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Abstract. In this paper, we consider the following Dirichlet problem for a nonlinear
Kirchhoff-Love equation

wer — B (e (D) luae (1) wae — ABz (lua ()] [[uwe ()]|*) wonte

= f(z, t,u, Uz, ug,uze), 0<z<l, 0<t<T, (1)
u(0,t) = u(1,t) =0,

’LL(LL',O) = ’EL()((E), Ut($,0) = 'IjL1(:L'),

where A > 0is a constant, o, @1, f, B1, B2, are given functions and ||u, (t)||> = fol u2 (z,t) dz,
||t (26)“2 = fol u2, (z,t) dz. Combining the linearization method for nonlinear terms, the

Faedo-Galerkin method and the weak compact method, a unique weak solution of the prob-
lem (1) is obtained. In case of By, By € CYTH(RY), B; > by > 0, f € CV ([0, 1] x R4 x R*)
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and fi € CY([0,1] x Ry x R*) we obtain from the following equation

ure = B ([ua ()17, 1wt (D)11?) tioe — ABz (Jlua ()1, lluwe()]1*) wsare

- f(x7t,u7 uzvut,umt) + Efl(I,t,U, uza”tv“aﬁ)»

associated to (1)2,3 a weak solution u.(z,t) having an asymptotic expansion of order N + 1
in €, for € sufficiently small.

1. INTRODUCTION

In this paper, we consider the following Dirichlet problem for a nonlinear
Kirchhoff-Love equation

s = By (a1 ftan 1)) e = ABa (a0 e (1)) twre (11)
= f(xvt)uyuxvutvuxt), M Q= (0,1)7 O0<t< T,

u(0,t) = u(l,t) =0, (1.2)

u(z,0) = tg(z), u(z,0)=1u1(z), (1.3)

where A > 0 is a constant and g, @1, f, By, B2, are given functions.
When Q = (0,L), B; = B (Hux(t)HQ) ,A=0, f=0, Eq. (1.1) is related
to the Kirchhoff equation

Eh [T
hug = | Py + —
phug <0+2L/0

presented by Kirchhoff in 1876 (see, [10]). This equation is an extension of the
classical D’Alembert’s wave equation by considering the effects of the changes
in the length of the string during the vibrations. The parameters in (1.4) have
the following meanings: w is the lateral deflection, L is the length of the string,
h is the area of the cross-section, E is the Young modulus of the material, p
is the mass density, and Py is the initial tension.

One of the early classical studies dedicated to Kirchhoff equations was given
by Pohozaev [26]. After the work of Lions, for example see [12], Eq. (1.4)
received much attention where an abstract framework to the problem was
proposed. We refer the reader to, e.g., Cavalcanti et al. [5]-[7], Ebihara,
Medeiros and Miranda [9], Miranda et al. [23], Medeiros [20], Menzala [24],
Park et al. [27], [28], Rabello et al. [30], Santos et al. [31], for many interesting
results and further references. A survey of the results about the mathematical
aspects of Kirchhoff model can be found in Medeiros, Limaco and Menezes
[21], [22], and the references therein.

ou

2
dy) Upas (1.4)
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When Q@ = (0,L), By = By =1, f =0, Eq. (1.1) is related to the Love
equation

E
Ut — ;ua}x — 2u2k‘2umtt = 0, (15)

presented by V. Radochova in 1978 (see, [29]). This equation describes the
vertical oscillations of a rod, which was established from Euler’s variational
equation of an energy function

T L
1 1
/0 dt/o [sz (uf + p*k*u,) — §F (Bu? + pp*kPugugy ) | dz. (1.6)

The parameters in (1.5) have the following meanings: w is the displacement,
L is the length of the rod, F' is the area of cross-section, k is the cross-section
radius, E is the Young modulus of the material and p is the mass density. By
using the Fourier method, Radochova [29] obtained a classical solution of Prob.
(1.5) associated with the initial conditions (1.3) and boundary conditions

w(0,t) = u(L,t) = 0, (1.7)

or
u(0,t) =0, Augy(L,t) + Pug(L,t) =0, (1.8)
where ¢? = %, A = 242k%. On the other hand, the asymptotic behaviour of
solutions for Prob. (1.3), (1.5), (1.8) as A — 04 was also established.
Equations of Love waves or equations for waves of Love types have been
studied by many authors, we refer to [3], [8], [19] and references therein.
On the other hand, in [32], a symmetric version of the regularized long wave
equation (SRLW)
Ugpt — Ut = Pg T Ulg,
{ pt +uz =0, (19)
has been proposed to describe weakly nonlinear ion acoustic and space - charge
waves. Eliminating p from (1.9), a class of SRLWE is obtained as follows

Ut — Ugy — Ugptt = —Ulgt — Ugpli. (1.10)

Eq. (1.10) is explicitly symmetric in the x and t derivatives and it is very
similar to the regularized long wave equation that describes shallow water
waves and plasma drift waves [1], [2]. The SRLW equation also arises in many
other areas of mathematical physics [4], [18], [25]. It is clear that Eq. (1.10) is
a special form of Equation (1.1), in which f(x,t, u, Uy, ut, Ugt) = —Ulgr — Uz Uy

Motivated by the problems in the above mentioned works, in this paper, we
consider Prob. (1.1)-(1.3) with f € C*([0,1] x Ry x R?), By, By € C1(R2).
Since f, By, B are arbitrary, the methods used in [29] or in [32] are no longer
suitable, here we will combine the linearization method for a nonlinear term,
the Faedo-Galerkin method and the weak compactness method.
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The paper consists of four sections. At first, some preliminaries are done
in Section 2. With the technique presented as above, we begin Section 3 by
establishing a sequence of approximate solutions of Prob. (1.1) - (1.3) based
on the Faedo-Galerkin’s method. Thanks to a priori estimates, this sequence
is bounded in an appropriate space, from which, using compact imbedding
theorems and Gronwall’s Lemma, one deduces the existence of a unique weak
solution of Prob. (1.1)-(1.3). In particular, an asymptotic expansion of a weak
solution u = u. of order N + 1 in a small parameter € for the equation

we=B1 (Jua (@) st (@)1 ) tza =B (a8 izt (1)) e (1:11)
- f(m,t,u,ux, U, uxt) + 8.f1<xvt7u7uﬂ€7 U, Uxt),

0<x<1,0<t<T, associated to (1.2), (1.3), with By, By € CNTL(R2),
Bi(y,z) > by >0, (i = 1,2), for all (y,2) € R%, f € CNT1([0,1] x Ry x RY),
f1 € CN([0,1] x Ry x R*) is established in Section 4. This result is a relative
generalization of [13]-[17].

2. PRELIMINARIES

We put 2 = (0,1) and denote the usual function spaces used in this paper
by the notations LP = LP(2), H™ = H™(Q). Let (-,-) be either the scalar
product in L? or the dual pairing of a continuous linear functional and an
element of a function space. The notation ||-|| stands for the norm in L? and
we denote by ||-||y the norm in the Banach space X. We call X’ the dual
space of X.

We denote by LP(0,7T; X), 1 < p < oo for the Banach space of real functions
u: (0,7) — X measurable with the norm defined by

T 1/p
||u||Lp(o,T;X>=( / ||u<t>|r§dt) <o for 1<p<oo,

and

[ull oo 0,7y = esssup [lu(t)]| 5 for p = oo.
0<t<T
On H', we shall use the following norm

1/2
oll s = (ol + loal”)

The following lemma is known.
Lemma 2.1. The imbedding H' — C°(Q) is compact and
||v||00(§) <V2|[vlln forall ve H.
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Remark 2.2. On H}, v — ||v| g and v — ||v.|| are equivalent norms.
Furthermore,

[vllcogy < llvall forall ve H}. (2.1)

Let u(t), u'(t) = wi(t) = u(t ) "(t) = un(t) = U(t) Ug(t) = Vu(t), tae(t) =

Au(t), denote u(zx,t), at( ) ( 1), gg (z,t), 2 (%2 2 (z,t), respectively With

fecN([o 1]><]R+><R4) ( t v w ,z), we define Dy f = 8L Dy f = 9L,
Dsf = 8u7 Dyf = avv D5f = 8wv Def = % and Do‘f = D" ---Dg° f;
a= (a1, ,a) €Z%, |a| =ar+ -+ +asg=N; DO O f = f

Similarly, with B € CN(R2), B = B(y, 2), we define D1 B = ay ,D,B =98
and DPB = DY'D?B, 8= (1, Ba) € Z2, |B| = 1 + 2 = N; DOV B = B.

3. THE EXISTENCE AND UNIQUENESS OF SOLUTION

We make the following assumptions:
(Hy) @, @y € H N H;
(Hy) B, Bs gcl(Ri) and B;(y,z) > by > 0, for all (y,z) € R%, i=1,2;
(H3) fe 02 xRy x R*) and
£(0,£,0,v,0,2) = f(1,t,0,v,0,2) = 0, for all (t,v,2) € Ry x R
Let T* > 0 fixed and M > 0. Put
Ku(Bi) = sup  (Bi(y,2) + |D1Bi(y, 2)| + |D2Bi(y, 2)]), i = 1,2,

0<y,z<M?
6
Ku(f)=  sup (\f@c,t,u,v,w,zmz\Diﬂx,t,u,v,w,z)\),
(‘Z7t7uzv7w7z)€AM =1

(3.1)
where Ay = [0,1] x [0, T*] x [-M, M]*. For every T € (0,7*] and M > 0, we
put

Vi ={v e L>®(0,T; H} N H?) :v; € L=(0,T; H3 N H?), vy € L=(0,T; H)}.

Then Vp is a Banach space with respect to the norm

HUHVT = maX{”UHLOO(O,T;H(}ﬁHQ)’ HthLOO(O,T;HOlﬂH?)? ||UttHLoo(o,T;H3)}
(see, Lions [11]). We also put

{ W(M,T) ={v € Vr: vy, <M},
Wi (M, T) ={veW(M, T) vy € L0, T; HE N H?)}.

We establish the linear recurrent sequence {u,,} as follows.
We choose the first term ug = 9. Suppose that

Um—1 € Wl(M, T), (3.3)
and associate with Prob. (1.1)-(1.3) the following problem:

(3.2)
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Find u,, € Wi(M,T) (m > 1) which satisfies the linear variational problem

(i, (8), w) + Con () (tma (8), wa) + ADi (8) (Usp (t), wir)
= (F(t),w), Ywe HE, (3.4)

um(O) = 7]0, u;n(O) = ﬁl,

in which
Conlt) = Bi[um-1](t) = By (I V1 (1)), |
Dn(t) = Baum1](t) = Bz (|| Vum-1 (D),
Fr(z,t) = flum—1](x,t)

= [t um1(t), Vitm 1 (t), iy, 1 (£), Vi, (1))

Then we have the following theorem.

Vi (0]) |
v“;n—l(t)HQ) : (3.5)

Theorem 3.1. Under assumptions (H1) — (Hs), there exist positive constants
M, T > 0 such that, for ug = 1o, there exists a recurrent sequence {un,} C

Wi(M,T) defined by (3.4) and (3.5).
Proof. The proof consists of several steps.

Step 1. The Faedo-Galerkin approzimation(introduced by Lions [11]).
Consider a special orthonormal basis {w;} on H} : wj(z) = v2sin(jrz),
j € N, formed by the eigenfunctions of the Laplacian —A = —68—;2. Put

k
k
uP (1) =3 eV (), (3.6)
j=1
where the coeflicients cg;) satisfy a system of linear differential equations
i (1), ;) + O ()i (6), wj) + ADon (1) iz (1), wsc)
= (Fp(t),w;), 1 <j <k, (3.7)
upy (0) = digg, iy (0) = dirg.
in which
k
ok = Y. aMw; — @y strongly in HY N H?,
=1 (3.8)

k
e = > ﬁj(.k)wj — 4y strongly in  H} N HZ2.
Jj=1

System (3.7) can be rewritten in form

éffi%(t) g ()N (E) = fong (1),
B 0)=al?, o) =p", 1<j<k,

mj m,
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where
1
mj (¢ ——(F(t),w;), 3.10
AiC(t) .9 .
mi(t ]—,)\-: , 1 <5<k
M J() 1+AJADm(t) i (]W) 7>
Hence

t r
cﬂﬁ@)—-af)+tﬁf)+l£ m:é Fmj(5)ds

t T
—/ dr/ umj(s)cqgfj)-(s)ds, 1<j<k. (3.11)
0 0

By (3.3), it is not difficult to prove that the system (3.11) has a unique solution
(k)( t), 1 <j <k on interval [0,7]. The details are omitted.

m]

Step 2. A priori estimates.

Put
SE(t) =R () + al (1) + P (1), (3.12)
where
2
: ol s i

) 2

Q) H + ADy, HAu H . (3.13)
rgf)(t): u,(ﬁ) t) H + Cn(t) Humz t)H +AD,, Humx H

)

s = s +2 | t<Fm<s>, a®) (5))ds

+2 /0 (B (5), 55 ()) s + 2 / (F? (s), %) (5)) ds

0

[ ent (oo + [t

+ Huﬁ’ii(s)‘r —20u®) (s, @k (s )>> ds

o [ ot (oo + st~ oo o

;%m+2g (3.14)
j=1



602 N. A. Triet, V. T. T. Mai, L. T. P. Ngoc and N. T. Long

2
First, we estimate fy(,’f) = Hu,gf)(O)H + AD,, Humx H . Letting ¢ — 04 in

Eq. (3.7)1, multiplying the result by cgr’f;( ), we get
[ )"+ XD @) [#0)||” + Cont0) o, 5 0)
= (F(0),ii{(0)). (3.15)
This implies that
&b = iR +Ann o)
= —Con(0) (flgks, 18} (0)) + (Fin(0), iH) (0))

< (Con(0) Norall + | Fm ()1 [[552(0) H
) gm
< (C(0) ||tiorz || + || Fn (0)]))
< % (Con(0) [[ional| + HFm(O)H)2 <X, forall mkeN, (3.16)
0

where X is a constant depending only on )\, f, g, @1, B1 and Bs. By (3.3),
(3.8), (3.12), (3.13) and (3.16)

S8 (0) = €5 + llaak” + s
+ By (Jliow I iae ) (ke > + 1 Ad0x]” + 11l
+ 2By (Nou | e |?) (Iaakal® + | A1)
<S8y, forall meN, (3.17)

with a constant Sy depending only on A, f, @, @1, By and Bs.

Next, we shall estimate three terms I; on the right-hand side of (3.14) as
follows.
First term I. By the Cauchy-Schwartz inequality, we have

t t
B =2 [ (Bals), i) (s < TR () + [ p(5)ds. (3.18)
0 0
Second term I5. It is known that

VFm(t) = le[umfﬂ + Dgf[um,l]Vum,l(t) + D4f[um,1]Aum,1(t)
+ D5f[um,1]Vu;n_1(t) + Dgf[um,ﬂAu;n_l(t), (3.19)
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with D; flum—1] = Dif (2, t, um—1(t), V—1(t),ul, 1 (t),Vu,, _1(t)),i=1,---,

» Ym—1

6. Combining (3.1), (3.3) and (3.19), we obtain

IV En ()|l
< [+ [ Vum—1 ()] + [[Aum—1 ()] + || Vg1 ()] + [ Ay (B)|| ] Kar(f)
< ymKum(f), (3.20)

where yy; = 14 4M, so it implies that

=z (T Fn(s), ) (s))ds

t
2 [ |VE, 1) (s)|| d
<2 [ VR i) s
t
<THKY () + [ a9 (3:21)
0

Third term Is. Similarly, by the following equality

F3,(t) = Daflum—1] + D3 f [um—1]ts, 1 (t) + Daflum—1]Vuy, 1(t)

+ Ds f [um—1]tp, 1 (t) + Dg f[ttm—1] Vg, 1 (1), (3.22)
we obtain
IER
< [+ fJup o )] + [V O] + lum o )] + [[Vum 1 O] ] K (f)
< K (f)- (3.23)
Thus

Iy = 2/0t2<F,31(s),u$7’;>(s)>ds
<2 [ E )l i) s
< T K3,(f) + /Ot %) (s)ds. (3.24)

Fourth term 1. It is obviously that

Cra(t) = 2D1 By [ 1) (Vum—1(t), Vg, (1))
+ 2D B1[um—1)(Vup, 1 (t), Vg, (), (3.25)
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with D;B;[um_1] = D;B; (||vum_1(t)HQ,Hvu;n,l(t)\ﬁ) i, j = 1,2. Hence,
by the Cauchy-Schwartz inequality, and (3.3), we have

|Cr(t)]

<2 [[[Vtm1 )| |Vl 1 (0] + [Vt )| | Vetlr—1 ()| ] K (Br)

< AM?K )y (By). (3.26)
Similarly

D), (t)] < 4M*K(Bs). (3.27)
On the other hand, from assumption (Hz2) we obtain from (3.12), (3.13) that
iz (1)

((£) > b, “agy(t)HQ la®

+HAu§,’;>(t)H2+

ool ol

ulph (1)

2 2
\ + HAugj)(t)H } , (3.28)
where b, = min{1, by, Abo} > 0. Since

(3.29)

~2(uff (), W81 (5)) < [[u)(s)] 2 \2

it follows from (3.26), (3.28), (3.29), that

I, = /Ot C! (s) (Hufﬁ%(s)HQ + HAUQ?)(S)HQ

2
+ ||ah ()| 20 (s, ikh(5)) ) ds
t 2 2 2 2
< [enel (2w + s + faeo]| + |ae]) e
0
8 _ t
gb—M2KM(Bl) / S (s)ds. (3.30)
* 0

Fifth term I5. Similarly, It follows from (3.27), (3.28), that

Is = )\/ D ( ( alk) (s) —I—HAu )"2_‘a;§;<3)‘2> ds
/ | Dy, (s |< alk) () ’ —|—HAu,(j§ s) ’2 ) (s) 2) ds

<3 AMQKM Bo) / SW) (5)ds. (3.31)
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Finally, from (3.14), (3.17), (3.18), (3.21), (3.24), (3.30) and (3.31), the fol-
lowing inequality is fulfilled

t

S () < So+ (14 273,) TK2(f) + Du / S (s)ds, (3.32)
0

4M?

b
ciently large such that

where Dy =1+

<2I~(M(Bl) + )\IN(M(BQ)) . We can choose M > 0 suffi-

1
Sy < 5M?. (3.33)

Choose T € (0,T*] small enough such that

<;M2 + (14 2v3) TK?w(f)) exp (T'Dyr) < M2, (3.34)

br = \/ 2 [+ 35 (380 + 2083, (8)]

(3.35)
AM? /- -
< [Tep |T (345 (KM(Bl) v )\KM(BQ)> <1
It follows from (3.32)-(3.34) that
t
S (t) < M2 exp (~TDu) + Dr / S (s)ds. (3.36)
0
By using Gronwall’s Lemma, (3.36) yields
SW(t) < M?exp (=T D) exp (tDar) < M2, (3.37)
for all ¢ € [0, 7], and for all m, k € N. Therefore
uf) € W(M,T) forall m and keN. (3.38)

Step 3. Limiting process.

From (3.37), we deduce the existence of a subsequence of {ugf)} denoted by
the same symbol, such that

) = in L°°(0,T; HY N H?) weakly*,
W) in L0, T; HE N H?) weakly*, (3.30)
i) ull, in  L>(0,T; H}) weakly*,
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Passing to the limit in (3.7), (3.8), we have wu,, satisfying (3.4), (3.5) in
L?(0,T). On the other hand, it follows from (3.4); and (3.39)4 that

1

Aull, = D) (upy, = Fn(t) — C(t)Aup,) € L°(0,T; L?). (3.40)
Consequently

ull, € L°°(0,T; HY N H?), (3.41)

hence u,, € W1(M,T) and the proof of Theorem 3.1 is complete. 0

We apply Theorem 3.1 and the compact imbedding theorems to get the
existence and uniqueness of a weak solution of Prob. (1.1)-( 1.3), the main
result of this section.

Theorem 3.2. Suppose assumptions (Hy) — (Hs). Then

(i) Prob. (1.1)-(1.3) has a unique weak solution w € Wi (M, T), where the
constants M >0 and T' > 0 are chosen as in Theorem 3.1.

(ii) The linear recurrent sequence {u,,} defined by (3.4) and (3.5) converges
to the solution u of Prob. (1.1)-(1.3) strongly in the space

Wi(T) = {v e L>®(0,T; H}) : v' € L=(0,T; H})}.
And we have the estimate
| tm — uHLoo(O’T;Hé) + ||u, — UIHLOO(O,T;H(}) < CkY', forall meN, (3.42)

where the constant kr € (0,1) is defined as in (3.35) and C is a constant only
depending on T, g, 41 and k.

Proof. (a) Existence. First, we note that W1 (T') is a Banach space with respect
to the norm (see Lions [11]).

||U”W1(T) = HU||L°°(O,T;H5) + HU/HLOO(O,T;H(}) )

We shall prove that {u,} is a Cauchy sequence in Wi (T'). Let wy, = tpm41—
Um. Then w,, satisfies the variational problem

(win (1), w) + Cm+1(t2< Wing (), W) + ADy41 (8) (Wi (1), W)

= [ Crnt1(t) = Crn(D)] (i (1), wa)
—A[Din41(t) = Din(t)] <u'/n (t),w > (3.43)
+ (Fnt1(t) — F, )

m t),w , Yw e HO,
um (0) = @y, ul,(0) = a1,
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Taking w = w], in (3.43), after integrating in ¢, we get

B = Jy (Chua(s me< )P+ 2D 1 (3) [ (5)]17) ds

=2 J3 [Cont1(5) = Con(3)] (tma (), W (5)) ds (3.44)
—2Af0 e (s > Din(5)] (U (), W (5)) ds

—|—2f0 Fri1(s) — Fu(s),wl,(s))ds = J1 + Jo + J3 + Ja,

where
Zin(t) = [Jwh (O|* + Crs1 (1) [[wima (O] + ADysr (8) ||l ()]|* . (3.45)

We shall estimate three integrals Jq, Ja, J3, J4 on the right—hand side of (3.44)
as follows.
Estimation of Ji. By

} ‘ <4M2KM(Bl)

i1 (t)| S AMPK )y (By),

Zm<t> > b ([[wf () + lwma ()2 + w0 (1)) (3.46)
we have
5= [ (Coua) e )+ ADf ) ) s
< [ (4R (B1) Dm0+ MRy (B2) [ 5] ) s
Qe (KM(Bl) +M~(M(BQ)) /0 t Zon(3)ds. (3.47)

=
Estimation of Ja. We have

Crnr1(t) = Con(8)] < 2M K1 (B1) [[[Vwm—1(8)]| + || Vewy,—1 (8)]]]
< 2M K1 (B1) [fwm—1llyw, (7 - (3.48)

Similarly
D1 (t) = D) < 2M Ky (B2) [l - (3.49)

Hence
Ja = 2 [ [Coea(s) = Conlo)] tas) wa(5)) s
0
< AMRus(Bo) [l [ e (9] (5]

4 B t
< TM4K]%4(Bl)me_1||%V1(T)+/O Zm(8)ds. (3.50)

S
*
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Estimation of Js. Similarly
¢
Jo = =2 [ Dsa(s) = D))ty 5), wlas)) ds
0

4 _ t
< b—T)\zMA‘KJQW(Bz) me—IHIQ/Vl(T)"‘/O Zm(s)ds. (3.51)

Estimation of Jy. From (H3) we obtain from (3.1)2, (3.3), (3.5), (3.39)4, that
[ Fmt1(t) — Fin(t)]]
< Kn(f) [llwm—1O)1 + [Vwm—1 (0] + |wn—1 ()] + [[Vep 1 (][]
< 2Ky (f) [IVwm—1(8)]| + || Vwp, 1 (@)]] ] < 2Km(f) lwm—1llwy (ry - (3-52)

Hence

Ji— 2/0 (Fosr(5) — Fun(s),wh(s)) ds

t
< 4Ky (f) me—IHWI(T)/O [, ()| ds

t
AT () [l + [ Znlo)ds. (35)
Combining (3.44), (3.47), (3.50), (3.51) and (3.53), we obtain
4 ~ ~
Zult) AT | K3 + 5 (R3(B0) 4 2 R2(80)| lamr
4M2 _ 5 t
+ {3 + (KM(Bl) n )\KM(BQ)>] /0 Zpn(5)ds. (3.54)

Using Gronwall’s Lemma, we deduce from (3.54) that
lwmllw, (ry < ke llwm=tllyw, @y, YmeN, (3.55)
where 0 < kr < 1 is defined as in (3.35), which implies that
Jam = ity oy < o = gy (L= k) EE, Vomp €N, (356)

It follows that {u,,} is a Cauchy sequence in Wi (T'). Then there exists u €
W1 (T) such that

Um — u  strongly in - Wy (T). (3.57)
Since uy, € W1(M,T'), there exists a subsequence {u,, } of {u,} such that
U, — U in L*(0,T; H N H?) weakly*,
u, = in  L(0,T; H N H?) weakly*,
n’ " : e} 1 * (3'58)
Uy, = U in L*(0,T; Hy) weakly*,

ue W(M,T).
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By (3.1), (3.3), (3.5) and (3.58)4, we obtain
[ Fo(8) = f (-, 8, u(t), uz(t) U'(t) uy (1) || < 2K (f) lum—1—ullw, () »
Cn®) =By (V) IV O] )| < AMRrr(B) a1l

D (1)~ B, (|rw<t>u2 NV @©)F)| < 40 Ear (B2) 1=y,
(3.59)

Hence, from (3.57) and (3.59), we obtain
Fu(t) = £, tut), ug(t),u'(t), ul(t)) strongly in L>(0,T; L?),
Cult) = By ([T, [V0/(0)) strongly in L(0.T),  (3.60)
Dun(t) — By (HVu(t)||2,||Vu’(t)||2) strongly in L(0, T).

Finally, passing to the limit in (3.4), (3.5) as m = m; — oo, it follows from
(3.57), (3.58)1,3, and (3.60) that there exists u € W(M,T) satisfying the
equation

(u”(t),w)+Bl<||Vu )2, |V (1) H2)<u
+ \B, <||Vu(t)H2 v @) ) ("

= (f(,tyult), ug(t), ' (1), uy (1), w), (3.61)
for all w € H& and the initial conditions
u(0) = 19, u'(0) = 3. (3.62)

On the other hand, from assumptions (Hs), (H3) we obtain from (3.58)4,
(3.60) and (3.61) that

" = ftou g ') = By (V0@ V(@) Au

2B ([Vu(®|P, 7w ()]
€ L>®(0,T; L?). (3.63)

AU” _

Hence
u” € L®(0,T; Hy N H?), (3.64)
so u € Wi(M,T) and the existence follows.

(b) Uniqueness. Let uj, ug be two weak solutions of Prob. (1.1)-(1.3), such
that u; € Wi (M, T), i = 1,2. Then w = uj; — ug verifies

(W"(t), w) + C1(t) (wa(t), we) + AD1 () (wy(t), w)
= — (C1(t) = Ca(t)) (uaa(t), we) — A (Da(t) — Da(t)) (u (). )

+<F1(t) Fy(t), >, for all v € H,
w(0) = w'(0) =0,

(3.65)
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where
Ci(t) :Bl<|Vuz \vu (t ||2)
Di(t) :BQ<||V IV ()] 2)
Fl(t):f(vtaul(t) ulm(t)a ;(t), x 22172

Taking v = w' = u} —u in (3.65); and integrating with respect to ¢, we obtain

o(t) = 2/0 (Fi(s) — Fa(s),w'(s)) ds

+ [ (G o)+ AR () [l 40 s
_z/ot[a() Co(s)] (12a(s), w0 (5)) ds
—2) /O [D1(s) (s)] (uyy(s), wi(s)) ds, (3.66)
where
o(t) = [|w'(t)]|* + Ca() wa ()| + AD1(t) [l (1)
Put Ky = \/Z%KM( )+ 12114 i [f(M(Bl) + AKM(BQ)} . Then it follows from
(3.66) that

t
at)<KM/asds
0

By Gronwall’s Lemma, we deduce o(t) = 0, i.e., u3 = ug. This completes the
proof of the theorem. O

4. ASYMPTOTIC EXPANSION OF THE SOLUTION
WITH RESPECT TO A SMALL PARAMETER

In this section, let (H;) — (Hs) hold. We also make the following assump-
tions:

(H4) f1 S C’l([O, 1] X R+ X R4), and
f1(0,£,0,v,0, 2) = f1(1,t,0,v,0,2) =0, for all (t,v,2) € Ry x R%
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We consider the following perturbed problem, where ¢ is a small parameter,
with |e] < 1:
uy — Bi[u)(t)uge — ABalu](t)ugey = Felu], 0 <2z <1,0<t < T,
u(0,t) = u(1,t) =0,
(P u(z,0) = up(z), u(z,0) = 1 (x),

N Bil®) = B (lua @I Jua(®)]?) i = 1,2,
FE[U] = FE($7t7u>ux7utaumt)

= f(xv t7 U, Uy, Ut uxt) + Efl (LU, t7 U, Uy, Ut uzt)-

By the assumptions (H;) — (Hs), (Hs) and theorem 3.2, Prob. (P:) has a
unique weak solution u depending on € : u = u.. When £ = 0, (P:) is denoted

by (]50). We shall study the asymptotic expansion of the solution u. of Prob.
(P:) with respect to a small parameter ¢.

We use the following notations. For a multi-index o = (o, -+ ,an) € Zf,
and x = (z1,--- ,2x) € RY, we put
ol =a1+---+an, al=a1!--an!,
QEa:x?l-..xJaVN’ (41)
a, B€ZY, a<pB <= o <p, Vi=1,---,N.

First, we shall need the following lemma.

Lemma 4.1. Letm, N €N, z = (21, -- ,2n) € RV, and ¢ € R. Then
N A" mN
(Z x> =Y P e, (4.2)
=1 k=m
where the coefficients P][Vm} [x]g, m < k < mN depending on x = (21, ,xN)
are defined by the formula
Th, 1<kE<N, m=1,
|
Pz[\}n}[x]k: > ﬁ"xa, m<k<mN, m>2, (4.3)
acA™ )

N
where Agﬂm](N) = {a eZl tlal=m, Y ia; = k:} :
i=1

Proof. The proof of this lemma is easy, hence we omit the details. O

Now, we assume that
(Hs) Bi, By € ON*Y(R2), Bi(y,2) > by >0, V(y,2) € RZ, (i=1,2),
(Hg) f € CNTL[0,1] x Ry x RY), f1 € CN([0,1] x R x RY), and
f(07t707U707 Z) = f(l,t,O,U,O,Z) = f1(07t707v707 Z)
= f1(1,£,0,v,0,2) =0, V(t,v,2) € Ry x R2,
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We also use the notations f[u] = f(z,t, u, tg, us, Ugs), Blu] = B(||Jug||?, ||uat])?).
Let up be a unique weak solution of problem (Fp) (as in Theorem 3.2)

corresponding to € = 0, i.e.,

UIOI — Bl[UO](t)AUO — )\Bg[’u,o](t)A’u,g = f[uo], O<rx<,0<t<T,

UO(O,t) = Uo(l,t) = 0,

uo(@,0) = o (@), up(w,0) = @1 (z),

ug € Wi (M, T).

(Fo)

Considering the sequence of weak solutions u,, 1 < r < N, of the following
problems:

ul! — Bi[ug](t)Au, — ABa[ugl(t)Aul = F,, 0 <x<1,0<t<T,
ur(0,t) = ur(1,t) = 0,

ur(2,0) = u.(z,0) =0,

Uy € Wl(M, T),

(£)

where F,., 1 < r < N, are defined by the recurrence formulas

f[UO]v 7“:0,
777“[‘;\77 f] +7Tr71[N - 1af1]

+ 3 (pilBi]Aur—i + Api[Bo)Aul_;), 1<r <N,
=1

F. = (4.4)

r—i

with pT[B] = pT'[B;O-(l)’O-@)]a Trr{Na f] = WT[N’f;UO,ulf t 7u7“]7 0<r< Na
defined by the formulas:
(a) Formula p,[B] :

B[UO]v r = O,
pr[B] = §<j 1 D7 Blug| <;2 N P, P, 1<r <N,
= PSRN
(4.5)
where o(1) = (UF), . ,US\)]), o = (09, . ,Ug\)]), are defined by
( 2(Vug, Vuy), i=1,
o, = ' j=1
> Vg, Vui—j), N +1<i<2N,
j=1
( 2V, V), i=1, (4.6)
0_(2) _ 2<VU6, VU,/L> +J§1<VU9, Vu;fj% 2 § ) S N,
SV, Vi), N +1<i<2N;
j=1
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(b) Formula m [N, f] :

( f[u()]a r= Oa
N, f] = > kD) > Py [ulk,
1<|Im|<r k=(k1,....ka)€A(m,N)
m:(ml,...,m4)EZi |k|=r
x PI 5, PU ), PU W, 1<r<N,
(4.7)
in which m = (my,...,m4) € Zi, m| = m1 + -+ + mg, m! = my!---myl,

D™ f = DY DD D f, A(m,N) = {k = (k1,--- ,ka) € Z% : m; < k; <
m;N, i =1,2,3,4}.

Then, we have the following lemma.

Lemma 4.2. Let pT[B] = pT[B7U(1)7U(2)]7 7TT‘[*ZV) f] = 7TT[N7f;'U,O7’U,17 o 7u7‘]7
0 < r < N, be the functions defined by formulas (4.5) and (4.7). Let h =

N
> upe". Then we have

r=0
N ~
Blb =" po[Ble" + [N RY[B,e], (4.8)
r=0
al S(1
FIR) = > mo N, fle” + eV R ), (4.9)
r=0
with Hé(l)[B E]H + HR(l)[f 5]‘ < C, where C is a constant
N e (0,1) N peo 0,2y =

depending only on N, T, f, B1, Ba, u;, 0 <i < N.

Proof. (i) In the case of N = 1, the proof of (4.8) is easy, hence we omit the
details. We only prove the case of N > 2. Let h = ug + Zf\il wie' = ug + hq.
We rewrite as below

BIh] = B(|VA|*, | VE|P)
= B(|Vuo + Vi |*, || Vup + VA |[*)
= B(|Vuol* + &1, [|Vup||* + &), (4.10)

where &1 = [|Vug + Vi[> = | Vug|* , & = [|Vuf + VAL |* = [ Vug* . By using
Taylor’s expansion of the function B(||Vug||? + &1, || Vup||* 4 &) around the
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point (||Vuol|®, | Vup||*) up to order N + 1, we obtain
2 2
B[] = B(|[Vuol|*, [ Vup )

1 2
+ Y S DB(Vuol? | Vub )€ € + Ry (B, uo, 1, 6]
1<|y|l<N

1
= Blugl+ Y —D"Bluglé]"&* + Rn[B, uo, &1, &), (4.11)
I<ly<N 7

where

RN[B,ug,&1,&2]

/ S A0 DB ([ uolP + 0 |V | + 0 ) € €5
O yj=N+1

= |€|N+1 RN)[BaUOaé-lagZ]- (412)
On the other hand,
&1 = [|Vuo + Vhu|* = | Vuo||* = 2(Vug, Vi) + || Vha |

2N )
= Z ai(l)sl, (4.13)
i=1

with ai(l), 1 < i < 2N are defined by (4.6);. By the formula (4.2), it follows
from (4.13) that

2N ‘ 7 2yN
I = (Z 0§1)€Z> =5 PR, (4.14)
=1

k=m
where o(1) = (ng), e ,O‘S\),). Similarly, we have
2N 2 23N
P = (Z a§2)gi> =" PRlo@)ie", (4.15)
=1 k=2
where ¢(?) = (O’%Z), e ,US\)[), are defined by (4.6)2. Therefore, it follows from

(4.14), (4.15) that

—Z@Na 0@ y1, )"
r=|v|

+ \6|N+1 Ry[N, oW, 6@ 41, 79, e], (4.16)
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where
O [N, oW, 0@ 3] = ¥ BYOLRR @),
N <i<27 N,
Y2 <ri<29o N
N+l 2y|N
|€| RN[Na 0(1)50(2)571,7276] — Z ‘PT[N,U(D,U@),’YM’YQ]&T
r=N+1
(4.17)
Hence, we deduce from (4.11), (4.16), (4.17) that
B[h]:B[u0]+ Z ?D’YBUO Zq) NU )7717’72]
1<h|<N 7“—|’Y|
+ |E|N+1 ﬁ( )[B Ug, o 7 gl 52}
a 1
= Bluo] + > =D Blug)@x[N, 0", 0,3, 7] | €F
k=1 \|y|<k '
+ |E|N+1 5\1[) [B ug, 0 7 61752}
= Zm B,o,0@)e" + [N RY[B,ug, 0V, 0, 61,6],  (4.18)
where p,[B] = p,[B; o), 0] 0 <r < N, are defined by (4.5) and
1
R(l) [B Uug, o 7 751 52] Z jDvB[UO]RN [Nv 0(1)7 0_(2)7717 Y2, E]
I<py|<N
+ R [B, uo, €1, &) (4.19)

By the boundedness of the functions u;, u;, 0 < i < N in the function space
L>(0,T; H} N H?), we obtain from (4.12), (4.17), (4.19) that

HRN B , U, O 7 7617§2]HL°°(0T) S Ca

where C is a constant depending only on N, T, B, Hvui”LOO(O,T;L?) ,
HVU’;”LOO(QT;LQ) , 0 <4 < N. Hence, the part 1 of Lemma 4.2 is proved.

(ii) We only prove (4.9) with N > 2. By using Taylor’s expansion of the
function f[ug + h1] around the point ug up to order N + 1, we obtain from
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(4.2), that
fluo + h1]
= fluo] + D3 fuolh1 + Daf[uo]Vhy + Ds flug]hy + D fluo] Vi
S D gl (Vha)™ (B (VR + R b

2<|m|<N
m=(m1,...;m4) €L}

= fluo] + D3 f[uo)h1 + D4 fluo)Vhy + Ds fluo)hy + De f [uo] Vhy

jm|N
+ > Dmfuo S° &, m, N, fou, Vu,u!, V'l + RY[f, ]
2<\m\<N : r=|m)|

1
meZ:

= fluo] + D3 fluo)h1 + D4f[U0]Vh1 + Ds fug] Ry + De f[ug] Vi)

+ Z Dmfuo Z@ [m, N, f,u, Vu,u', Vu']e"

2<\m\<N : r=|m)|
mEZi
1 |m|N
+ Z %Dmf[uo] Z ®,[m, N, f,u, Vu,u', Vu'le" +R [f,hl]
2<|m|<N r=N+1
mEZi
(4.20)
where
R[S, hi]
= X =N D™ flug + Om B (Vha)™ (B2 (V)™ do,
jamihi

®,[m, N, f,u, Vu,u', V']
= > PPl P [V, Py e, Py VU, [m] < 7 < m) N,

ke A(m,N)
|k|=r

Am,N) ={k = (k1,--- , k4 ezt my < ki <m;N,i=1,2,3,4}.
Jr

(4.21)
We note that

fluo] + D3 fluo)hy + Dy fuo]Vhy + Ds fluo]h| + De fuo] VR]

1 .
+ Z EDmf[uo] Z ®,[m, N, f,u, Vu,u', Vu'le"

2<|m|<N r=|m)|
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N
= fluo] + Z %Dmf[uo] Z ®,[m, N, f,u, Vu, ', Vu/]e"

I<|m|<N r=|m|
meZi

N
= fluo] + Z Z %Dmf[uo]fi),«[m, N, f,u, Vu,u', Vu'le"

r=11<|m|<r
meZi

N

= Z”TW’ fle", (4.22)

r=0
where 7,.[N, f], 0 <r < N are defined by (4.7). Similarly,

[m|N

1 = 1
> D™l D Eolm N, fou, Va!, Yl + RY(f ]
2<|m|<N r=N+1
meZi
= e R[], (4.23)
with HR%) [f, E]HL 07.12) < C, where C' is a constant depending only on N,
T, f,u,1=0,1,--- ,7]\7. This completes the proof of the lemma. U

Remark 4.3. Lemma 4.2 is a generalization of a formula contained in [14,
p.262, formula (4.38)] and it is useful to obtain the following Lemma 4.4.
These Lemmas are the key to the asymptotic expansion of the weak solution
u = u of order N + 1 in a small parameter .

Let u = u. € W1(M,T) be a unique weak solution of the problem (P:).

N
Then v =u — > uye” =u— h=u—ug — h; satisfies the problem
r=0

v” — By[v + h]Av — ABy[v + h]Av"”
= F.[v+ h| — F.[h]| + (B1[v + h] — B1[h]) Ah
+A(Bz[v+ h] — Balh)) AW + E.(x,t), 0 <2z <1,0<t < T,
v(0,t) = v(1,t) =0, (4.24)
’U(‘T7O) = UI(QZ,O) =0,
Fe[v] = flv] +efilv]
= f(x,t,v, Vo, o', V') +efi(z, t,v, Vo, o', V'),

\

where
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E.(z,t) = f[h] — fluo] +efi[h] + (Bl[h} — Biluo]) Ah

+ X (Ba|h] — Ba[ug)) AR — ZF e (4.25)

Lemma 4.4. Under the assumptions (Hy), (Hs), and (Hg), there exists a
constant C,. such that

A N+1
||E€||L°°(O,T;L2) < Culel™, (4.26)
where C, is a constant depending only on N, T, f, fi, By, Ba, u,, 0 <r < N.

Proof. In the case of N = 1, the proof of Lemma 4.3 is easy. The details are
omitted. We only consider N > 2.

By using formulas (4.8), (4.9) for the functions fi[h], Bi[h] and Bs[h], we
obtain

N-1 U
filh] = [N =1, file" + |e|” Ry_ [f1,¢€],
0 (4.27)
N N+1 (1) .
Bilhl = % polBe" + ¥ RV[By e, i = 1,2.
r=0

By (4.27)1, we rewrite ¢ fi[h] as follows

N
efilh Zwr 1[N =1, f1]e" +5|6|NR§\1,)_1[f1,5]. (4.28)
r=1

First, we deduce from (4.9) and (4.28), that
fIh] = fluo] + e f1[h]

N
=3 (N 1+ 7N =1, A + VTRV el (4.29)
r=1
where R} )[f fi,e] = [f gl + £ B | [fl, g] is bounded in L>(0,T; L?) by

a constant depending only on N, T, f, fl, u;, 0 <7< N.
On the other hand, we deduce from (4.8) and (4.27)2 that

N
(B1[h] — Bifug]) Ah = (Z prBile” + )V RY[By, e]) Ah
r=1

N r
=38 pilBiAuie” + [N RY By, (4.30)
r=11i=1
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where
ég\?)[Bb ]_R(l)[Bla ]Ah—i— N+1 Z sz Bl AUJT 15 (431)
| ’ r=N+1 i=1
Similarly

N r
(Balh] — Baluo)) AR = 3N pilBo]Aull_je" + [N R [Ba,e],  (4.32)
r=1 i=1

where

~ ~ 1 r
R%)[BQ,E]:R%)[BLE]AH'—F‘ e S N pilBaAul e (4.33)
€ r=N+1i=1

Combining (4.4), (4.5), (4.7), (4.25), (4.29), (4.30) and (4.32), we then obtain
Bo(w,t) = ol (RQ1f 1) + B [Brel + ARY [Baye]) . (434)

By the functions u; € Wi(M,T), 0 < i < N, we obtain from (4.29), (4.31),
(4.33) and (4.34) that

HEa||Loo(0,T;L2) < C. ‘5|N+1 ’ (4.35)

where C, is a constant depending only on N, T, f, f1, By, Ba, u,, 0 <r < N.
This completes thee proof of lemma. O

Now, we consider the sequence of functions {v,,} defined by

Vo = O7
vl — Bi[vm—1 + h]Avy, — ABa[vy,—1 + h]Av!,
= Fa['Um—l + h] - F&*[h] + (Bl[vm_l + h} — Bl[h]) Ah
+ X (Ba[vm—1+h|—Ba[h]) AR +E (z,t), 0 <z < 1,0 <t < T,
Um (0,t) = v (1,t) =0,
U (2,0) = 0], (2,0) =0, m > 1.

(4.36)

With m = 1, we have the problem
v — Bi[h]Avy — ABa[h]Av) = E (2,t), 0 <2 < 1,0 <t < T,
(%1} (0, t) = 7)1(1, t) = 0, (4.37)
v1(z,0) = vj(z,0) = 0.

By multiplying the two sides of (4.37) by v}, we verify without difficulty from
(4.26) that
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012 + Bre() [ Vor ()12 + ABa-(t) | Ve, ()]
— [ (B IV (o)1 + ABu () [ V04 5)|) ds -+ 2 [ (Bl vh(s)ds
0 0

< TC2 15\2N+2+/0 [0/ (5)]|? ds
+ /O (IB1() I901(5)|” + A [ Bso(s)]| [ V05 (5)]*) s, (4.38)

where Bi.(t) = Bi[h](t), Bac(t) = Ba[h](t). By

Bl_(t) = 2D, B;[h](Vh(t), VI (1))
+ 2Dy Bi[h)(VR (£), VI (1)), i = 1,2, (4.39)

we have
|Bl.(t)] < 4M2Kp, (B;) = §, forall |e| <1, i = 1,2, (4.40)
with M, = (N + 1)M. It follows from (4.38), (4.40) that
/ 2 2 / 2
b (110512 + V01 () + |70 1))

t
ST s [ ([0 + V() + [ Voi(s)]) ds. (441)

where b, = min{1,by, \bp}, di = max{1,(;,A(2}. By Gronwall’s lemma we
obtain from (4.41) that

1 1
[ OI1 + [Vor ()] + [ Vor (]| < bT02]6\2N+2eXp<bd1T>. (4.42)

Hence
/ 2 2 N—+1
HmHLoo(O,T;Hé)—i-HvluLm(QT;Hé)§ﬁ\/f0*\€| exp ﬁale (4.43)

We shall prove that there exists a constant C7, independent of m and e such
that

N+1
HU;WHLOO(O,T;H&) + HUWHLOO(O,T;H(%) < CT ‘6‘ (444)
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with |e| < 1, for all m. By multiplying the two sides of (4.36) with v/, and
integrating with respect to t, we obtain from (4.26) that

[ (DI + Bime (1) | Vom(D]* + ABame(£) || Vo, ()]
S TC«E |€|2N+2

+ /0 (o) * + [ Bl V01 () + A Baye ()] [| 705 (5)]*) ds
+2/0 (Flvmer + B] — EL[h], v/, (s))ds
49 /0 (Bu[vm_1 + h] — Bu[h]) (Ah(s), 0, (s))ds

+ 2)\/0 (Ba[vm—1 + h] — Ba[h]) (AR (s), 0], (s))ds

=TC? || 2+ i+ Jo+ T3+ I (4.45)

with Bime(t) = Bilvm—1 + h](t), Bame(t) = Balvm—1 + hl(t).
We now estimate the integrals on the right-hand side of (4.45) as follows.

Estimation of jl We have
Bl .(t) =2D1B;[vm_1 + h](t){Vm_1 + Vh, Vol | +VH)
+ 2D3B;[vm—1 + h](t)(Vv],_ + VKA Vo), + VA"),  (4.46)

hence

me

with M, = (N + 2)M. It follows from (4.47), that

Ti= [ (@ + | B 1901 I + X | Bie(9)] V21 9]

|Blne(t)| <AMZKy (B;) =G, forall |e| <1, i =1,2, (4.47)

< [ (I + 190 + [P ) s (1.45)
where d; = max{1, (1, \(2}.
Estimation of Jo. Note that
1o + B = PRI < 2K 57, (F) lom—1
and

[ filvm—1 + ] = fu[h]]] < 2K, (f1) llom=1llyw, (7 »
hence, we have

1Fe[vm—1 + ] = Fe[h]|| < da [vm-1llw, (1) » (4.49)
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where dy = 2 (K7, (f) + Kz, (f1)) - Therefore, we deduce from (4.49) that

J2—2/HF Um—1 + h) — F[R]|| ||or,(s)]| ds

< T8 -1y ) + /0 o (5) | s

Estimation of jg From the inequalities

{ Bilom1+ 4] = Byl < 4N Ko, (B2) oy = 1.2

AR < 3 A |ef < (N -+ 1) = I,
it follows that
To=2 [ (Buloms-+H)~ Bilh)) (Sh(s). () ds
<2 1Bl + B — Bulll| | A()]| [ (5)]| ds
< T3 ||vm—1lli, o) + /0 o) s,
in which d3 = 4AM, M.Ky;_(B1).

Estimation of J,. From the inequalities (4.51); and

N
|AR"(s) Z [Aur(s)]| le]” < Z HAU;“/HLOO(O,T;LQ) = M,,
r=0
it follows that

Ji=2) / (Balvm—1 + h] — Balh) (A" (s), v/ (5))ds

< 2A/0 |Balom—1 + 1] — Bolh]| [ AR (s)]| ()] ds

< T lom-i B + [ ot s,

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

in which dj = 4\M, M, K j; (Bs). Combining (4.45), (4.48), (4.50), (4.52) and

(4.54), we then obtain
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be (eI + IV om@1? + | Vo (0)]*)
< T (dj+d3 + d3) |lvm1lliy, @) + TC2 |2
t
+ <3+J1)/0 (Hv;n(s)uz + ([ Vom(s)|? + va;n(s)\f) ds.  (4.55)

By using Gronwall’s lemma we deduce from (4.55) that
lomllw, (1) < o1 lvm—1llw, () + 6, forall m=>1, (4.56)

with

—— _ T 1 _
or =nr\/d3+ d3+ d3, 6 = nrC. ]5]N+1, nT:2\/b—exp (2() T(3+d1)>.

Suppose that

or <1 with the suitable constant 7" > 0. (4.57)

The lemma 4.5 is easily to be proved.

Lemma 4.5. Let the sequence {z,,} satisfy
Zm < 0Zm_1+06 forall m>1, z =0, (4.58)
where 0 < o < 1, § > 0 are the given constants. Then
2m <d0/(1—0) forall m>1. (4.59)

Applying Lemma 4.5 with
R R — A o N
zm = omllwyry, =00 =nr\/dz+d5+dij <1, §=nrCile["",
it follows from (4.59), that

Hv'/mHLOO(O,T;H(}) + ||fUm||L°°(O,T;H3) = ||Um||W1(T)
<6§/(1—orp) =Cple|N T, (4.60)

C.
where C'p = T

1 —nry/d3 +d} + dj

On the other hand, the linear recurrent sequence {v,,} defined by (4.36)
converges strongly in the space Wi(T') to the solution v of Prob. (4.24).
Hence, as m — +oo in (4.60), it gives

HU,HLOO(O,T;H&) + HU”LO@(O,T;H&) < Cr el
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or

N

Ue — Z upe” < CpleN . (4.61)
r=0 W1 (T)

Thus, we have the following theorem 4.6.

Theorem 4.6. Let (Hi), (Hs) and (Hg) hold. Then there exist constants
M >0 and T > 0 such that for every e with |e| < 1, Prob. (P:) has a unique
weak solution ue € W1 (M, T) satisfying an asymptotic estimation up to order
N+1 asin (4.61), where the functions u,, r =0,1,--- | N are weak solutions
of Prob. (PT), r=0,1,---, N, respectively.

Remark 4.7. Typical examples about asymptotic expansion of solutions in
a small parameter can be found in many papers, such as [13]-[15]. In the case
of many small parameters, there is only partial results, for example, we refer
to [16], [17], [33], [34] for the asymptotic expansion of solutions in two or three
small parameters.

Acknowledgments: The authors wish to express their sincere thanks to the
referees for the suggestions and valuable comments.
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