16)

On the other hand, by the formula∑
i+j+s=p

1

i!j!s!
=

3p

p!
, for all p ∈ Z+, (3.17)

and the inequality
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|F [c](x, t)|

≤ KM (f)
∑

0≤i+j+s≤N−1

1

i!j!s!
|u(x, t)− um−1|i |u(0, t)− um−1(0, t)|j

× |u(1, t)− um−1(1, t)|s

≤ KM (f)
∑

0≤i+j+s≤N−1

1

i!j!s!

(
‖u(t)‖C0(Ω̄) +

√
2M
)i (
‖u(t)‖C0(Ω̄) +

√
2M
)j

×
(
‖u(t)‖C0(Ω̄) +

√
2M
)s

≤ KM (f)
∑

0≤i+j+s≤N−1

1

i!j!s!

(√
2λk
a0

ρ+
√

2M

)i+j+s

≤ KM (f)
N−1∑
p=0

∑
i+j+s=p

1

i!j!s!

(√
2λk
a0

ρ+
√

2M

)p

≤ KM (f)
N−1∑
p=0

3p

p!

(√
2λk
a0

ρ+
√

2M

)p
, (3.18)

it follows from (3.16) and (3.18) that

|L[c](t)|1 ≤
k√
λ1
T (k)
m KM (f)

N−1∑
p=0

3p

p!

(√
2λk
a0

ρ+
√

2M

)p
. (3.19)

Hence

|U [c](t)|1 ≤ |α|1 +
1√
λ1
|β|1 + C

(1)
ρ T (k)

m , ∀t ∈ [0, T (k)
m ], (3.20)

in which

C
(1)
ρ =

k√
λ1
KM (f)

N−1∑
p=0

3p

p!

(√
2λk
a0

ρ+
√

2M

)p
. (3.21)

Consequently

‖U [c]‖X ≤ |α|1 +
1√
λ1
|β|1 + C

(1)
ρ T (k)

m . (3.22)

(b) Next, with c = (c1, · · · , ck) ∈ S, d = (d1, · · · , dk) ∈ S and t ∈ [0, T
(k)
m ],

considering

u(t) =

k∑
j=1

cj(t)wj , v(t) =

k∑
j=1

dj(t)wj , (3.23)
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we prove that

‖U [c]− U [d]‖X ≤
k√
λ1
C

(2)
ρ T (k)

m ‖c− d‖X , ∀c, d ∈ S, (3.24)

where

C
(2)
ρ = 3KM (f)

√
2λk
a0

∑N−2

p=0

3p

p!

(√
2λk
a0

ρ+
√

2M

)p
. (3.25)

Indeed

|U [c](t)− U [d](t)|1 = |L[c](t)− L[d](t)|1

≤ k√
λ1

∫ t

0
‖F [c](s)− F [d](s)‖ ds. (3.26)

On the other hand

F [c](x, t)− F [d](x, t)

=
∑

1≤i+j+s≤N−1

Dijsf [um−1] (u(t)− um−1)i

× (u(0, t)− um−1(0, t))j (u(1, t)− um−1(1, t))s

−
∑

1≤i+j+s≤N−1

Dijsf [um−1] (v(t)− um−1)i

× (v(0, t)− um−1(0, t))j (v(1, t)− um−1(1, t))s

=
∑

1≤i+j+s≤N−1

Dijsf [um−1]
[
(u(t)− um−1)i − (v(t)− um−1)i

]
× (u(0, t)− um−1(0, t))j (u(1, t)− um−1(1, t))s

+
∑

1≤i+j+s≤N−1

Dijsf [um−1]
[
(u(0, t)− um−1(0, t))j − (v(0, t)− um−1(0, t))j

]
× (v(t)− um−1)i (u(1, t)− um−1(1, t))s

+
∑

1≤i+j+s≤N−1

Dijsf [um−1] [(u(1, t)− um−1(1, t))s − (v(1, t)− um−1(1, t))s]

× (v(t)− um−1)i (v(0, t)− um−1(0, t))j . (3.27)

We also note that ai − bi = (a − b)
i−1∑
ν=0

aνbi−1−ν for all a, b ∈ R, i = 1, 2, · · · ,

we deduce from (3.15) that
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∣∣∣(u(t)− um−1)i − (v(t)− um−1)i
∣∣∣

= |u(t)− v(t)|

∣∣∣∣∣
i−1∑
ν=0

(u(t)− um−1)ν (v(t)− um−1)i−1−ν

∣∣∣∣∣
≤ |u(t)− v(t)|

i−1∑
ν=0

|u(t)− um−1|ν |v(t)− um−1|i−1−ν

≤
√

2λk
a0
‖c− d‖X

i−1∑
ν=0

(√
2λk
a0

ρ+
√

2M

)ν (√
2λk
a0

ρ+
√

2M

)i−1−ν

=

√
2λk
a0

i

(√
2λk
a0

ρ+
√

2M

)i−1

‖c− d‖X . (3.28)

Similarly ∣∣∣(u(0, t)− um−1(0, t))j − (v(0, t)− um−1(0, t))j
∣∣∣

≤
√

2λk
a0

j

(√
2λk
a0

ρ+
√

2M

)j−1

‖c− d‖X ;

|(u(1, t)− um−1(1, t))s − (v(1, t)− um−1(1, t))s|

≤
√

2λk
a0

s

(√
2λk
a0

ρ+
√

2M

)s−1

‖c− d‖X . (3.29)

It implies that

|F [c](x, t)− F [d](x, t)|

≤ KM (f)
∑

1≤i+j+s≤N−1

1

i!j!s!

√
2λk
a0

i

(√
2λk
a0

ρ+
√

2M

)i+j+s−1

‖c− d‖X

+KM (f)
∑

1≤i+j+s≤N−1

1

i!j!s!

√
2λk
a0

j

(√
2λk
a0

ρ+
√

2M

)i+j+s−1

‖c− d‖X

+KM (f)
∑

1≤i+j+s≤N−1

1

i!j!s!

√
2λk
a0

s

(√
2λk
a0

ρ+
√

2M

)i+j+s−1

‖c− d‖X

≤ KM (f)

√
2λk
a0
‖c−d‖X

∑
1≤i+j+s≤N−1

1

i!j!s!
(i+j+s)

(√
2λk
a0

ρ+
√

2M

)i+j+s−1
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= KM (f)

√
2λk
a0
‖c− d‖X

N−1∑
p=1

∑
i+j+s=p

1

i!j!s!
p

(√
2λk
a0

ρ+
√

2M

)p−1

= KM (f)

√
2λk
a0
‖c− d‖X

N−1∑
p=1

3p

p!
p

(√
2λk
a0

ρ+
√

2M

)p−1

= 3KM (f)

√
2λk
a0
‖c− d‖X

N−2∑
p=0

3p

p!

(√
2λk
a0

ρ+
√

2M

)p
= C

(2)
ρ ‖c− d‖X , (3.30)

where C
(2)
ρ is defined as in (3.25). Thus

|U [c](t)− U [d](t)|1 ≤
k√
λ1
C

(2)
ρ T (k)

m ‖c− d‖X . (3.31)

It follows from (3.31), that (3.24) holds. By choosing ρ > |α|1 + 1√
λ1
|β|1 and

T
(k)
m ∈ (0, T ] with the properties

0 < C
(1)
ρ T (k)

m ≤ ρ− |α|1 −
1√
λ1
|β|1 and

k√
λ1
C

(2)
ρ T (k)

m < 1, (3.32)

thanks to (3.22), (3.24) and (3.32), it is easy to see that U : S −→ S is

contractive. Then, system (3.10) has an unique solution c
(k)
mj(t) in [0, T

(k)
m ]. We

deduce that system (3.6) has an unique solution u
(k)
m (t) in [0, T

(k)
m ].

The following estimates allow one to take T
(k)
m = T independent of m and

k. By such a priori estimate of u
(k)
m (t), it can be extended outside [0, T

(k)
m ] and

then, a solution defined in [0, T ] will be obtained.

Step 2. A priori estimate.
First, we put

S(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥u̇(k)

m (t)
∥∥∥2

a
+
∥∥∥u(k)

m (t)
∥∥∥2

a

+
∥∥∥∆u(k)

m (t)
∥∥∥2

+

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds. (3.33)

Then, it follows from (3.6) and (3.33) that

S(k)
m (t) = S(k)

m (0) + 2

∫ t

0
〈F (k)

m (s), u̇(k)
m (s)〉ds
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+ 2

∫ t

0
a(F (k)

m (s), u̇(k)
m (s))ds+

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds

≡ S(k)
m (0) +

3∑
j=1

Ij . (3.34)

We now estimate the integrals and S
(k)
m (0) on the right-hand side of (3.34) as

follows.

First integral I1: Using the inequalities (a + b)p ≤ 2p−1(ap + bp), for all a,
b ≥ 0, p ≥ 1 and

sq ≤ 1 + sp, ∀s ≥ 0, ∀q ∈ (0, p], (3.35)

we get from (3.8) that∣∣∣F (k)
m (x, t)

∣∣∣
≤ KM (f)

∑
0≤i+j+s≤N−1

1

i!j!s!

∣∣∣u(k)
m (x, t)− um−1

∣∣∣i
×
∣∣∣u(k)
m (0, t)− um−1(0, t)

∣∣∣j × ∣∣∣u(k)
m (1, t)− um−1(1, t)

∣∣∣s
≤ KM (f)

∑
0≤i+j+s≤N−1

1

i!j!s!

(∣∣∣u(k)
m (x, t)

∣∣∣+
√

2M
)i (∣∣∣u(k)

m (0, t)
∣∣∣+
√

2M
)j

×
(∣∣∣u(k)

m (0, t)
∣∣∣+
√

2M
)s

≤ KM (f)
∑

0≤i+j+s≤N−1

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i+j+s

= KM (f)
N−1∑
p=0

∑
i+j+s=p

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)p

= KM (f)

N−1∑
p=0

3p

p!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)p

≤ KM (f)
N−1∑
p=0

3p

p!
2p−1

[(√
2

a0

)p(√
S

(k)
m (t)

)p
+
(√

2M
)p]

≤ KM (f)
N−1∑
p=0

3p

p!
2p−1

[(√
2

a0

)p [
1 +

(√
S

(k)
m (t)

)N−1
]

+
(√

2M
)p]
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≤ KM (f)
N−1∑
p=0

3p

p!
2p−1

[(√
2

a0

)p
+
(√

2M
)p][

1 +

(√
S

(k)
m (t)

)N−1
]

≡ A1(M)

[
1 +

(√
S

(k)
m (t)

)N−1
]
. (3.36)

Hence ∥∥∥F (k)
m (t)

∥∥∥ ≤ A1(M)

[
1 +

(√
S

(k)
m (t)

)N−1
]
, (3.37)

where A1(M) = KM (f)
∑N−1

p=0

3p

p!
2p−1

[(√
2

a0

)p
+
(√

2M
)p]

. By (3.37), the

integral I1 is estimated as follows

I1 = 2

∫ t

0
〈F (k)

m (s), u̇(k)
m (s)〉ds ≤ 2

∫ t

0

∥∥∥F (k)
m (s)

∥∥∥∥∥∥u̇(k)
m (s)

∥∥∥ ds
≤ 2A1(M)

∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]√

S
(k)
m (s)ds

= 2A1(M)

∫ t

0

[√
S

(k)
m (s) +

(√
S

(k)
m (s)

)N]
ds

≤ 4A1(M)

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds

≡ Ã1(M)

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds. (3.38)

Second integral I2 : We need to estimate
∥∥∥F (k)

m (t)
∥∥∥
H1

. By (3.8), we have

F (k)
mx(x, t)

= D1f [um−1] +D3f [um−1]∇um−1

+
∑

1≤i+j+s≤N−1

(
D1D

ijsf [um−1] +D3D
ijsf [um−1]∇um−1

)
×
(
u(k)
m (x, t)−um−1

)i (
u(k)
m (0, t)−um−1(0, t)

)j (
u(k)
m (1, t)−um−1(1, t)

)s
+

∑
1≤i+j+s≤N−1

Dijsf [um−1]i
(
u(k)
m (x, t)−um−1

)i−1 (
u(k)
mx(x, t)−∇um−1

)
×
(
u(k)
m (0, t)− um−1(0, t)

)j (
u(k)
m (1, t)− um−1(1, t)

)s
. (3.39)
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It follows that∥∥∥F (k)
mx(t)

∥∥∥
≤ KM (f)(1 +

√
2M)

1 +
∑

1≤i+j+s≤N−1

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i+j+s
+KM (f)

∑
1≤i+j+s≤N−1

1

i!j!s!
i

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i−1

×
(√

2

a0

√
S

(k)
m (t) +

√
2M

)(√
2

a0

√
S

(k)
m (t) +

√
2M

)j
×
(√

2

a0

√
S

(k)
m (t) +

√
2M

)s
≤ KM (f)(1 +

√
2M)

∑
i+j+s≤N−1

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i+j+s

+ (N − 1)KM (f)
∑

i+j+s≤N−1

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i+j+s

≤ KM (f)(N +
√

2M)
∑

i+j+s≤N−1

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)i+j+s

= KM (f)(N +
√

2M)

N−1∑
p=0

∑
i+j+s=p

1

i!j!s!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)p

= KM (f)(N +
√

2M)
N−1∑
p=0

3p

p!

(√
2

a0

√
S

(k)
m (t) +

√
2M

)p

≤ KM (f)(N +
√

2M)
N−1∑
p=0

3p

p!
2p−1

[(√
2

a0

)p
+
(√

2M
)p]

×

[
1 +

(√
S

(k)
m (t)

)N−1
]

= (N +
√

2M)A1(M)

[
1 +

(√
S

(k)
m (t)

)N−1
]

= A2(M)

[
1 +

(√
S

(k)
m (t)

)N−1
]
, (3.40)
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where A2(M) = (N +
√

2M)A1(M).
On the other hand, by (2.5), we get∥∥∥F (k)

m (t)
∥∥∥
a
≤
√
a1

∥∥∥F (k)
m (t)

∥∥∥
H1
≤
√
a1

[∥∥∥F (k)
m (t)

∥∥∥+
∥∥∥F (k)

mx(t)
∥∥∥]

≤
√
a1 [A1(M) +A2(M)]

[
1 +

(√
S

(k)
m (t)

)N−1
]
. (3.41)

It leads to

I2 = 2

∫ t

0
a(F (k)

m (s), u̇(k)
m (s))ds ≤ 2

∫ t

0

∥∥∥F (k)
m (s)

∥∥∥
a

∥∥∥u̇(k)
m (s)

∥∥∥
a
ds

≤ 2
√
a1 [A1(M) +A2(M)]

∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]√

S
(k)
m (s)ds

= 2
√
a1 [A1(M) +A2(M)]

∫ t

0

[√
S

(k)
m (s) +

(√
S

(k)
m (s)

)N]
ds

≤ 4
√
a1 [A1(M) +A2(M)]

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds

≡ Ã2(M)

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds, (3.42)

where Ã2(M) = 4
√
a1 [A1(M) +A2(M)] .

Third integral I3 : We note that the equation (3.6)1 can be written as follows〈
ü(k)
m (t), wj

〉
−
〈

∆u(k)
m (t), wj

〉
=
〈
F (k)
m (t), wj

〉
, 1 ≤ j ≤ k. (3.43)

Hence, it follows after replacing wj with ü
(k)
m (t) and integrating in t, we have

I3 =

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥2
ds

≤ 2

∫ t

0

∥∥∥∆u(k)
m (s)

∥∥∥2
ds+ 2

∫ t

0

∥∥∥F (k)
m (s)

∥∥∥2
ds

≤ 2

∫ t

0
S(k)
m (s)ds+ 2A2

1(M)

∫ t

0

[
1 +

(√
S

(k)
m (s)

)N−1
]2

ds

≤ 2

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds+ 4A2

1(M)

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds

≡ Ã3(M)

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds, (3.44)
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where Ã3(M) = 2 + 4A2
1(M). Combining (3.34), (3.38), (3.42) and (3.44) lead

to

S(k)
m (t) ≤ S(k)

m (0) + TÃ(M) + Ã(M)

∫ t

0

(
S(k)
m (s)

)N−1
ds, (3.45)

where Ã(M) = Ã1(M)+Ã2(M)+Ã3(M). By means of the convergences (3.7),
we can deduce the existence of a constant M > 0 independent of k and m such
that

S(k)
m (0) ≤ M2

2
, ∀ m, k ∈ N. (3.46)

Finally, it follows from (3.45) and (3.46) that

S(k)
m (t) ≤ M2

2
+ TÃ(M) + Ã(M)

∫ t

0

(
S(k)
m (s)

)N−1
ds, (3.47)

for 0 ≤ t ≤ T (k)
m ≤ T. Then, by solving a nonlinear Volterra integral inequality

(3.47) (based on the methods in [3]), we prove that there exists a constant
T > 0 independent of k and m such that

S(k)
m (t) ≤M2, ∀ t ∈ [0, T ], ∀ m, k ∈ N. (3.48)

So, we can take constant T
(k)
m = T for all k and m ∈ N. Thus, we have

u(k)
m ∈W (M,T ), ∀ m, k ∈ N. (3.49)

Step 3. Limiting process.

Thanks to (3.49), there exists a subsequence of {u(k)
m }, still denoted by

{u(k)
m } such that

u
(k)
m → um in L∞(0, T ;H2) weakly*,

u̇
(k)
m → u̇m in L∞(0, T ;H1) weakly*,

ü
(k)
m → üm in L2(QT ) weakly,
um ∈W (M,T ).

(3.50)

Thanks to (3.49) and (3.50), we can check from (3.6) and (3.7) that um satisfies
(3.2), (3.3) in L2(0, T ).

On the other hand, it follows from (3.2) and (3.50) that

u′′m = ∆um + Fm ∈ L∞(0, T ;L2). (3.51)

Hence, um ∈W1(M,T ) and Theorem 3.1 is proved. �

Next, the main result is given by the following theorem. We consider the
space W1(T ), defined by

W1(T ) = {v ∈ L∞(0, T ;H1) : v′ ∈ L∞(0, T ;L2)}, (3.52)
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then W1(T ) is a Banach space with respect to the norm

‖v‖W1(T ) = ‖v‖L∞(0,T ;H1) +
∥∥v′∥∥

L∞(0,T ;L2)
. (3.53)

Theorem 3.2. Let (H1) − (H2) hold. Then, there exist constants M > 0
and T > 0 such that the problem (1.1)-(1.3) has an unique weak solution u ∈
W1(M,T ) and the recurrent sequence {um}, defined by (3.2)-(3.3), converges
at a rate of order N to the solution u strongly in the space W1(T ) in sense

‖um − u‖W1(T ) ≤ C ‖um−1 − u‖NW1(T ) , (3.54)

for all m ≥ 1, where C is a suitable constant. On the other hand, the following
estimate is fulfilled

‖um − u‖W1(T ) ≤ CT (kT )N
m
, for all m ∈ N, (3.55)

where CT > 0 and 0 < kT < 1 are the constants depending only on T .

Proof. Existence of a solution. We shall prove that {um} is a Cauchy sequence
in W1(T ). Indeed, we put vm = um+1 − um. Then vm satisfies the variational
problem{

〈v′′m(t), w〉+ a (vm(t), w) = 〈Fm+1(t)− Fm(t), w〉 , ∀w ∈ H1,
vm(0) = v′m(0) = 0.

(3.56)

Taking w = v′m in (3.56), after integrating in t, we have

ρm(t) ≤ 2

∫ t

0
‖Fm+1(s)− Fm(s)‖

∥∥v′m(s)
∥∥ ds, (3.57)

where

ρm(t) =
∥∥v′m(t)

∥∥2
+ ‖vm(t)‖2a ≥

∥∥v′m(t)
∥∥2

+ a0 ‖vm(t)‖2H1 . (3.58)

Next, we shall estimate the integral on the right side of (3.57) as fol-
lows. Using Taylor’s expansion of the functions f(x, t, um, um(0, t), um(1, t)) =
f [um] = f [um−1 + vm−1] around the point (x, t, um−1, um−1(0, t), um−1(1, t))
up to order N , we obtain

f [um]− f [um−1]

= f(x, t, um, um(0, t), um(1, t))− f(x, t, um−1, um−1(0, t), um−1(1, t))

=
∑

1≤i+j+s≤N−1

Dijsf [um−1]vim−1v
j
m−1(0, t)vsm−1(1, t)

+
∑

i+j+s=N

Dijsf [um−1 + θvm−1]vim−1v
j
m−1(0, t)vsm−1(1, t), (3.59)
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where 0 < θ < 1. Hence, it follows from (3.3) and (3.59) that

Fm+1(x, t)− Fm(x, t)

=
∑

1≤i+j+s≤N−1

Dijsf [um]vimv
j
m(0, t)vsm(1, t)

+
∑

i+j+s=N

Dijsf [um−1 + θvm−1]vim−1v
j
m−1(0, t)vsm−1(1, t). (3.60)

Therefore, we have

‖Fm+1(t)− Fm(t)‖

≤ KM (f)
∑

1≤i+j+s≤N−1

1

i!j!s!
(
√

2)i+j+s ‖vm(t)‖i+j+s
H1

+KM (f)
∑

i+j+s=N

1

i!j!s!
(
√

2)i+j+s ‖vm−1(t)‖i+j+s
H1

= KM (f)
N−1∑
p=1

∑
i+j+s=p

1

i!j!s!
(
√

2)p ‖vm(t)‖p
H1

+KM (f)
∑

i+j+s=N

1

i!j!s!
(
√

2)N ‖vm−1(t)‖NH1

= KM (f)
N−1∑
p=1

(3
√

2)p

p!
‖vm(t)‖p

H1 +KM (f)
(3
√

2)N

N !
‖vm−1(t)‖NH1

≤ 1
√
a0
KM (f)

N−1∑
p=1

(3
√

2)p (2M)p−1

p!

√
ρm(t) +KM (f)

(3
√

2)N

N !
‖vm−1‖NW1(T )

≡ η(1)
T

√
ρm(t) + η

(2)
T ‖vm−1‖NW1(T ) , (3.61)

where η
(1)
T = 1√

a0
KM (f)

∑N−1
p=1

(3
√

2)p (2M)p−1

p!
, η

(2)
T =

(3
√

2)N

N !
KM (f). Then

we deduce from (3.57) and (3.61) that

ρm(t) ≤ Tη(2)
T ‖vm−1‖2NW1(T ) + η

(3)
T

∫ t

0
ρm(s)ds, (3.62)

where η
(3)
T = 2η

(1)
T + η

(2)
T . By using Gronwall’s lemma, (3.62) leads to

‖vm‖W1(T ) ≤ µT ‖vm−1‖NW1(T ) , (3.63)
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where µT =

(
1 +

1
√
a0

)√
Tη

(2)
T exp(Tη

(3)
T ). Choosing T > 0 enough small

such that kT = Mµ
−1

N−1

T < 1, it follows from (3.63) that, for all m and p,

‖um − um+p‖W1(T ) ≤ (1− kT )−1(µT )
−1

N−1 (kT )N
m

. (3.64)

Hence, {um} is a Cauchy sequence in W1(T ). Then there exists u ∈ W1(T )
such that

um → u strong in W1(T ). (3.65)

Note that um ∈ W1(M,T ), then there exists a subsequence {umj} of {um}
such that 

umj → u in L∞(0, T ;H2) weakly*,
u′mj
→ u′ in L∞(0, T ;H1) weakly*,

u′′mj
→ u′′ in L2(QT ) weakly,

u ∈W (M,T ).

(3.66)

On the other hand

‖Fm(·, t)− f(·, t, u(t), u(0, t), u(1, t))‖
≤ ‖f(·, t, um−1(t), um−1(0, t), um−1(1, t))− f(·, t, u(t), u(0, t), u(1, t))‖

+
∑

1≤i+j+s≤N−1

∥∥∥Dijsf [um−1] (um(t)− um−1)i (um(0, t)− um−1(0, t))j

× (um(1, t)− um−1(1, t))s‖
≤ KM (f) ‖um−1 − u‖W1(T )

+KM (f)
∑

1≤i+j+s≤N−1

1

i!j!s!
(
√

2)i+j+s ‖um − um−1‖i+j+sW1(T )

≤ KM (f) ‖um−1−u‖W1(T )+KM (f)
N−1∑
p=1

3p

p!
(
√

2)p ‖um−um−1‖pW1(T ) . (3.67)

Therefore, it implies from (3.65) and (3.67) that

Fm(t)→ f(·, t, u(t), u(0, t), u(1, t)) strong in L∞(0, T ;L2). (3.68)

Finally, passing to limit in (3.2) and (3.3) as m = mj → ∞, there exists
u ∈W (M,T ) satisfying the equation

〈u′′(t), w〉+ a(u(t), w) = 〈f(·, t, u(t), u(0, t), u(1, t)), w〉 , (3.69)

for all w ∈ H1 and the initial condition

u(0) = ũ0, u
′(0) = ũ1. (3.70)

On the other hand, it follows from (3.66)4 and (3.69) that

u′′ = ∆u+ f(x, t, u(t), u(0, t), u(1, t)) ∈ L∞(0, T ;L2), (3.71)
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hence, u ∈W1(M,T ).

Uniqueness. Applying a similar argument used in the proof of Theorem 3.1,
u ∈W1(M,T ) is an unique local weak solution of Pro. (1.1)-(1.3).

Passing to the limit in (3.64) as p→∞ for fixed m, we get (3.55). Also with
a similar argument, (3.54) follows. Theorem 3.2 is proved completely. �

Remark 3.1. In order to construct a N -order iterative scheme, we need the
assumption (H2). Then, we get a convergent sequence at a rate of order N to a
local unique weak solution of problem and the existence follows. This condition
of f can be relaxed if we only consider the existence of solutions, see [4], [5],
[7].

Acknowledgments: The authors wish to express their sincere thanks to the
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References

[1] K. Deimling, Nonlinear Functional Analysis, Springer, NewYork, 1985.
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