Nonlinear Functional Analysis and Applications Vol. 22, No. 3 (2017), pp. 641-653 ISSN: 1229-1595(print), 2466-0973(online)

EXSISTENCE RESULTS FOR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

B. Kamalapriya¹, K. Balachandran² and N. Annapoorani³

¹Department of Mathematics Bharathiar University, Coimbatore 641 046, India e-mail: kamalapriya.b@gmail.com

²Department of Mathematics Bharathiar University, Coimbatore 641 046, India e-mail: kb.maths.bu@gmail.com

³Department of Mathematics Bharathiar University, Coimbatore 641 046, India e-mail: pooranimaths@gmail.com

Abstract. In this paper, we prove the existence of solutions of fractional integrodifferential equations by using the resolvent operators and fixed point theorem. Application to illustrate the theory is also studied.

1. INTRODUCTION

Fractional differential equations have been an attraction to many mathematicians because of its numerous applications in various fields of science and engineering [17]. It is considered as an alternative model to a nonlinear differential equation [8]. The fractional order differential operator is nonlocal which is the most relevant feature making it a useful tool in applications. The abstract fractional differential equations with nonlocal conditions have been studied extensively in the literature [2], since it is shown that the nonlocal problems have better effects than the normal Cauchy problem. The nonlocal Cauchy problem for an abstract fractional evolution equations was discussed

⁰Received November 25, 2016. Revised June 5, 2017.

⁰2010 Mathematics Subject Classification: 60H15, 58J45, 35R15, 47H10.

⁰Keywords: Fractional calculus, Caputo derivative, integrodifferential equation, resolvent operators, nonlocal condition.

in [3] where as in [4, 6] the authors have studied the existence of solutions of fractional impulsive evolution equations and integrodifferential equations in Banach spaces by using fixed point techniques. Hernandez *et al.* [12] established the existence of solution for a class of abstract fractional differential equations with nonlocal condition. Balachandran *et al.* [11] investigated the recent developments in the theory of abstract fractional differential equations in which the resolvent operator [12] played a key role in proving their existence results. In [5], the authors have proved the existence of solution for fractional integrodifferential equations. In this paper, we study the nonlocal fractional integrodifferential equations governed by operator A generating analytical resolvent operators and using the Krasnoselskii fixed point theorem.

2. Preliminaries

We need some basic definitions and properties of fractional calculus and semigroup to establish our results. Let X be a Banach space with supnorm denoted by $\|\cdot\|_{C(J;X)}$ and C(J;X) denote the space of all continuous functions from J := [0, b] into Banach space X. The notation X_A denotes the domain of A endowed with the graph norm $\|x\|_A = \|x\| + \|Ax\|$. In addition, $B_r(x, X)$ represents the closed ball with center at x and radius r in X.

Definition 2.1. (Riemann-Liouville Fractional Integral)

The Riemann-Liouville fractional integral operator of order $\alpha > 0$ of function $f \in L_1(\mathbb{R}_+)$ is defined as

$$I_{0+}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(s)ds}{(t-s)^{1-\alpha}},$$
(2.1)

where $\Gamma(\cdot)$ is the Euler Gamma function.

Definition 2.2. (Riemann-Liouville Fractional Derivative)

The Riemann-Liouville fractional derivative of order $\alpha > 0$, $n - 1 < \alpha < n$, $n \in N$, is defined as

$$D_{0+}^{\alpha}f(t) = D_{0+}^{n}I_{0+}^{n-\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dt}\right)^{n} \int_{0}^{t} (t-s)^{n-\alpha-1}f(s)ds, \quad (2.2)$$

where the function f(t) has absolutely continuous derivatives up to order (n-1).

Definition 2.3. (Caputo Fractional Derivative)

The Caputo fractional derivative of order $\alpha > 0$, $n - 1 < \alpha < n$, is defined as

$${}^{C}D_{0+}^{\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-s)^{n-\alpha-1} f^{(n)}(s) ds, \qquad (2.3)$$

where the function f(t) has absolutely continuous derivatives up to order (n-1). If $0 < \alpha < 1$, then

$${}^{C}D_{0+}^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{f'(s)ds}{(t-s)^{\alpha}},$$
(2.4)

where $f'(s) = Df(s) = \frac{df(s)}{ds}$ and f is an abstract function with values in X.

Consider the fractional differential equation

$$\begin{cases} D^{q}u(t) = Au(t) + f(t), & t \in J, \\ u(0) = u_{0}, \end{cases}$$
(2.5)

where 0 < q < 1, A is a closed linear unbounded operator in X and $f \in C(J; X)$. Equation (2.5) is equivalent to the following integral equation.

$$u(t) = u_0 + \frac{1}{\Gamma(q)} \int_0^t \frac{Au(s)}{(t-s)^{1-q}} ds + \frac{1}{\Gamma(q)} \int_0^t \frac{f(s)}{(t-s)^{1-q}} ds, \quad t \in J.$$
(2.6)

This equation can be written in the following form of integral equation

$$u(t) = h(t) + \frac{1}{\Gamma(q)} \int_0^t \frac{Au(s)}{(t-s)^{1-q}} ds, \quad t \ge 0,$$
(2.7)

where $h(t) = u_0 + \frac{1}{\Gamma(q)} \int_0^t \frac{f(s)ds}{(t-s)^{1-q}}$. We assume that the integral equation (2.7) has an associated resolvent operator $\{S(t)\}_{t\geq 0}$ on X.

Here we assume that the resolvent operator $\{S(t)\}_{t\geq 0}$ is analytic [15] and there exists a function φ_A in $L^1_{loc}([0,\infty); \mathbb{R}^+)$ such that

$$||S'(t)x|| \le \varphi_A(t)||x||_{X_A}$$
, for all $t > 0$.

Definition 2.4. A one parameter family of bounded linear operators $\{S(t)\}_{t\geq 0}$ on X is called a resolvent operator for (2.7) if the following conditions hold:

- (i) $S(\cdot)x \in C([0,\infty); X)$ and S(0) = x for all $x \in X$,
- (ii) $S(t)D(A) \subset D(A)$ and AS(t) = S(t)Ax for all $x \in D(A)$ and every $t \ge 0$,
- (iii) for every $x \in D(A)$ and $t \ge 0$,

$$S(t)x = x + \frac{1}{\Gamma(q)} \int_0^t \frac{AS(s)x}{(t-s)^{1-q}} ds.$$
 (2.8)

Definition 2.5. A function $u \in C(J;X)$ is called a mild solution of the integral equation (2.7) on J if $\int_0^t (t-s)^{q-1} u(s) ds \in D(A)$ for all $t \in J$, $h(t) \in$

C(J;X) and

$$u(t) = \frac{A}{\Gamma(q)} \int_0^t \frac{u(s)}{(t-s)^{1-q}} ds + h(t), \quad \forall t \in J.$$

Lemma 2.6. Under the above conditions, the following properties are valid: (i) If $u(\cdot)$ is a mild solution of (2.7) on J, then the function

$$t \to \int_0^t S(t-s)h(s)ds$$

is continuously differentiable on J and

$$u(t) = \frac{d}{dt} \int_0^t S(t-s)h(s)ds, \quad \forall t \in J.$$
(2.9)

(ii) If $h \in C^{\beta}(J; X)$ for some $\beta \in (0, 1)$, then the function defined by

$$u(t) = S(t)(h(t) - h(0)) + \int_0^t S'(t-s)[h(s) - h(t)]ds + S(t)h(0), \quad t \in J, \quad (2.10)$$

is a mild solution of (2.7) on J.

(iii) If $h \in C(J; X_A)$, then the function $u : J \to X$ defined by

$$u(t) = \int_0^t S'(t-s)h(s)ds + h(t), \ t \in J,$$
(2.11)

is a mild solution of (2.7) on J.

3. EXISTENCE AND UNIQUENESS

In this paper, we study the existence of mild solution for a class of abstract fractional integrodifferential equations for $t \in J$ of the form

$$D^{q}(u(t) + e(t, u(t))) = Au(t) + f\left(t, u(t), \int_{0}^{t} k_{1}(t, s, u(s))ds, \cdots, \int_{0}^{t} k_{n}(t, s, u(s))ds\right), \quad (3.1)$$

$$u(0) + g(u) = u_0, (3.2)$$

where D^q is the Caputo fractional derivative of order 0 < q < 1, A is closed linear unbounded operator in a Banach space X with dense domain D(A), $u_0 \in X$ and $f : J \times X \times X^n \to X$, $e : J \times X \to X$, $k_i : \Delta \times X \to X$, $g : C(J;X) \to X$ are continuous. Here $\Delta = \{(t,s) : 0 \le s \le t \le b\}$. For brevity, we take $K_i u(t) = \int_0^t k_i(t,s,u(s)) ds$, $i = 0, \cdots, n$.

Now we introduce the concept of mild solution for equations (3.1)-(3.2). This equation is equivalent to the following integral equation

$$u(t) = u_0 - g(u) + e(0, u_0) - e(t, u(t)) + \frac{1}{\Gamma(q)} \int_0^t \frac{Au(s)}{(t-s)^{1-q}} ds + \frac{1}{\Gamma(q)} \int_0^t \frac{f(s, u(s), K_1 u(s), \cdots, K_n u(s))}{(t-s)^{1-q}} ds, \quad \forall t \in J.$$
(3.3)

Definition 3.1. A function $u \in C(J; X)$ is said to be a mild solution of (3.1)-(3.2) on J, if $\int_0^t \frac{u(s)}{(t-s)^{1-q}} ds \in D(A)$ for all $t \in J$ and satisfies the integral equation (3.3).

Suppose there exists a resolvent operator $\{S(t)\}_{t\geq 0}$ which is differentiable and the functions f, g, k_i and e are continuous in X_A , then we have

$$\begin{split} u(t) &= u_0 - g(u) + e(0, u_0) - e(t, u(t)) \\ &+ \frac{1}{\Gamma(q)} \int_0^t \frac{f(s, u(s), K_1 u(s), \cdots, K_n u(s))}{(t-s)^{1-q}} ds \\ &+ \int_0^t S'(t-s) \bigg(u_0 - g(u) + e(0, u_0) - e(s, u(s)) \\ &+ \frac{1}{\Gamma(q)} \int_0^s \frac{f(\tau, u(\tau), K_1 u(\tau), \cdots, K_n u(\tau))}{(s-\tau)^{1-q}} d\tau \bigg) ds. \end{split}$$

Assume the following conditions:

The fractional integrodifferential equation (3.1)-(3.2) satisfies the Lipschitz condition such that for all $x, y \in X, x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in X^n, t, s \in J$ where $i = 1, 2, \dots, n$, then we have

(H1) The function $f: J \times X \times X^n \to X_A$ is completely continuous; there exists a constant $L_1 > 0$ such that

$$||f(t, x, x_1, \cdots, x_n) - f(t, y, y_1, \cdots, y_n)|| \le L_1 \left(||x - y|| + \sum_{i=1}^n ||x_i - y_i|| \right).$$

(H2) The function $k_i : \Delta \times X \to X_A$ is continuous and there exist constants $B_i, B'_i > 0$ such that

$$\left\| \int_{0}^{t} [k_{i}(t,s,x) - k_{i}(t,s,y)] ds \right\| \leq B_{i} \|x - y\|,$$
$$\left\| \int_{0}^{t} k_{i}(t,s,x) ds \right\| \leq B_{i}' [1 + \|x\|].$$

(H3) There exists a constant $L_2 > 0$ of function $e: J \times X \to X_A$ such that

$$||e(t,x) - e(t,y)|| \le L_2 ||x - y||.$$

(H4) There exists a constant G>0, of the function $g:C(J;X)\to X_A$ such that

$$||g(x) - g(y)|| \le G||x - y||.$$

(H5) $2(1 + \|\varphi_A\|_{L^1})(\gamma L_1(1 + \sum_{i=1}^n B_i) + G + L_2) \le 1.$

For our convenience, let

$$\gamma = \frac{b^q}{q\Gamma(q)}, \quad N = \max_{t \in J} f(t, 0, \cdots, 0), \quad N_1 = \max_{t \in J} e(t, 0).$$

Theorem 3.2. Assume $u_0 \in D(A)$, f, g, e, k_i , satisfies (H1)-(H5). Then there exists a mild solution of (3.1)-(3.2) on J.

Proof. First we transform the existence of solutions of (3.1)-(3.2) into a fixed point problem. For that, by considering the Lemma 2.6(iii), we introduce the map $\Phi: C(J; X) \to C(J; X)$ by

$$\Phi u(t) = u_0 - g(u) + e(0, u_0) - e(t, u(t)) + \frac{1}{\Gamma(q)} \int_0^t \frac{f(s, u(s), K_1 u(s), \dots, K_n u(s))}{(t-s)^{1-q}} ds + \int_0^t S'(t-s) \left(u_0 - g(u) + e(0, u_0) - e(s, u(s)) \right) + \frac{1}{\Gamma(q)} \int_0^s \frac{f(\tau, u(\tau), K_1 u(\tau), \dots, K_n(\tau))}{(s-\tau)^{1-q}} d\tau \right) ds.$$

Now we decompose Φ as $\Phi_1 + \Phi_2$ on $B_r(0; C(J; X))$ where

$$\Phi_1 u(t) = u_0 - g(u) + e(0, u_0) - e(t, u(t)) + \int_0^t S'(t-s)(u_0 - g(u) + e(0, u_0) - e(s, u(s)))ds,$$

and

$$\Phi_2 u(t) = \frac{1}{\Gamma(q)} \int_0^t \frac{f(s, u(s), K_1 u(s), \dots, K_n u(s))}{(t-s)^{1-q}} ds + \int_0^t S'(t-s) \frac{1}{\Gamma(q)} \int_0^s \frac{f(\tau, u(\tau), K_1 u(\tau), \dots, K_n u(\tau))}{(s-\tau)^{1-q}} d\tau ds.$$

Here,

$$\begin{split} h(t) &= u_0 - g(u) + e(0, u_0) - e(t, u(t)) \\ &+ \frac{1}{\Gamma(q)} \int_0^t \frac{f(s, u(s), K_1 u(s), \dots, K_n u(s))}{(t-s)^{1-q}} ds \\ \text{is in } C(J; X_A). \text{ Let } Z &= C(J; X) \text{ and } B_r(0, Z) = \{z \in Z : \|z\| \le r\}. \text{ Choose} \end{split}$$

 $r \ge 2(1 + \|\varphi_A\|_{L^1})(\|u_0\| + \|g(0)\| + \|e(0, u_0)\| + N_1 + \gamma L_1(\sum B'_i + N)).$

For any $u, v \in Z$, we have

$$\begin{split} \| \Phi_{1}u(t) + \Phi_{2}v(t) \| \\ &\leq \|u_{0}\| + \|g(u) - g(0)\| + \|g(0)\| + \|g(0)\| + \|e(t,u(t)) - e(t,0)\| + \|e(t,0)\| \\ &+ \frac{1}{\Gamma(q)} \int_{0}^{t} \frac{\|f(s,v(s), K_{1}v(s), \dots, K_{n}v(s)) - f(s,0,\dots,0)\| + \|f(s,0,\dots,0)\|}{(t-s)^{1-q}} ds \\ &+ \int_{0}^{t} \|S'(t-s)\| \left(\|u_{0}\| + \|g(u) - g(0)\| + \|g(0)\| + \|e(0,u_{0})\| + \|e(s,u(s)) \right) \\ &- e(s,0)\| + \|e(s,0)\| + \frac{1}{\Gamma(q)} \left[\int_{0}^{s} \frac{\|f(\tau,v(\tau), K_{1}v(\tau), \dots, K_{n}v(\tau))\|}{(s-\tau)^{1-q}} d\tau \\ &- \int_{0}^{s} \frac{\|f(\tau,0,\dots,0)\|}{(s-\tau)^{1-q}} d\tau + \int_{0}^{s} \frac{\|f(\tau,0,\dots,0)\|}{(s-\tau)^{1-q}} d\tau \right] \right) ds \\ &\leq \|u_{0}\| + Gr + \|g(0)\| + \|e(0,u_{0})\| + L_{2}\|u(t)\| + N_{1} + \frac{L_{1}b^{q}}{q\Gamma(q)} \\ &\times \left(\|v(s)\| + \sum_{i=1}^{n} \left\| \int_{0}^{t} k_{i}(t,s,v(s))ds \right\| + N \right) + \int_{0}^{t} \|S'(t-s)\| \left[\|u_{0}\| + Gr + \|g(0)\| \\ &+ \|e(0,u_{0})\| + L_{2}\|u(s)\| + N_{1} + \frac{L_{1}b^{q}}{q\Gamma(q)} \left(\|v(s)\| + \sum_{i=1}^{n} \right\| \int_{0}^{s} k_{i}(s,\tau,v(\tau))d\tau \right\| + N \right) \right] ds \\ &\leq \|u_{0}\| + Gr + \|g(0)\| + \|e(0,u_{0})\| + L_{2}\|u(t)\| + N_{1} \\ &+ \gamma L_{1} \left(\|v(s)\| + \sum_{i=1}^{n} \left[\left\| \int_{0}^{t} [k_{i}(t,s,v(s)) - k_{i}(t,s,0)]ds \right\| + \left\| \int_{0}^{t} k_{i}(t,s,0)ds \right\| \right] + N \right) \\ &+ \int_{0}^{t} \|S'(t-s)\| \left[\|u_{0}\| + Gr + \|g(0)\| + \|e(0,u_{0})\| + L_{2}\|u(s)\| + N_{1} + \gamma L_{1} \left(\|v(s)\| \\ &+ \sum_{i=1}^{n} \left[\left\| \int_{0}^{s} [k_{i}(s,\tau,v(\tau)) - k_{i}(s,\tau,0)]d\tau \right\| + \left\| \int_{0}^{s} k_{i}(s,\tau,0)d\tau \right\| \right] + N \right) ds \\ &\leq \|u_{0}\| + Gr + \|g(0)\| + \|e(0,u_{0})\| + L_{2}r + N_{1} + \gamma L_{1} \left(r + \sum_{i=1}^{n} [B_{i}r + B_{i}'] + N \right) + \|\varphi_{A}\|_{L^{1}} \\ &\times \left(\|u_{0}\| + Gr + \|g(0)\| + \|e(0,u_{0})\| + L_{2}r + N_{1} + \gamma L_{1} \left(r + \sum_{i=1}^{n} [B_{i}r + B_{i}'] + N \right) \right) \right) \end{aligned}$$

B. Kamalapriya, K. Balachandran and N. Annapoorani

$$\leq (1 + \|\varphi_A\|_{L^1}) \left(\|u_0\| + Gr + \|g(0)\| + \|e(0, u_0)\| + L_2r + N_1 + \gamma L_1 \left(r + \sum_{i=1}^n B_i r\right) + \gamma L_1 \left(\sum_{i=1}^n B'_i + N\right) \right)$$

$$\leq r.$$

Thus Φ maps $B_r(0, Z)$ into itself and so $\Phi_1 u + \Phi_2 v \in Br$. From the assumptions (H3) and (H4), we see that, for any $u \in Z$,

$$\left\| \int_0^t S'(t-s)(u_0+g(u)+e(0,u_0)+e(s,u(s)))ds \right\| \\ \le \|\varphi_A\|_{L^1}(\|u_0\|+Gr+\|g(0)\|+\|e(0,u_0)\|+L_2r+N_1)$$

which implies that the function $s \to S'(t-s)(u_0 + g(u) + e(0, u_0) + e(s, u(s)))$ is integrable on J, for all $t \in J$ and $\Phi_1 u \in Z$. Moreover for $u, v \in Z$ and $t \in J$, we get

$$\begin{split} \|\Phi_1 u(t) - \Phi_1 v(t)\| &\leq \|g(u) - g(v)\| + \|e(t, u(t)) - e(t, v(t))\| \\ &+ \int_0^t \|S'(t-s)\| (\|g(u) - g(v)\| + \|e(t, u(t)) - e(t, v(t))\|) ds \\ &\leq G\|u - v\| + L_2\|u - v\| + \|\varphi_A\|_{L^1} (G\|u - v\| + L_2\|u - v\|) \\ &\leq (1 + \|\varphi_A\|_{L^1}) (G + L_2) (\|u - v\|). \end{split}$$

By (H5), Φ_1 is a contraction on $B_r(0, Z)$. Now we show that the operator Φ_2 is completely continuous. Note that the function

$$s \to \int_0^t S'(t-s) \int_0^s \frac{f(\tau, u(\tau), K_1 u(\tau), \dots, K_n u(\tau))}{(s-\tau)^{1-q}} d\tau ds$$

is integrable from the assumptions on $f(\cdot)$ and $k_i(\cdot)$ as shown above. First we show that Φ_2 is uniformly bounded. Now, for $t \in J$,

$$\begin{split} \|\Phi_{2}u(t)\| &\leq \frac{1}{\Gamma(q)} \int_{0}^{t} \frac{\|f(s,u(s),K_{1}u(s),\ldots,K_{n}u(s))\|}{(t-s)^{1-q}} ds \\ &+ \int_{0}^{t} \|S'(t-s)\| \frac{1}{\Gamma(q)} \int_{0}^{s} \frac{\|f(\tau,u(\tau),K_{1}u(\tau),\ldots,K_{n}u(\tau))\|}{(s-\tau)^{1-q}} d\tau ds \\ &\leq (1+\|\varphi_{A}\|_{L^{1}}) \bigg[\gamma L_{1}r \bigg(1+\sum_{i=1}^{n} B_{i}\bigg) + \gamma L_{1}\bigg(\sum_{i=1}^{n} B_{i}'+N\bigg) \bigg]. \end{split}$$

This shows that Φ_2 is uniformly bounded. Let $\{u_n\}$ be a sequence in $B_r(0; Z)$ such that $u_n \to u$ in $B_r(0; Z)$. Since the functions f and k_i are continuous,

$$f(s, u_n(s), K_1u_n(s), \dots, K_nu_n(s)) \to f(s, u(s), K_1u(s), \dots, K_nu(s)),$$

as $n \to \infty$.

Now for each $t \in J$, we have

$$\begin{split} \|\Phi_{2}u_{n}(t) - \Phi_{2}u(t)\| \\ &\leq \frac{1}{\Gamma(q)} \int_{0}^{t} \frac{\|f(s, u_{n}(s), K_{1}u_{n}(s), \dots, K_{n}u_{n}(s)) - f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))\|}{(t-s)^{1-q}} ds \\ &+ \int_{0}^{t} \|S'(t-s)\| \bigg[\frac{1}{\Gamma(q)} \int_{0}^{s} \frac{\|f(\tau, u_{n}(\tau), K_{1}u_{n}(\tau), \dots, K_{n}u_{n}(\tau))\|}{(s-\tau)^{1-q}} d\tau \\ &- \frac{1}{\Gamma(q)} \int_{0}^{s} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(s-\tau)^{1-q}} d\tau \bigg] ds \\ &\to 0 \quad \text{as} \ n \to \infty. \end{split}$$

From the above it is clear that Φ_2 is continuous. We need to prove that the set $\{\Phi_2 u(t) : u \in B_r(0; Z)\}$ is relatively compact in X for all $t \in J$. Obviously $\{\Phi_2 u(0) : u \in B_r(0; Z)\}$ is compact. Fix $t \in (0, b]$ and $u \in B_r(0; Z)$; define the operator Φ_2^{ε} by

$$\begin{split} \Phi_{2}^{\varepsilon}u(t) &= \frac{1}{\Gamma(q)} \int_{0}^{t-\varepsilon} \frac{f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))}{(t-s)^{1-q}} ds \\ &+ \int_{0}^{t-\varepsilon} S'(t-s) \frac{1}{\Gamma(q)} \int_{0}^{s} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(s-\tau)^{1-q}} d\tau ds. \end{split}$$

Since, by (H1), $f(\cdot)$ is completely continuous, the set $X_{\varepsilon} = \{\Phi_2^{\varepsilon}u(t) : u \in B_r(0; Z)\}$ is precompact in X, for every $\varepsilon > 0$, $0 < \varepsilon < t$. Moreover, for every $u(\cdot) \in B_r(0; Z)$, we have

$$\begin{split} \|\Phi_{2}u(t) - \Phi_{2}^{\varepsilon}u(t)\| \\ &\leq \frac{1}{\Gamma(q)} \int_{t-\varepsilon}^{t} \frac{\|f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))\|}{(t-s)^{1-q}} ds + \int_{t-\varepsilon}^{t} \|S'(t-s)\| \\ &\times \frac{1}{\Gamma(q)} \int_{0}^{s} \frac{\|f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))\|}{(s-\tau)^{1-q}} d\tau ds. \end{split}$$

This shows that precompact set X_{ε} are arbitrarily close to the set $\{\Phi_2 u(t) : u \in B_r(0; Z)\}$. Hence the set $\{\Phi_2 u(t) : u \in B_r(0; Z)\}$ is precompact in X. Next, we prove that $\Phi_2(B_r(0; Z))$ is equicontinuous. The function $\Phi_2 u, u \in B_r(0; Z)$ are equicontinuous at t = 0. For $t < t + h \leq b$, h > 0 we have

$$\begin{split} \|\Phi_{2}u(t+h) - \Phi_{2}u(t)\| \\ &\leq \frac{1}{\Gamma(q)} \left\| \int_{0}^{t+h} \frac{f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))}{(t+h-s)^{1-q}} ds \right\| \\ &- \int_{0}^{t} \frac{f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))}{(t-s)^{1-q}} ds \right\| \end{split}$$

B. Kamalapriya, K. Balachandran and N. Annapoorani

$$\begin{split} &+ \frac{1}{\Gamma(q)} \left\| \int_{0}^{t+h} S'(t+h-s) \int_{0}^{s} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(t+h-\tau)^{1-q}} d\tau ds \right. \\ &- \int_{0}^{t} S'(t-s) \int_{0}^{s} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(t-\tau)^{1-q}} d\tau ds \right\| \\ &\leq \frac{1}{\Gamma(q)} \int_{0}^{t} \left[\frac{1}{(t+h-s)^{1-q}} - \frac{1}{(t-s)^{1-q}} \right] \|f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))\| ds \\ &+ \frac{1}{\Gamma(q)} \int_{t}^{t+h} \frac{\|f(s, u(s), K_{1}u(s), \dots, K_{n}u(s))\|}{(t+h-s)^{1-q}} ds \\ &+ \int_{0}^{h} \|S'(t+h-s)\| \frac{1}{\Gamma(q)} \int_{0}^{s} \frac{\|f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))\|}{(s-\tau)^{1-q}} d\tau ds \\ &+ \int_{0}^{t} \|S'(t-s)\| \frac{1}{\Gamma(q)} \left\| \int_{0}^{s+h} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(s+h-\tau)^{1-q}} d\tau \right. \\ &- \int_{0}^{s} \frac{f(\tau, u(\tau), K_{1}u(\tau), \dots, K_{n}u(\tau))}{(s-\tau)^{1-q}} d\tau \Big\| ds \end{split}$$

which tends to zero as $h \to 0$, since by $(\text{H1})f(\cdot)$ is completely continuous and the set $\{\Phi_2 u : u \in B_r(0; Z)\}$ is equicontinuous. Thus we have proved that $\Phi_2(B_r(0; Z))$ is relatively compact for $t \in J$. By Arzela-Ascoli theorem, Φ_2 is compact. Hence, by the Krasnoselskii fixed point theorem there exists a fixed point $u \in Z$ such that $\Phi u = u$ which is a mild solution to (3.1) with the nonlocal condition (3.2).

4. EXAMPLE

Consider the following partial integrodifferential equation with fractional temporal derivative of the form

$$\begin{cases} \frac{\partial^{q}}{\partial t^{q}} \left(u(t,x) + a_{1}(t)u(t,x) \right) = \frac{\partial^{2}}{\partial x^{2}} u(t,x) + a_{2}(t) \sin u(t,x) \\ + \int_{0}^{t} c_{1}(t-s)e^{-u(s,x)}ds + \dots + \int_{0}^{t} c_{n}(t-s)e^{-u(s,x)}ds, \ t > 0, \\ u(t,0) = u(t,\pi) = 0, \quad (t,x) \in [0,b] \times [0,\pi], \\ u(0,x) + \sum_{i=1}^{n} \int_{0}^{t_{i}} b_{j}(\tau)u(\tau,x)d\tau = z(x), \end{cases}$$
(4.1)

where $q \in (0,1), z \in L^2[0,\pi]$ and $a_1, a_2, c_i \in L^2(J)$, $i = 1, 2, 3, \cdots, n$ and $b_j \in L^2(J, \mathbb{R}), j = 1, 2$. Take $X = L^2[0,\pi]$ and let A be the opearator given by Aw = w'' with domain

$$D(A) := \{ w \in X : w'' \in X, w(0) = w(\pi) = 0 \}.$$

Clearly A has a discrete spectrum with eigenvalues of the form $-n^2$, $n \in \mathbb{N}$, and the corresponding normalized eigenfunctions are given by

$$w_n(x) := \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \sin\left(nx\right).$$

In addition, $\{w_n : n \in \mathbb{N}\}$ is an orthogonal basis for X and

$$T(t)w = \sum_{n=1}^{\infty} e^{-n^2 t} \langle w, w_n \rangle w_n, \quad \forall w \in X \text{ and for every } t > 0.$$

From these expressions, it follows that $\{T(t)\}_{t\geq 0}$ is uniformly bounded compact semigroup, so that $R(\lambda, A) = (\lambda - A)^{-1}$ is a compact operator for all $\lambda \in \rho(A)$. From [15], we know that the integral equation

$$u(t) = f(t) + \frac{1}{\Gamma(q)} \int_0^t \frac{Au(s)}{(t-s)^{1-q}} ds, \quad s \ge 0,$$

has an associated analytic resolvent operator $\{S(t)\}_{t\geq 0}$ on X given by

$$S(t) = \begin{cases} \frac{1}{2\pi i} \int_{\Gamma_{r,\theta}} e^{\lambda t} (\lambda^q - A)^{-1} d\lambda, & t > 0, \\ I, & t = 0, \end{cases}$$
(4.2)

where $\Gamma_{r,\theta}$ denotes a contour consisting of the ray $\{re^{i\theta} : r \ge 0\}$ and $\{re^{-i\theta} : r \ge 0\}$ for some $\theta \in (\pi, \frac{\pi}{2})$. It is easy to see that $\{S(t)\}$ is differentiable, and there exists a constant N > 0 such that $\|S'(t)x\| \le N\|x\|$, for $x \in D(A), t > 0$. To represent the differential system(4.1) in the abstract form (3.1)-(3.2), we introduce the functions $e : J \times X \to X, f : J \times X \times X^n \to X, g : Z \to X, k_i : \Delta \times X \to X$ defined by

$$e(t, w)(x) = a_1(t)w(x),$$

$$f(t, w, K_1w, \dots, K_nw)(x) = w(x) + a_2(t) \sin w(x) + K_1w + \dots + K_nw,$$

$$g(u(x)) = \sum_{i=1}^n \int_0^{t_i} b_i(\tau)u(\tau, x)d\tau,$$

$$K_iw = k_i(t, s, w(x)) = c_i(t-s)e^{-w(x)}, i = 1, 2, \dots, n.$$

Note that $||g(u(x)) - g(v(x))|| \le \sum_{i=1}^{n} t_i ||b_i|| ||u - v||$ and $L_2 = \sup_{t \in J} ||a_1(t)||$. Here $||\varphi_A||_{L^1} = N$, $L_1 = (1 + \sup_{t \in J} ||a_2(t)|| + B_i)$, $B_i = \sup_{t \in J} ||c_n(t)||$, $G = \sum_{i=1}^{n} t_i ||b_i||$ and t_i is chosen such that

$$r \ge 2(1 + \|\varphi_A\|_{L^1})(N_1 + \gamma L_1(\sum_{i=1}^n B'_i + N))$$

and

$$2(1 + \|\varphi_A\|_{L^1})(\gamma L_1(1 + \sum_{i=1}^n B_i) + G + L_2) < 1.$$

Thus the conditions (H1)-(H5) of Theorem 3.2 are satisfied. Hence there is a function $u \in C(J; L^2[0, \pi])$ which is a mild solution of (4.1) on J.

References

- R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann Liouville fractional derivative, Advances in Difference Equations, bf 47 (2009), Art. ID 981728.
- [2] K. Balachandran and J.Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Analysis TMA., 71 (2009), 4471–4475.
- [3] K. Balachandran and J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Analysis TMA., 72 (2010), 4587–4593.
- K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations, 4 (2010), 1–12.
- [5] K. Balachandran and S. Kiruthika, Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators, Computers and Math. Appl., 62 (2011), 1350–1358.
- [6] K. Balachandran, S. Kiruthika and J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1970–1977.
- [7] M. Belmekki and M. Benchohra, Existence results for fractional order semilinear functional differential equations with nondense domain, Nonlinear Analysis TMA, 72 (2010), 925–932.
- [8] B. Bonilla, M. Rivero, L. Rodriguez-Germa and J.J Trujillom, Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comp., 187 (2007), 79–88.
- [9] E. Hernandez, D.O'Regan and K. Balachandran, Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators, Indagationes Mathematicae, 24 (2013), 68–82.
- [10] E. Hernandez, D.O'Regan and K.Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Analysis: TMA., 73 (2010), 3462–3471.
- [11] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [12] M. Li, C. Chen and F.B. Li, On fractional powers of generators of fractional resolvent families, Journal of Functional Analysis, 259 (2010), 2702–2726.
- [13] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [14] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [15] J. Pruss, Evolutionary Integral Equations and Applications, Birkhauser Verlag, Basel, 1993.

- [16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives; Theory and Applications, Gordon and Breach, Amsterdam, 1993.
- [17] P. Umamaheswari, K. Balachandran and N. Annapoorani, On the Solution of Stochastic Fractional Integrodifferential Equations, Nonlinear Funct. Anal. Appl., 22 (2017), 335– 354.