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Abstract. For solving a variational inequality problem over the common fixed point set of an

infinite family of nonexpansive mappings on uniformly smooth Banach spaces or reflexive and

strictly convex ones with a uniformly Gâteaux differentiable norm, we consider an explicit

iteration method, based on the steepest-descent and Krasnosel’skii–Mann algorithms. We

also show that some modifications of the last are special case of our result.

1. Introduction

Let X be a Banach space with the dual space X∗. For the sake of simplicity,
the norms of X and X∗ are denoted by ‖.‖. We use 〈x, x∗〉 instead of x∗(x)
for x∗ ∈ X∗ and x ∈ X. Let A : X → X be an η-strongly accretive and γ-
strictly pseudocontractive mapping. Let {Bk} be a countably infinite family
of nonexpansive mappings on X such that C := ∩∞k=1Fix(Bk) 6= ∅, where
Fix(Bk) = {x ∈ X : x = Bkx}, the set of fixed points for Bk.

In this paper, our aim is to find a point u∗ ∈ X such that

u∗ ∈ C : 〈Au∗, j(u∗ − u)〉 ≤ 0, ∀u ∈ C, (1.1)

where {Bk} satisfies the following conditions:

lim
k→∞

sup
x∈D
‖Bk+1x−Bkx‖ = 0 (1.2)
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for any bounded subset D of X and

Fix(B) := ∩∞k=1Fix(Bk) with By = lim
k→∞

Bky for y ∈ X.

Recall that an operator A with domain D(A) and range R(A) in X is said
to be accretive when for each x1, x2 ∈ D(A), it holds

〈Ax2 −Ax1, j(x2 − x1)〉 ≥ 0,

where j(x2 − x1) ∈ J(x2 − x1), and J denotes the duality map from X to its
dual space X∗ defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖ and ‖x∗‖ = ‖x‖}.

Clearly, when C ≡ X (Bk ≡ I for all k ≥ 1), (1.1) is the operator equation
Ax = 0. In order to find a solution of an η-strongly accretive and Lipschitz
continuous mapping A, whose D(A) ≡ X, a uniformly smooth Banach space,
we can use the steepest-descent method, x1 ∈ X any element and

xk+1 = (I − λkA)xk, k ≥ 1, (1.3)

where λk satisfies the conditions
(C1) λk ∈ (0, 1), limk→∞ λk = 0, and
(C2)

∑∞
k=1 λk =∞

(see [33, 37, 38] for details). Computing the set of fixed points of nonexpansive
mappings is an important issue in the theory of nonlinear analysis giving rise
to numerous applications in applied areas such as in image recovery and signal
processing (see, for example, [4, 10]).

Among the fundamental methods for finding a fixed point of a nonexpansive
mapping F over a closed convex subset C of a Hilbert space H, we would like to
refer to the Krasnosel’skii–Mann method [23, 24], xk+1 = (1−αk)xk +αkFx

k,
and the Halpern method [13, 28], xk+1 = αku+(1−αk)Fxk with any u, x1 ∈ C
and αk ∈ (0, 1) under some conditions on αk. In these methods, mappings
which are contractions over C play an important role.

Recently, Yao et al. [36] proposed a modification of the Krasnosel’skii–
Mann algorithm. In their method, two sequences {xk} and {yk} are built
from a starting point x1 as follows:{

yk = (1− λk)xk,
xk+1 = (1− αk)yk + αkFy

k,
(1.4)

and proved that if Fix(F ) 6= ∅, where F is a nonexpansive mapping on H, the
parameter λk satisfies conditions (C1), (C2), and αk satisfy condition:

(C3) αk ∈ [a, b] ⊂ (0, 1),
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then the sequence {xk}, generated by (1.4), converges strongly to a fixed point
of F . This sequence {xk} is strongly convergent to a fixed point of the operator
F , provided that F is nonexpansive, Fix(F ) is nonempty and further several
conditions are satisfied by the sequences of parameters {λk} and {αk} (see
also [22, 28]). Note that similar results were obtained by Buong et al. [9] and
Shehu [26] when the Hilbert space is replaced by a uniformly convex Banach
space having a uniformly Gâteaux differentiable norm.

Very recently, Shehu and Ugwunnadi [27] extended (1.4) to an infinite fam-
ily of nonexpansive mappings on a uniformly convex and uniformly smooth
Banach space X and proved the following result.

Theorem 1.1. Let X be a uniformly convex real Banach space which is also
uniformly smooth. For any k = 1, 2, · · · , let Bk : X → X be a nonexpansive
mapping such that ∩∞k=1Fix(Bk) 6= ∅, there holds

∞∑
k=1

sup
x∈D
‖Bk+1x−Bkx‖ <∞, (1.5)

for any bounded subset D of X and there exists a nonexpansive mapping B
such that By = limk→∞Bky for y ∈ X with Fix(B) = ∩∞k=1Fix(Bk). Let the

sequences {xk} and {yk} be generated by
x1 ∈ X, any element,
yk = (1− λk)xk,
xk+1 = (1− αk)yk + αkBky

k,
(1.6)

where λk and αk are in [0, 1] and satisfy (C1)-(C3). Then, the sequences {xk}
and {yk} converge to a point in ∩∞k=1Fix(Bk).

On the other hand, in order to find a common fixed point of an infinite
family of nonexpansive mappings Bk on a closed and convex subset C of a
Banach space X, Aoyama et al. [3] proposed a modification of the Halpern
method, {

x1 = u ∈ C, any element,
xk+1 = λku+ (1− λk)Bkx

k,
(1.7)

and proved the following result.

Theorem 1.2. Let X be a real uniformly convex Banach space whose norm
is uniformly Gâteaux differentiable and C be a nonempty closed convex subset
of X. Let {Bk} be a sequence of nonexpansive mappings of C into itself such
that ∩∞k=1Fix(Bk) 6= ∅ and there holds (1.2). Let the parameter λk ∈ [0, 1]
satisfy (C1), (C2) and either

(i)
∑∞

k=1 |λk+1 − λk| <∞ or
(ii) λk ∈ (0, 1] for all k ≥ 1 and limk→∞(λk/λk+1) = 1.
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Then, the sequence {xk}, defined by (1.7), converges to a point in ∩∞k=1Fix(Bk).

For a given family {Fi} of nonexpansive mapping Fi on C, in order to
overcome conditions (i), (ii) in the Theorem 1.2 and condition (1.2), by using
Wk-mapping, generated by Fk, Fk−1, · · · , F1 and real numbers γk, γk−1, · · · , γ1
as follows:

Uk,k+1 = I,

Uk,k = γkFkUk,k+1 + (1− γk)I,

Uk,k−1 = γk−1Fk−1Uk,k + (1− γk−1)I,
. . .

Uk,2 = γ2F2Uk,3 + (1− γ2)I,
Wk = Uk,1 = γ1F1Uk,2 + (1− γ1)I,

and the Halpern method, Qin et al. [25] introduced the following method,
u, x1 ∈ C, any elements,
yk = αkx

k + (1− αk)Wkx
k,

xk+1 = λku+ (1− λk)yk,
(1.8)

and proved that if the parameters λk and αk satisfy conditions (C1)-(C3),
then the sequence {xk}, defined by (1.8), converges strongly in a reflexive and
strictly convex Banach space X, which also has a weak continuous duality
mapping.

Variational inequalities over the fixed point set of nonexpansive mappings
play an important role in solving practical problems such as the signal recovery
problem, beamforming problem, power control problem, bandwidth allocation
problem, and finance problem (see, e.g., [14]-[18]). In order to solve the class of
variational inequalities, in 2001, Yamada [34] introduced the hybrid steepest-
descent method,

xk+1 =
(
I − λk+1µA

)
Fxk,

and proved a strong convergence theorem, when the parameter λk satisfies
(C1), (C2) and (i) in Theorem 1.2, µ ∈ (0, 2η/L2), and the mapping A is
η-strongly monotone and L-Lipschitz continuous on H. Methods for solving
the class of variational inequalities are intensively investigated (see, [2, 6, 7, 8,
11, 19, 21, 29, 31, 35, 39, 40] and references therein). Very recently, in order
to solve (1.1), Buong et al. [8] proposed the following better iterations

xk+1 = (1− αk)xk + αkSk(I − λkA)xk

and

xk+1 = (1− αk)Skx
k + αk(I − λkA)xk,
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where the mapping Sk is defined by

Sk =

k∑
i=1

siFi/s̃k, si > 0, s̃k =

k∑
i=1

si and

∞∑
i=1

si = s̃ <∞, (1.9)

the parameters αk, λk satisfy the condition

0 < lim inf
k→∞

αk ≤ lim sup
k→∞

αk < 1,

(C1) and (C2). In [5], Buong et al. introduced a new simple, strongly con-
vergent, parallel and explicit iterative method,{

x1 ∈ X, any element,

xk+1 = (I − λkA)S̃k(xk), k ≥ 1,
(1.10)

where S̃k is defined by

S̃k =

k∑
i=1

siF
i/s̃k, F

i = αiI + (1− αi)Fi, (1.11)

with αi ∈ (0, 1) and si satisfies the conditions in (1.9).

In this paper, to solve the problem (1.1)-(1.2), motivated by (1.6)-(1.10)
and the result in [9], we consider the following method,{

x1 ∈ X, any element,
xk+1 = (I − λkA)

(
αkI + (1− αk)Bk

)
xk, k ≥ 1,

(1.12)

that is a combination of the steepest-descent method and Krasnosel’skii–Mann
method. We shall prove the strong convergence of {xk}, generated by (1.12),
to u∗, solving (1.1) with conditions (C1)-(C3). Next, we show that method
(1.12) contains (1.6), (1.8) and an improvement of (1.11), as special cases.

The paper is organized as follows. In Section 2, we list some related facts
that will be used latter our result. In Section 3, we prove a strong convergence
result for (1.12) and show that modified Krasnosel’skii–Mann type method
can be deduced from our result.

2. Preliminaries

Let X be a real Banach space and let X∗ be its dual space. For the sake of
simplicity, the norms of X and X∗ are denoted by ‖·‖. Let J be the normalized
duality mapping of X. It is well known that if x 6= 0, then J(−x) = −J(x)
and J(tx) = tJ(x) for all t > 0. Let A : X → X be a mapping. A is said
to be η-strongly accretive and γ-strictly pseudocontractive when the following
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conditions are satisfied:

〈Ax1 −Ax2, j(x1 − x2)〉 ≥ η‖x1 − x2‖2, (2.1)

〈Ax1 −Ax2, j(x1 − x2)〉 ≤ ‖x1 − x2‖2 − γ‖(I −A)x1 − (I −A)x2‖2, (2.2)

for all x1, x2 ∈ X and some element j(x1 − x2) ∈ J(x1 − x2), where I denotes
the identity mapping of X, η and γ ∈ (0, 1) are some positive constants.
Clearly, if A is γ-strictly pseudocontractive, then ‖Ax1 − Ax2‖ ≤ L‖x1 − x2‖
with L = 1 + 1/γ and, in this case, A is called to be L-Lipschitz continuous.
In addition, if L ∈ [0, 1), then A is called to be contractive.

Let S1(0) := {x ∈ X : ‖x‖ = 1}. The space X is said to have a Gâteaux
differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.3)

exists for each x, y ∈ S1(0). Such a space X is also called a smooth Banach
space. The space X is said to have a uniformly Gâteaux differentiable norm if
the limit is attained uniformly for x ∈ S1(0). The norm of X is called Fréchet
differentiable, if for all x ∈ S1(0), the limit in (2.3) is attained uniformly for
y ∈ S1(0). The norm of X is called to be uniformly Fréchet differentiable
(and X is called uniformly smooth) if the limit is attained uniformly for all
x, y ∈ S1(0). It is well known that every uniformly smooth real Banach space
is reflexive and has a uniformly Gâteaux differentiable norm [12].

Recall that a Banach space X is said to be
(i) uniformly convex if for any 0 < ε ≤ 2, the inequalities ‖x‖ ≤ 1,
‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply that there exists a δ = δ(ε) ≥ 0 such
that ‖(x+ y)/2‖ ≤ 1− δ;

(ii) strictly convex if for all x, y ∈ S1(0) with x 6= y

‖(1− λ)x+ λy‖ < 1 for all λ ∈ (0, 1).

It is well known that each uniformly convex Banach space X is reflexive and
strictly convex. If the norm of X is uniformly Gâteaux differentiable, then J
is a norm to weak star uniformly continuous mapping on each bounded subset
of X, and if X is smooth, then the duality mapping is single-valued. In the
sequel, we shall denote by j the single-valued normalized duality mapping.

Lemma 2.1. ([11]) Let X be a smooth real Banach space and let A : X →
X be an η-strongly accretive and γ-strictly pseudocontractive mapping with
η + γ > 1. Then, for any λ ∈ (0, 1), I − λA is a contraction with constant

1− λτ , where τ = 1−
√

(1− η)/γ. Furthermore, I −A is a contraction with
constant 1− τ .
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Lemma 2.2. ([11]) Let X be a smooth real Banach space. Then, the following
inequality holds

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀x, y ∈ X.

Lemma 2.3. ([32]) Let {ak} be a sequence of nonnegative real numbers sat-
isfying the conditions

ak+1 ≤ (1− bk)ak + bkck

for all k, where {bk} and {ck} are sequences of real numbers such that bk ∈
[0, 1] for all k,

∑∞
k=1 bk =∞, and lim supk→∞ ck ≤ 0. Then, limk→∞ak = 0.

Lemma 2.4. ([28]) Let {xk} and {zk} be bounded sequences in a Banach space
X such that

xk+1 = ηkx
k + (1− ηk)zk

for k ≥ 0, where the sequence {ηk} satisfies the condition

0 < lim inf
k→∞

ηk ≤ lim sup
k→∞

ηk < 1.

Assume that

lim sup
k→∞

(
‖zk+1 − zk‖ − ‖xk+1 − xk‖

)
≤ 0.

Then limk→∞ ‖xk − zk‖ = 0.

Let µ be a continuous linear functional on l∞ and let a = (a0, a1, · · · ) ∈
l∞. We write µk(ak) instead of µ((a0, a1, · · · )). We recall that µ is a Banach
limit when µ satisfies ‖µ‖ = µk(1) = 1 and µk(ak+1) = µk(ak) for each
(a0, a1, · · · ) ∈ l∞. For a Banach limit µ, we know that lim infk→∞ ak ≤
µk(ak) ≤ lim supk→∞ ak, for all (a0, a1, · · · ) ∈ l∞. If b = (b0, b1, · · · ) ∈ l∞ and
ak → c (respectively, ak − bk → 0), as k → ∞, we have µk(ak) = µ(a) = c
(respectively, µk(ak) = µk(bk)).

Lemma 2.5. ([30]) Let C be a closed and convex subset of a Banach space X
whose norm is uniformly Gâteaux differentiable. Let {xk} be a bounded subset
of X, let z be an element of C and let µ be a Banach limit. Then,

µk‖xk − z‖2 = min
x∈C

µk‖xk − u‖2

if and only if µk〈u− z, j(xk − z)〉 ≤ 0 for all u ∈ C.
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3. Main results

First of all, we prove the following statement.

Proposition 3.1. Let A be an η-strongly accretive and γ-strictly pseudocon-
tractive mapping with η+γ > 1 in a uniformly smooth Banach space X. For a
fixed nonexpansive mapping F on X and each t ∈ (0, 1), choose two numbers
αt ∈ (a, b) ⊂ (0, 1) and λt ∈ (0, 1) arbitrarily such that λt → 0 as t → 0 and
let {yt} be defined by

yt = (I − λtA)F tyt, F t = αtI + (1− αt)F. (3.1)

Then, the net {yt} converges strongly to u∗, solving (1.1) with C = Fix(F ),
assumed to be nonempty, as t→ 0.

Proof. Consider the mapping Bt = (I − λtA)F t for each t ∈ (0, 1). From
Lemma 2.1 and the property of F , it follows that

‖Btx−Bty‖ = ‖(I − λtA)F tx− (I − λtA)F ty‖
≤ (I − λtτ)‖F tx− F ty‖
≤ (1− λtτ)

[
αt‖x− y‖+ (1− αt)‖Fx− Fy‖

]
≤ (1− λtτ)‖x− y‖, ∀x, y ∈ X.

Thus, Bt is a contraction in A. By Banach’s Contraction Principle, there
exists a unique element yt ∈ A, satisfying (3.1). Next, we show that {yt} is
bounded. Indeed, for any point p ∈ Fix(F ), we have p = F tp, and hence, by
virtue of Lemmas 2.1 and 2.2,

‖yt − p‖2 = ‖(I − λkA)F tyt − p‖2

= ‖(I − λtA)F tyt − (I − λtA)F tp− λtAp‖2

≤ (1− λtτ)‖yt − p‖2 − 2λt
〈
Ap, j(yt − p)

〉
≤ −2

τ

〈
Ap, j(yt − p)

〉
.

(3.2)

Therefore, {yt} is bounded. So, are the nets {Fyt} and {AF tyt}. Take a
sequence {tm} in (0, t0) that converges to 0 as m → ∞, we have a sequence
{ym} and a functional ϕ(x), defined by (3.1) and ϕ(x) = µm‖ym − x‖2 for
all x ∈ X. We see that ϕ(x) → ∞ as ‖x‖ → ∞ and ϕ is continuous and
convex. So as X is reflexive, there exists an element ỹ ∈ X such that ϕ(ỹ) =
minx∈X ϕ(x), i.e., the set

C∗ = {u ∈ X : ϕ(u) = min
x∈X

ϕ(x)} 6= ∅.

It is easy to see that C∗ is a bounded, closed and convex subset in X (see,
[1]). Further, from (3.1), λm := λtm → 0 and the boundedness of the sequence
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{AFmym} with Fm = αmI + (1− αm)F and αm = αtm , it follows that

‖ym − Fmym‖ = λm‖AFmym‖ → 0 as m→∞. (3.3)

Since ‖ym−Fym‖ = λm‖AFmym‖/(1−αm) and αm ∈ (a, b) ⊂ (0, 1), we have

lim
m→∞

‖ym − Fym‖ = 0.

On the other hand, from the properties of a Banach limit, we can write

ϕ(F ỹ) = µm‖ym − F ỹ‖2 = µm‖Fym − F ỹ‖2 ≤ µm‖ym − ỹ‖2 = ϕ(ỹ),

which means that FC∗ ⊆ C∗, or, C∗ is invariant under the nonexpansive
mapping F . So, we have that

F has a fixed point, say p̃, in C∗. (3.4)

It means that p̃ ∈ Fix(F ) ∩ C∗. Now, from Lemma 2.5, we know that p̃ is a
minimizer of ϕ(x) on X, if and only if

µm〈x− p̃, j(ym − p̃)〉 ≤ 0, ∀x ∈ X. (3.5)

Taking x = −Ap̃ + p̃ in (3.5) and replacing yt with p in (3.2) by ym with p̃,
respectively, we obtain that µm‖ym−p̃‖2 = 0. Thus, there exists a subsequence
{yml} of {ym} which converges strongly to p̃ as l → ∞. Again, by virtue of
(3.2) and the norm to weak star continuous property of the normalized duality
mapping j on bounded subsets of X, we obtain that

〈Ap, j(p̃− p)〉 ≤ 0, ∀ p ∈ Fix(F ). (3.6)

Since p and p̃ belong to Fix(F ), a closed and convex subset, replacing p in
(3.6) by sp + (1 − s)p̃ for s ∈ (0, 1), using the well-known property that
j(s(p̃ − p)) = sj(p̃ − p) for s > 0, dividing by s and taking s → 0, we obtain
that

〈Ap̃, j(p̃− p)〉 ≤ 0, ∀ p ∈ Fix(F ).

The uniqueness of u∗, satisfying (1.1) with C = Fix(F ), guarantees that p̃ = u∗
and all net {yt} converges strongly to u∗ as t → ∞. This completes the
proof. �

Lemma 3.2. Let X,A and F be as in Proposition 3.1. Assume that λk and αk

satisfy conditions (C1)-(C3). Then, if the sequence {xk}, defined by (1.12),
is bounded and limk→∞ ‖xk − Fxk‖ = 0, we have

lim sup
k→∞

〈Au∗, j(u∗ − xk)〉 ≤ 0. (3.7)
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Proof. Let ym = ytm be as in the proof of Proposition 3.1. Then, by using the
definition of j and the non-expansivity of Fm, one can write

‖ym − xk‖2 = 〈(I − λmA)Fmym − xk, j(ym − xk)〉

= 〈Fmym − Fmxk, j(ym − xk)〉

− λm〈AFmym, j(ym − xk)〉+ 〈Fmxk − xk, j(ym − xk)〉

≤ ‖ym − xk‖2 − λm〈AFmym, j(ym − xk)〉+ ‖Fmxk − xk‖M̃,

where M̃ ≥ ‖ym − xk‖. Therefore,

〈AFmym, j(ym − xk)〉 ≤ ‖F
mxk − xk‖M̃

λm
=

1− αm

λm
‖xk − Fxk‖M̃.

By the assumption,

lim sup
k→∞

〈AFmym, j(ym − xk)〉 ≤ 0,

that together with (3.3) and Proposition 3.1 implies (3.7). Lemma is proved.
�

Now, we are in position to prove our main result.

Theorem 3.3. Let X be a uniformly smooth real Banach space, A : X → X
an η-strongly accretive and γ-strictly pseudocontractive mapping with η+γ > 1
and, for any k = 1, 2, · · · , Bk : X → X a nonexpansive mapping such that
∩∞k=1Fix(Bk) 6= ∅, there holds (1.2) for any bounded subset D of X and there
exists By = limk→∞Bky, for y ∈ X such that Fix(B) = ∩∞k=1Fix(Bk). Assume

that λk and αk satisfy conditions (C1)-(C3). Then, the sequence {xk}, defined
by (1.12), converges strongly to the element u∗ solving (1.1).

Proof. Put F k = αkI + (1 − αk)Bk. Since F kp = p for any point p ∈
∩∞k=1Fix(Bk) and k ≥ 1, by Lemma 2.2,

‖xk+1 − p‖ = ‖(1− λkA)F kxk − (1− λkA)F kp− λkAp‖

≤ (1− λkτ)‖xk − p‖+ λkτ‖Ap‖/τ
≤ max {‖x1 − p‖, ‖Ap‖/τ}.

Therefore, {xk} is bounded, so are the sequences {Bkx
k}, {F kxk}, {F k+1xk}

and {AF kxk}. Without any loss of generality, we assume that they are
bounded by a positive constant M1. Further, it is easy to see that

xk+1 = λk(I −A)F kxk + (1− λk)F kxk

= λk(I −A)F kxk + (1− λk)
[
αkx

k + (1− αk)Bkx
k
]

= ηkx
k + (1− ηk)zk,

(3.8)
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where

ηk = (1− λk)αk and zk =
λk(I −A)F kxk

1− ηk
+

(1− λk)(1− αk)Bkx
k

1− ηk
.

Clearly, 0 < lim infk→∞ ηk ≤ lim supk→∞ ηk < 1. Moreover, we have

λk+1(I −A)F k+1xk+1

1− ηk+1
− λk(I −A)F kxk

1− ηk

=
λk+1

1− ηk+1

[
(I −A)F k+1xk+1 − (I −A)F k+1xk

]
+

λk+1

1− ηk+1

[
(I −A)F k+1xk − (I −A)F kxk

]
+

[
λk+1

1− ηk+1
− λk

1− ηk

]
×(I −A)F kxk

and

(1− λk+1)(1− αk+1)Bk+1x
k+1

1− ηk+1
− (1− λk)(1− αk)Bkx

k

1− ηk

=
(1− λk+1)(1− αk+1)

1− ηk+1

[
Bk+1x

k+1 −Bk+1x
k
]

+
(1− λk+1)(1− αk+1)

1− ηk+1

[
Bk+1x

k −Bkx
k
]

+

[
(1− λk+1)(1− αk+1)

1− ηk+1
− (1− λk)(1− αk)

1− ηk

]
Bkx

k,

and hence,

‖zk+1 − zk‖

≤ λk+1

1− ηk+1
(1− τ1)

[
‖xk+1 − xk‖+ 2M1

]
+

∣∣∣∣ λk+1

1− ηk+1
− λk

1− ηk

∣∣∣∣2M1

+
(1− λk+1)(1− αk+1)

1− ηk+1

(
‖xk+1 − xk‖+ sup

x∈D1

‖Bk+1x−Bkx‖
)

+

∣∣∣∣(1− λk+1)(1− αk+1)

1− ηk+1
− (1− λk)(1− αk)

1− ηk

∣∣∣∣M1

≤
[
λk+1(1− τ1)

1− ηk+1
+

(1− λk+1)(1− αk+1)

1− ηk+1

]
‖xk+1 − xk‖+ c̃k,

=
λk+1(1− τ1) + (1− λk+1)(1− αk+1))

1− αk+1 + αk+1λk+1
‖xk+1 − xk‖+ c̃k,

≤ ‖xk+1 − xk‖+ c̃k,
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where D1 = D(0,M1) is the ball centered at 0 and of radius M1, and

c̃k : =
λk+1

1− ηk+1
2M1(1− τ1) +

∣∣∣∣ λk+1

1− ηk+1
− λk

1− ηk

∣∣∣∣2M1

+
(1− λk+1)(1− αk+1)

1− ηk+1
sup
x∈D1

‖Bk+1x−Bkx‖

+

∣∣∣∣(1− λk+1)(1− αk+1)

1− ηk+1
− (1− λk)(1− αk)

1− ηk

∣∣∣∣M1.

It is not difficult to verify that c̃k → 0 as k →∞. Therefore,

lim sup
k→∞

(
‖zk+1 − zk‖ − ‖xk+1 − xk‖

)
≤ 0.

By virtue of Lemma 2.4,

lim
k→∞

‖xk − zk‖ = 0. (3.9)

Thus, from (3.8) and (3.9) it follows that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(1− hk)‖zk − xk‖ = 0. (3.10)

Next, from (1.12) it follows that ‖xk+1−F kxk‖ ≤ λkM1 → 0 as k →∞. This
together with (3.10) implies

lim
k→∞

‖xk − F kxk‖ = 0.

Consequently, by (1.12) and the property of αk,

lim
k→∞

‖xk −Bkx
k‖ = 0. (3.11)

Let B : X → X be a mapping defined by By = limk→∞Bky for any y ∈ X.
Then, limk→∞ sup{‖Bky−By‖ : x ∈ D(0,M1)} = 0, by the assumption. Now,
we shall show that ‖xk − Bxk‖ → 0 as k → ∞. Indeed, it can be seen from
the assumption that if D is a nonempty and bounded subset of X, then for
ε > 0, there exists k0 > 1 such that for all k > k0

sup
y∈D
‖Bky −By‖ ≤ ε.

Taking D = {xk : k ≥ 1}, we obtain that

‖Bkx
k −Bxk‖ ≤ sup

y∈D
‖Bkx−Bx‖ ≤ ε.

This implies that ‖Bkx
k −Bxk‖ → 0 as k →∞.

On the other hand, since

‖xk −Bxk‖ ≤ ‖xk −Bkx
k‖+ ‖Bkx

k −Bxk‖,
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leading to

lim
k→∞

‖xk −Bxk‖ = 0. (3.12)

It means that {xk}, defined by (1.12), statisfies (3.7) with F replaced by B.
Now, the value ‖xk+1 − u∗‖2 can be estimated as follows.

‖xk+1 − u∗‖2 = ‖(I − λkA)F kxk − u∗‖2

= ‖(I − λkA)F kxk − (I − λkA)F ku∗ − λkAu∗‖2

≤ (1− λkτ)‖xk − u∗‖2 + 2λkτ〈Au∗, j(u∗ − xk+1)〉/τ

= (1− bk)‖xk − u∗‖2 + bkck,

(3.13)

where

bk = λkτ,

ck = 2
[
〈Au∗, j(u∗ − xk)〉+ 〈Au∗, j(u∗ − xk+1)− j(u∗ − xk)〉

]
/τ.

Since
∑∞

k=1 λk = ∞,
∑∞

k=1 bk = ∞. So, from (3.13), Lemmas 2.3, 3.2 and

the properties of j with (3.10), it follows that limk→∞ ‖xk+1− u∗‖2 = 0. This
completes the proof. �

If we assume a weaker assumption on X, namely, X is reflexive and has
a uniformly Gâteaux differentiable norm, then Theorem 3.3 remains valid
provided that the space X is also a strongly convex Banach space.

Theorem 3.4. Let X be a reflexive and strongly convex Banach space with a
uniformly Gâteaux differentiable norm. Let A,F , and C be as in Proposition
3.1. Assume that the parameters αk, λk are as in Theorem 3.3. Then, the
sequence {xk}, defined by (1.12) converges strongly to the unique solution u∗
of the variational inequality (1.1).

Proof. Since a uniformly smooth real Banach space is reflexive and has a
uniformly Gâteaux differentiable norm, the proof of Proposition 3.1 is still
correct under the weaker conditions that X is a reflexive Banach space with
a uniformly Gâteaux differentiable norm except for the property (3.4): F has
a fixed point in C∗. This property holds true in a uniformly smooth Banach
space. So to obtain Proposition 3.1 it remains to prove (3.4) in a reflexive
strictly convex Banach space X. Since any closed convex subset in X is a
Chebyshev set (see [20]), for any fixed point of F , there exists a unique ỹ ∈ C∗
such that

‖y − ỹ‖ = inf
x∈C∗

‖y − x‖.

Since y = Fy, T ỹ ∈ C∗ and F is nonexpansive,

‖y − F ỹ‖ = ‖Fy − F ỹ‖ ≤ ‖y − ỹ‖.
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Consequently, F ỹ = ỹ and Theorem 3.3 is also valid in a reflexive and strictly
convex Banach space with a uniformly Gâteaux differentiable norm. This
completes the proof. �

Remark 3.5. Theorems 3.3 and Theorem 3.4 still hold true for the following
iteration: {

y1 ∈ X, any element,
yk+1 =

(
αkI + (1− αk)Bk

)
(I − λkA)yk, k ≥ 1,

(3.14)

with the same conditions on X,A,Bk, λk, and αk. Indeed, putting yk = (αkI+
(1− αk)Bk

)
xk in (1.12) we obtain that

yk+1 =
(
αk+1I + (1− αk+1)Bk

)
(I − λkA)yk.

Re-denoting αk := αk+1, we obtain (3.14). Moreover, if λk → 0 then {xk}
is convergent if and only if {yk} does so and their limits coincide. Indeed,
from (1.12), it follows that ‖xk+1 − yk‖ ≤ λk‖Ayk‖. Therefore, when {xk}
is convergent, {xk} is bounded, and hence {yk} is bounded. Consequently,
{Ayk} is also bounded. Since λk → 0 as k →∞, from the last inequality and
the convegence of {xk} it follows that convergence of {yk} and their limits
coincide. The case, when {yk} converges, is similar.

If A = (1− a)I with a fixed number a ∈ (0, 1), we can write that A = I − f
with f = aI and A is an η-strongly accretive and γ-strictly pseudocontractive
mapping on X with some positive numbers η and γ such that η + γ > 1.
Indeed,

〈Ax−Ay, j(x− y)〉 = (1− a)‖x− y‖2

= ‖x− y‖2 − 1

a
‖ax− ay‖2 = ‖x− y‖2 − 1

a
‖fx− fy‖2

= ‖x− y‖2 − 1

a
‖(I −A)x− (I −A)y‖2

≤ ‖x− y‖2 − γ‖(I −A)x− (I −A)y‖2,

γ ∈ [0, 1) is a fixed number. Clearly, η + γ > 1 for η = 1 − a and any fixed
γ ∈ (a, 1). Now, replacing A by (1 − a)I in (1.12), we obtain the following
iteration,

xk+1 = (1− λ′k)
(
αkI + (1− αk)Bk

)
xk, k ≥ 1, (3.15)

where λ′k = λk(1− a), and the following result.

Theorem 3.6. Let {Bk} be an infinite family of nonexpansive mappings on an
either uniformly smooth or reflexive and strictly convex Banach space X with a
uniformly Gâteaux differentiable norm such that ∩∞k=1Fix(Bk) 6= ∅, there holds
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(1.2) for any bounded subset D of X and there exists By = limk→∞Bky, for
y ∈ X such that Fix(B) = ∩∞k=1Fix(Bk). Assume that λk and αk satisfy

conditions (C1)-(C3). With a fixed a ∈ (0, 1), the sequence {xk}, generated
by (3.15) converges strongly to a point in ∩∞k=1Fix(Bk).

Remark 3.7. Further, replacing y and A in (3.14) by x and (1 − a)I, re-
spectively, and re-denoting λk = λ′k, we obtain algorithm (1.6). Therefore,
this algorithm converges strongly in an either reflexive and strictly convex
Banach space X with a uniformly Gâteaux differentiable norm or a uniformly
smooth one. Meantimes, Shehu and Ugwunnadi [27] obtained this result only
for uniformly smooth Banach spaces with a uniformly convex norm.

Remark 3.8. We note that the mappings Sk, S̃k and Vk defined, respectively,
by (1.9), (1.11) and

Vk = F 1F 2 · · ·F k, F i = (1− si)I + siFi, i ≤ k,
with si in (1.9) (see, [6]), satisfies condition (1.2).

Therefore, we obtain the following result.

Theorem 3.9. Let {Fi} be a nonexpansive mapping on a closed convex subset
C of an either uniformly smooth Banach space X or reflexive and strictly con-
vex one with a uniformly Gâteaux differentiable norm such that ∩∞i=1Fix(Fi) 6=
∅. Assume that λk and αk satisfy conditions (C1)-(C3). Then, the sequence
{xk}, generated by 

x1 ∈ C, any element,

yk = αkx
k + (1− αk)Ṽkx

k,
xk+1 = λ′ku+

(
1− λ′k

)
yk, k ≥ 1,

(3.16)

where Ṽk is one of {Wk, Sk, S̃k, Vk} defined above, converges strongly to a point
in ∩∞i=1Fix(Fi).
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