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Abstract. In this paper, we prove the existence of solutions of fractional integrodifferential

equations by using the resolvent operators and fixed point theorem. Application to illustrate

the theory is also studied.

1. Introduction

Fractional differential equations have been an attraction to many mathe-
maticians because of its numerous applications in various fields of science and
engineering [17]. It is considered as an alternative model to a nonlinear dif-
ferential equation [8]. The fractional order differential operator is nonlocal
which is the most relevant feature making it a useful tool in applications. The
abstract fractional differential equations with nonlocal conditions have been
studied extensively in the literature [2], since it is shown that the nonlocal
problems have better effects than the normal Cauchy problem. The nonlocal
Cauchy problem for an abstract fractional evolution equations was discussed
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in [3] where as in [4, 6] the authors have studied the existence of solutions
of fractional impulsive evolution equations and integrodifferential equations
in Banach spaces by using fixed point techniques. Hernandez et al. [12] es-
tablished the existence of solution for a class of abstract fractional differential
equations with nonlocal condition. Balachandran et al. [11] investigated the
recent developments in the theory of abstract fractional differential equations
in which the resolvent operator [12] played a key role in proving their existence
results. In [5], the authors have proved the existence of solution for fractional
integrodifferential equations. In this paper, we study the nonlocal fractional
integrodifferential equations governed by operator A generating analytical re-
solvent operators and using the Krasnoselskii fixed point theorem.

2. Preliminaries

We need some basic definitions and properties of fractional calculus and
semigroup to establish our results. Let X be a Banach space with supnorm
denoted by ‖·‖C(J ;X) and C(J ;X) denote the space of all continuous functions
from J := [0, b] into Banach space X. The notation XA denotes the domain of
A endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖. In addition, Br(x,X)
represents the closed ball with center at x and radius r in X.

Definition 2.1. (Riemann-Liouville Fractional Integral)
The Riemann-Liouville fractional integral operator of order α > 0 of func-

tion f ∈ L1 (R+) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

f(s)ds

(t− s)1−α , (2.1)

where Γ(·) is the Euler Gamma function.

Definition 2.2. (Riemann-Liouville Fractional Derivative)
The Riemann-Liouville fractional derivative of order α > 0, n− 1 < α < n,

n ∈ N , is defined as

Dα
0+f(t) = Dn

0+I
n−α
0+ f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)ds, (2.2)

where the function f(t) has absolutely continuous derivatives upto order (n−1).

Definition 2.3. (Caputo Fractional Derivative)
The Caputo fractional derivative of order α > 0, n− 1 < α < n, is defined

as

CDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds, (2.3)
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where the function f(t) has absolutely continuous derivatives upto order (n−1).
If 0 < α < 1, then

CDα
0+f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)ds

(t− s)α
, (2.4)

where f ′(s) = Df(s) =
df(s)

ds
and f is an abstract function with values in X.

Consider the fractional differential equation{
Dqu(t) = Au(t) + f(t), t ∈ J,
u(0) = u0,

(2.5)

where 0 < q < 1, A is a closed linear unbounded operator in X and f ∈
C(J ;X). Equation (2.5) is equivalent to the following integral equation.

u(t) = u0 +
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds+
1

Γ(q)

∫ t

0

f(s)

(t− s)1−q ds, t ∈ J. (2.6)

This equation can be written in the following form of integral equation

u(t) = h(t) +
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds, t ≥ 0, (2.7)

where h(t) = u0 +
1

Γ(q)

∫ t

0

f(s)ds

(t− s)1−q . We assume that the integral equation

(2.7) has an associated resolvent operator {S(t)}t≥0 on X.

Here we assume that the resolvent operator {S(t)}t≥0 is analytic [15] and
there exists a function ϕA in L1

loc([0,∞);R+) such that

‖S′(t)x‖ ≤ ϕA(t)‖x‖XA , for all t > 0.

Definition 2.4. A one parameter family of bounded linear operators {S(t)}t≥0

on X is called a resolvent operator for (2.7) if the following conditions hold:

(i) S(·)x ∈ C([0,∞);X) and S(0) x = x for all x ∈ X,
(ii) S(t)D(A) ⊂ D(A) and AS(t) x = S(t)Ax for all x ∈ D(A) and every

t ≥ 0,
(iii) for every x ∈ D(A) and t ≥ 0,

S(t)x = x+
1

Γ(q)

∫ t

0

AS(s)x

(t− s)1−q ds. (2.8)

Definition 2.5. A function u ∈ C(J ;X) is called a mild solution of the

integral equation (2.7) on J if

∫ t

0
(t− s)q−1u(s)ds ∈ D(A) for all t ∈ J, h(t) ∈
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C(J ;X) and

u(t) =
A

Γ(q)

∫ t

0

u(s)

(t− s)1−q ds+ h(t), ∀ t ∈ J.

Lemma 2.6. Under the above conditions, the following properties are valid:

(i) If u(·) is a mild solution of (2.7) on J , then the function

t→
∫ t

0
S(t− s)h(s)ds

is continuously differentiable on J and

u(t) =
d

dt

∫ t

0
S(t− s)h(s)ds, ∀ t ∈ J. (2.9)

(ii) If h ∈ Cβ(J ;X) for some β ∈ (0, 1), then the function defined by

u(t) = S(t)(h(t)− h(0))

+

∫ t

0
S′(t− s)[h(s)− h(t)]ds+ S(t)h(0), t ∈ J, (2.10)

is a mild solution of (2.7) on J .
(iii) If h ∈ C(J ;XA), then the function u : J → X defined by

u(t) =

∫ t

0
S′(t− s)h(s)ds+ h(t), t ∈ J, (2.11)

is a mild solution of (2.7) on J .

3. Existence and uniqueness

In this paper, we study the existence of mild solution for a class of abstract
fractional integrodifferential equations for t ∈ J of the form

Dq(u(t) + e(t, u(t)))

= Au(t) + f

(
t, u(t),

∫ t

0
k1(t, s, u(s))ds, · · · ,

∫ t

0
kn(t, s, u(s))ds

)
, (3.1)

u(0) + g(u) = u0, (3.2)

where Dq is the Caputo fractional derivative of order 0 < q < 1, A is closed
linear unbounded operator in a Banach space X with dense domain D(A),
u0 ∈ X and f : J × X × Xn → X, e : J × X → X, ki : ∆ × X → X,
g : C(J ;X) → X are continuous. Here ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}. For

brevity, we take Kiu(t) =

∫ t

0
ki(t, s, u(s))ds , i = 0, · · · , n.
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Now we introduce the concept of mild solution for equations (3.1)-(3.2).
This equation is equivalent to the following integral equation

u(t) = u0 − g(u) + e(0, u0)− e(t, u(t)) +
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds

+
1

Γ(q)

∫ t

0

f(s, u(s),K1u(s), · · · ,Knu(s))

(t− s)1−q ds, ∀ t ∈ J. (3.3)

Definition 3.1. A function u ∈ C(J ;X) is said to be a mild solution of (3.1)-

(3.2) on J , if

∫ t

0

u(s)

(t− s)1−q ds ∈ D(A) for all t ∈ J and satisfies the integral

equation (3.3).

Suppose there exists a resolvent operator {S(t)}t≥0 which is differentiable
and the functions f, g, ki and e are continuous in XA, then we have

u(t) = u0 − g(u) + e(0, u0)− e(t, u(t))

+
1

Γ(q)

∫ t

0

f(s, u(s),K1u(s), · · · ,Knu(s))

(t− s)1−q ds

+

∫ t

0
S′(t− s)

(
u0 − g(u) + e(0, u0)− e(s, u(s))

+
1

Γ(q)

∫ s

0

f(τ, u(τ),K1u(τ), · · · ,Knu(τ))

(s− τ)1−q dτ

)
ds.

Assume the following conditions:

The fractional integrodifferential equation (3.1)-(3.2) satisfies the Lipschitz
condition such that for all x, y ∈ X, x1, x2, · · · , xn, y1, y2, · · · , yn ∈ Xn, t, s ∈ J
where i = 1, 2, · · · , n, then we have

(H1) The function f : J × X × Xn → XA is completely continuous; there
exists a constant L1 > 0 such that

‖f(t, x, x1, · · · , xn)− f(t, y, y1, · · · , yn)‖ ≤ L1

(
‖x− y‖+

n∑
i=1

‖xi − yi‖

)
.

(H2) The function ki : ∆×X → XA is continuous and there exist constants
Bi, B

′
i > 0 such that∥∥∥∥∫ t

0
[ki(t, s, x)− ki(t, s, y)]ds

∥∥∥∥ ≤ Bi‖x− y‖,∥∥∥∥∫ t

0
ki(t, s, x)ds

∥∥∥∥ ≤ B′i[1 + ‖x‖].
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(H3) There exists a constant L2 > 0 of function e : J ×X → XA such that

‖e(t, x)− e(t, y)‖ ≤ L2‖x− y‖.

(H4) There exists a constant G > 0, of the function g : C(J ;X)→ XA such
that

‖g(x)− g(y)‖ ≤ G‖x− y‖.

(H5) 2(1 + ‖ϕA‖L1)(γL1(1 +
∑n

i=1Bi) +G+ L2) ≤ 1.

For our convenience, let

γ =
bq

qΓ(q)
, N = max

t∈J
f(t, 0, · · · , 0), N1 = max

t∈J
e(t, 0).

Theorem 3.2. Assume u0 ∈ D(A), f, g, e, ki, satisfies (H1)-(H5). Then
there exists a mild solution of (3.1)-(3.2) on J .

Proof. First we transform the existence of solutions of (3.1)-(3.2) into a fixed
point problem. For that, by considering the Lemma 2.6(iii), we introduce the
map Φ : C(J ;X)→ C(J ;X) by

Φu(t) = u0 − g(u) + e(0, u0)− e(t, u(t))

+
1

Γ(q)

∫ t

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t− s)1−q ds

+

∫ t

0
S′(t− s)

(
u0 − g(u) + e(0, u0)− e(s, u(s))

+
1

Γ(q)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Kn(τ))

(s− τ)1−q dτ

)
ds.

Now we decompose Φ as Φ1 + Φ2 on Br(0;C(J ;X)) where

Φ1u(t) = u0 − g(u) + e(0, u0)− e(t, u(t)) +

∫ t

0
S′(t− s)(u0 − g(u)

+ e(0, u0)− e(s, u(s)))ds,

and

Φ2u(t) =
1

Γ(q)

∫ t

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t− s)1−q ds

+

∫ t

0
S′(t− s) 1

Γ(q)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s− τ)1−q dτds.
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Here,

h(t) = u0 − g(u) + e(0, u0)− e(t, u(t))

+
1

Γ(q)

∫ t

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t− s)1−q ds

is in C(J ;XA). Let Z = C(J ;X) and Br(0, Z)={z ∈ Z : ‖z‖ ≤ r}. Choose

r ≥ 2(1 + ‖ϕA‖L1)(‖u0‖+ ‖g(0)‖+ ‖e(0, u0)‖+N1 + γL1(
∑

B′i +N)).

For any u, v ∈ Z, we have

‖Φ1u(t) + Φ2v(t)‖
≤ ‖u0‖+ ‖g(u)− g(0)‖+ ‖g(0)‖+ ‖e(0, u0)‖+ ‖e(t, u(t))− e(t, 0)‖+ ‖e(t, 0)‖

+
1

Γ(q)

∫ t

0

‖f(s, v(s),K1v(s), . . . ,Knv(s))− f(s, 0, . . . , 0)‖+ ‖f(s, 0, . . . , 0)‖
(t− s)1−q

ds

+

∫ t

0

‖S′(t− s)‖
(
‖u0‖+ ‖g(u)− g(0)‖+ ‖g(0)‖+ ‖e(0, u0)‖+ ‖e(s, u(s))

− e(s, 0)‖+ ‖e(s, 0)‖+
1

Γ(q)

[ ∫ s

0

‖f(τ, v(τ),K1v(τ), . . . ,Knv(τ))‖
(s− τ)1−q

dτ

−
∫ s

0

‖f(τ, 0, . . . , 0)‖
(s− τ)1−q

dτ +

∫ s

0

‖f(τ, 0, . . . , 0)‖
(s− τ)1−q

dτ

])
ds

≤ ‖u0‖+Gr + ‖g(0)‖+ ‖e(0, u0)‖+ L2‖u(t)‖+N1 +
L1b

q

qΓ(q)

×
(
‖v(s)‖+

n∑
i=1

∥∥∥∥∫ t

0

ki(t, s, v(s))ds

∥∥∥∥+N

)
+

∫ t

0

‖S′(t− s)‖
[
‖u0‖+Gr+‖g(0)‖

+ ‖e(0, u0)‖+L2‖u(s)‖+N1+
L1b

q

qΓ(q)

(
‖v(s)‖+

n∑
i=1

∥∥∥∥∫ s

0

ki(s, τ, v(τ))dτ

∥∥∥∥+N

)]
ds

≤ ‖u0‖+Gr + ‖g(0)‖+ ‖e(0, u0)‖+ L2‖u(t)‖+N1

+ γL1

(
‖v(s)‖+

n∑
i=1

[ ∥∥∥∥∫ t

0

[ki(t, s, v(s))−ki(t, s, 0)]ds

∥∥∥∥+

∥∥∥∥∫ t

0

ki(t, s, 0)ds

∥∥∥∥ ]+N

)
+

∫ t

0

‖S′(t− s)‖
[
‖u0‖+Gr+‖g(0)‖+‖e(0, u0)‖+L2‖u(s)‖+N1 + γL1

(
‖v(s)‖

+

n∑
i=1

[ ∥∥∥∥∫ s

0

[ki(s, τ, v(τ))− ki(s, τ, 0)]dτ

∥∥∥∥+

∥∥∥∥∫ s

0

ki(s, τ, 0)dτ

∥∥∥∥ ]+N

)
ds

≤ ‖u0‖+Gr+‖g(0)‖+‖e(0, u0)‖+L2r+N1+γL1

(
r+

n∑
i=1

[Bir +B′i]+N

)
+‖ϕA‖L1

×
(
‖u0‖+Gr+‖g(0)‖+‖e(0, u0)‖+L2r+N1+γL1

(
r+

n∑
i=1

[Bir +B′i]+N

))
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≤ (1+‖ϕA‖L1)

(
‖u0‖+Gr+‖g(0)‖+‖e(0, u0)‖+L2r+N1+γL1

(
r+

n∑
i=1

Bir

)

+ γL1

( n∑
i=1

B′i +N

))
≤ r.

Thus Φ maps Br(0, Z) into itself and so Φ1u+ Φ2v ∈ Br. From the assump-
tions (H3) and (H4), we see that, for any u ∈ Z,∥∥∥∥∫ t

0
S′(t− s)(u0+ g(u) + e(0, u0) + e(s, u(s)))ds‖

≤ ‖ϕA‖L1(‖u0‖+Gr + ‖g(0)‖+ ‖e(0, u0)‖+ L2r +N1)

which implies that the function s→ S′(t− s)(u0 + g(u) + e(0, u0) + e(s, u(s)))
is integrable on J , for all t ∈ J and Φ1u ∈ Z. Moreover for u, v ∈ Z and t ∈ J ,
we get

‖Φ1u(t)− Φ1v(t)‖ ≤ ‖g(u)− g(v)‖+ ‖e(t, u(t))− e(t, v(t))‖

+

∫ t

0
‖S′(t−s)‖(‖g(u)−g(v)‖+‖e(t, u(t))−e(t, v(t))‖)ds

≤ G‖u− v‖+ L2‖u− v‖+ ‖ϕA‖L1(G‖u− v‖+ L2‖u− v‖)
≤ (1 + ‖ϕA‖L1)(G+ L2)(‖u− v‖).

By (H5), Φ1 is a contraction on Br(0, Z). Now we show that the operator Φ2

is completely continuous. Note that the function

s→
∫ t

0
S′(t− s)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s− τ)1−q dτds

is integrable from the assumptions on f(·) and ki(·) as shown above. First we
show that Φ2 is uniformly bounded. Now, for t ∈ J ,

‖Φ2u(t)‖ ≤ 1

Γ(q)

∫ t

0

‖f(s, u(s),K1u(s), . . . ,Knu(s))‖
(t− s)1−q ds

+

∫ t

0
‖S′(t− s)‖ 1

Γ(q)

∫ s

0

‖f(τ, u(τ),K1u(τ), . . . ,Knu(τ))‖
(s− τ)1−q dτds

≤ (1 + ‖ϕA‖L1)

[
γL1r

(
1 +

n∑
i=1

Bi

)
+ γL1

( n∑
i=1

B′i +N

)]
.

This shows that Φ2 is uniformly bounded. Let {un} be a sequence in Br(0;Z)
such that un → u in Br(0;Z). Since the functions f and ki are continuous,

f(s, un(s),K1un(s), . . . ,Knun(s))→ f(s, u(s),K1u(s), . . . ,Knu(s)),

as n→∞.
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Now for each t ∈ J , we have

‖Φ2un(t)− Φ2u(t)‖

≤ 1

Γ(q)

∫ t

0

‖f(s, un(s),K1un(s), . . . ,Knun(s))− f(s, u(s),K1u(s), . . . ,Knu(s))‖
(t− s)1−q

ds

+

∫ t

0

‖S′(t− s)‖
[

1

Γ(q)

∫ s

0

‖f(τ, un(τ),K1un(τ), . . . ,Knun(τ))‖
(s− τ)1−q

dτ

− 1

Γ(q)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s− τ)1−q
dτ

]
ds

→ 0 as n→∞.

From the above it is clear that Φ2 is continuous. We need to prove that the
set {Φ2u(t) : u ∈ Br(0;Z)} is relatively compact in X for all t ∈ J . Obviously
{Φ2u(0) : u ∈ Br(0;Z)} is compact. Fix t ∈ (0, b] and u ∈ Br(0;Z); define the
operator Φε

2 by

Φε
2u(t) =

1

Γ(q)

∫ t−ε

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t− s)1−q ds

+

∫ t−ε

0
S′(t− s) 1

Γ(q)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s− τ)1−q dτds.

Since, by (H1), f(·) is completely continuous, the set Xε = {Φε
2u(t) : u ∈

Br(0;Z)} is precompact in X, for every ε > 0, 0 < ε < t. Moreover, for every
u(·) ∈ Br(0;Z), we have

‖Φ2u(t)− Φε
2u(t)‖

≤ 1

Γ(q)

∫ t

t−ε

‖f(s, u(s),K1u(s), . . . ,Knu(s))‖
(t− s)1−q ds+

∫ t

t−ε
‖S′(t− s)‖

× 1

Γ(q)

∫ s

0

‖f(τ, u(τ),K1u(τ), . . . ,Knu(τ))‖
(s− τ)1−q dτds.

This shows that precompact set Xε are arbitrarily close to the set {Φ2u(t) : u ∈
Br(0;Z)}. Hence the set {Φ2u(t) : u ∈ Br(0;Z)} is precompact in X. Next,
we prove that Φ2(Br(0;Z)) is equicontinuous. The function Φ2u, u ∈ Br(0;Z)
are equicontinuous at t = 0. For t < t+ h ≤ b, h > 0 we have

‖Φ2u(t+ h)− Φ2u(t)‖

≤ 1

Γ(q)

∥∥∥∥∫ t+h

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t+ h− s)1−q ds

−
∫ t

0

f(s, u(s),K1u(s), . . . ,Knu(s))

(t− s)1−q ds

∥∥∥∥
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+
1

Γ(q)

∥∥∥∥∫ t+h

0
S′(t+ h− s)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(t+ h− τ)1−q dτds

−
∫ t

0
S′(t− s)

∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(t− τ)1−q dτds

∥∥∥∥
≤ 1

Γ(q)

∫ t

0

[
1

(t+ h− s)1−q −
1

(t− s)1−q

]
‖f(s, u(s),K1u(s), . . . ,Knu(s))‖ds

+
1

Γ(q)

∫ t+h

t

‖f(s, u(s),K1u(s), . . . ,Knu(s))‖
(t+ h− s)1−q ds

+

∫ h

0
‖S′(t+ h− s)‖ 1

Γ(q)

∫ s

0

‖f(τ, u(τ),K1u(τ), . . . ,Knu(τ))‖
(s− τ)1−q dτds

+

∫ t

0
‖S′(t− s)‖ 1

Γ(q)

∥∥∥∥∫ s+h

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s+ h− τ)1−q dτ

−
∫ s

0

f(τ, u(τ),K1u(τ), . . . ,Knu(τ))

(s− τ)1−q dτ

∥∥∥∥ ds
which tends to zero as h→ 0, since by (H1)f(·) is completely continuous and
the set {Φ2u : u ∈ Br(0;Z)} is equicontinuous. Thus we have proved that
Φ2(Br(0;Z)) is relatively compact for t ∈ J . By Arzela-Ascoli theorem, Φ2

is compact. Hence, by the Krasnoselskii fixed point theorem there exists a
fixed point u ∈ Z such that Φu = u which is a mild solution to (3.1) with the
nonlocal condition (3.2). �

4. Example

Consider the following partial integrodifferential equation with fractional
temporal derivative of the form

∂q

∂tq
(u(t, x) + a1(t)u(t, x)) =

∂2

∂x2
u(t, x) + a2(t) sin u(t, x)

+

∫ t

0
c1(t− s)e−u(s,x)ds+ · · ·+

∫ t

0
cn(t− s)e−u(s,x)ds, t > 0,

u(t, 0) = u(t, π) = 0, (t, x) ∈ [0, b]× [0, π],

u(0, x) +
n∑
i=1

∫ ti

0
bj(τ)u(τ, x)dτ = z(x),

(4.1)

where q ∈ (0, 1), z ∈ L2[0, π] and a1, a2, ci ∈ L2(J) , i = 1, 2, 3, · · · , n and
bj ∈ L2(J,R), j = 1, 2. Take X = L2[0, π] and let A be the opearator given
by Aw = w′′ with domain

D(A) := {w ∈ X : w′′ ∈ X,w(0) = w(π) = 0}.
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Clearly A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N,
and the corresponding normalized eigenfunctions are given by

wn(x) :=

(
2

π

) 1
2

sin (nx).

In addition, {wn : n ∈ N} is an orthogonal basis for X and

T (t)w =
∞∑
n=1

e−n
2t 〈w,wn〉wn, ∀ w ∈ X and for every t > 0.

From these expressions, it follows that {T (t)}t≥0 is uniformly bounded com-
pact semigroup, so that R(λ,A) = (λ − A)−1 is a compact operator for all
λ ∈ ρ(A). From [15], we know that the integral equation

u(t) = f(t) +
1

Γ(q)

∫ t

0

Au(s)

(t− s)1−q ds, s ≥ 0,

has an associated analytic resolvent operator {S(t)}t≥0 on X given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λq −A)−1dλ, t > 0,

I, t = 0,
(4.2)

where Γr,θ denotes a contour consisting of the ray {reiθ : r ≥ 0} and {re−iθ :
r ≥ 0} for some θ ∈

(
π, π2

)
. It is easy to see that {S(t)} is differentiable, and

there exists a constant N > 0 such that ‖S′(t)x‖ ≤ N‖x‖, for x ∈ D(A), t > 0.
To represent the differential system(4.1) in the abstract form (3.1)-(3.2), we
introduce the functions e : J × X → X, f : J × X × Xn → X, g : Z → X,
ki : ∆×X → X defined by

e(t, w)(x) = a1(t)w(x),

f(t, w,K1w, . . . ,Knw)(x) = w(x) + a2(t ) sin w(x) +K1w + . . .+Knw,

g(u(x)) =

n∑
i=1

∫ ti

0
bi(τ)u(τ, x)dτ,

Kiw = ki(t, s, w(x)) = ci(t− s)e−w(x), i = 1, 2, · · · , n.

Note that ‖g(u(x)) − g(v(x))‖ ≤
n∑
i=1

ti‖bi‖ ‖u − v‖ and L2 = supt∈J ‖a1(t)‖.

Here ‖ϕA‖L1 = N , L1 = (1 + supt∈J ‖a2(t)‖ + Bi), Bi = supt∈J ‖cn(t)‖,

G =
n∑
i=1

ti‖bi‖ and ti is chosen such that

r ≥ 2(1 + ‖ϕA‖L1)(N1 + γL1(
n∑
i=1

B′i +N))
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and

2(1 + ‖ϕA‖L1)(γL1(1 +
n∑
i=1

Bi) +G+ L2) < 1.

Thus the conditions (H1)-(H5) of Theorem 3.2 are satisfied. Hence there is a
function u ∈ C(J ;L2[0, π]) which is a mild solution of (4.1) on J .
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