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Abstract. For solving a variational inequality problem over the common fixed point set of an
infinite family of nonexpansive mappings on uniformly smooth Banach spaces or reflexive and
strictly convex ones with a uniformly Gateaux differentiable norm, we consider an explicit
iteration method, based on the steepest-descent and Krasnosel’skii-Mann algorithms. We
also show that some modifications of the last are special case of our result.

1. INTRODUCTION

Let X be a Banach space with the dual space X*. For the sake of simplicity,
the norms of X and X* are denoted by ||.||. We use (x,z*) instead of z*(x)
for x* € X* and z € X. Let A : X — X be an n-strongly accretive and -
strictly pseudocontractive mapping. Let {By} be a countably infinite family
of nonexpansive mappings on X such that C' := N, Fix(By) # 0, where
Fix(By) = {z € X : x = Bz}, the set of fixed points for By.

In this paper, our aim is to find a point u, € X such that

us € C: (Auy, j(ue —u)) <0, YVueC, (1.1)
where { By} satisfies the following conditions:
lim sup ||Bgy1x — Bzl =0 (1.2)
k—00 zcD
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for any bounded subset D of X and
Fix(B) := Nj2,Fix(By) with By = klim By for y € X.
—00

Recall that an operator A with domain D(A) and range R(A) in X is said
to be accretive when for each z1,z9 € D(A), it holds

<A.’L’2 - A.’Ifl,j(.TQ - x1)> > 07

where j(xo — 1) € J(xo2 — 21), and J denotes the duality map from X to its
dual space X* defined by

J(@) ={z" € X7 (z,27) = [lz[[[[«"[] and {l2"] = [l]]}.

Clearly, when C' = X (B = I for all k > 1), (1.1) is the operator equation
Az = 0. In order to find a solution of an n-strongly accretive and Lipschitz
continuous mapping A, whose D(A) = X, a uniformly smooth Banach space,
we can use the steepest-descent method, ! € X any element and

oM = (I = Ak, k> 1, (1.3)

where )\, satisfies the conditions

(C].) A € (0, 1), limg_oo A = 0, and

(C2) >pi Ak =00
(see [33, 37, 38] for details). Computing the set of fixed points of nonexpansive
mappings is an important issue in the theory of nonlinear analysis giving rise
to numerous applications in applied areas such as in image recovery and signal
processing (see, for example, [4, 10]).

Among the fundamental methods for finding a fixed point of a nonexpansive
mapping F over a closed convex subset C' of a Hilbert space H, we would like to
refer to the Krasnosel’skii-Mann method [23, 24], %! = (1 — ay)2* 4 oy F 2,
and the Halpern method [13, 28], 2%+ = aju+(1—ay)FzF with any u, 2! € C
and aj € (0,1) under some conditions on aj. In these methods, mappings
which are contractions over C' play an important role.

Recently, Yao et al. [36] proposed a modification of the Krasnosel’skii—
Mann algorithm. In their method, two sequences {z*} and {y*} are built
from a starting point x! as follows:

aF = (1 - ar)y® + apFy, '
and proved that if Fix(F) # (), where F is a nonexpansive mapping on H, the
parameter \j satisfies conditions (C1), (C2), and oy, satisfy condition:
(C3) ai € [a,b] C (0,1),
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then the sequence {z*}, generated by (1.4), converges strongly to a fixed point
of F. This sequence {z*} is strongly convergent to a fixed point of the operator
F, provided that F' is nonexpansive, Fix(F') is nonempty and further several
conditions are satisfied by the sequences of parameters {\;} and {a} (see
also [22, 28]). Note that similar results were obtained by Buong et al. [9] and
Shehu [26] when the Hilbert space is replaced by a uniformly convex Banach
space having a uniformly Gateaux differentiable norm.

Very recently, Shehu and Ugwunnadi [27] extended (1.4) to an infinite fam-
ily of nonexpansive mappings on a uniformly convex and uniformly smooth
Banach space X and proved the following result.

Theorem 1.1. Let X be a uniformly convex real Banach space which is also
uniformly smooth. For any k =1,2,---, let By : X — X be a nonexpansive
mapping such that N2 Fix(By,) # 0, there holds

[ee]

Z sup ||Bg+1x — Brz|| < oo, (1.5)

k1 xzeD
for any bounded subset D of X and there exists a nonerpansive mapping B
such that By = limy_,oc By for y € X with Fix(B) = N2 Fix(By). Let the
sequences {x*} and {y*} be generated by

zl € X, any element,
y* = (1 - )", (1.6)
$k+1 — (1 _ ak)yk + OékBkyk,

where A\, and oy, are in [0, 1] and satisfy (C1)-(C3). Then, the sequences {z*}
and {y*} converge to a point in N Fix(By,).

On the other hand, in order to find a common fixed point of an infinite
family of nonexpansive mappings Bj on a closed and convex subset C' of a
Banach space X, Aoyama et al. [3] proposed a modification of the Halpern
method,

zl =wu e C, any element, 17
{ 2R = Npu + (1 — \g) Bra®, (1.7)

and proved the following result.

Theorem 1.2. Let X be a real uniformly convexr Banach space whose norm
s uniformly Gateaux differentiable and C be a nonempty closed convex subset
of X. Let {By} be a sequence of nonexpansive mappings of C into itself such
that NP2, Fix(By) # 0 and there holds (1.2). Let the parameter A\, € [0,1]
satisfy (C1), (C2) and either

() 22521 [Aks1 — Ak| < o0 or

(ii) Mg € (0,1] for all k > 1 and limg_yo0 (Ak/Ag+1) = 1.
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Then, the sequence {x*}, defined by (1.7), converges to a point in N2, Fix(By).

For a given family {F;} of nonexpansive mapping F; on C, in order to
overcome conditions (i), (ii) in the Theorem 1.2 and condition (1.2), by using
Wi-mapping, generated by Fy, Fi,_1,- -+, F1 and real numbers vy, vx—1, - , V1
as follows:

Ugpy1 =1,
Ui = W EFrUkp+1 + (1 — ),
Uk k=1 = Ye—1F—1Up e + (1 — yi—1)1,

Uk = 12 F2Uks + (1 —y2)1,
Wi =Ug1 =F1Ug2+ (1 —m)I,

and the Halpern method, Qin et al. [25] introduced the following method,

u,z' € C, any elements,
v = apa® + (1 — ap)Wya”, (1.8)
ij—H = )\ku + (1 — )\k)yk,

and proved that if the parameters \; and «j satisfy conditions (C1)-(C3),
then the sequence {z*}, defined by (1.8), converges strongly in a reflexive and
strictly convex Banach space X, which also has a weak continuous duality
mapping.

Variational inequalities over the fixed point set of nonexpansive mappings
play an important role in solving practical problems such as the signal recovery
problem, beamforming problem, power control problem, bandwidth allocation
problem, and finance problem (see, e.g., [14]-[18]). In order to solve the class of
variational inequalities, in 2001, Yamada [34] introduced the hybrid steepest-
descent method,

ZF = (I — /\k+1,uA)F:U’“,
and proved a strong convergence theorem, when the parameter A satisfies
(C1), (C2) and (i) in Theorem 1.2, u € (0,2n/L?), and the mapping A is
n-strongly monotone and L-Lipschitz continuous on H. Methods for solving
the class of variational inequalities are intensively investigated (see, [2, 6, 7, 8,
11, 19, 21, 29, 31, 35, 39, 40] and references therein). Very recently, in order
to solve (1.1), Buong et al. [8] proposed the following better iterations

o = (1 — Oék):lik + OékSk(I - )\kA).%k

and
karl = (1 — (lk)Skxk + Ckk(I — AkA)l'k,
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where the mapping S, is defined by

k k

Sk:ZsiFi/ék, s; > 0, §k:Zsi and isi:§<oo, (1.9)

i=1 i=1 i=1
the parameters aj, A satisfy the condition

0 < liminf af < limsup a < 1,
k—oco k—so0

(C1) and (C2). In [5], Buong et al. introduced a new simple, strongly con-
vergent, parallel and explicit iterative method,

r1 € X, any eleglent, (1.10)
iL'k+1 = (I - )\kA)Sk(:Bk), k > 1, '
where S, is defined by
Se=Y_ siF' /&, F'=aid + (1 —a)F, (1.11)
i=1

with «; € (0,1) and s; satisfies the conditions in (1.9).

In this paper, to solve the problem (1.1)-(1.2), motivated by (1.6)-(1.10)
and the result in [9], we consider the following method,

{ r1 € X, any element,

o= (I = MeA) (e + (1 — ag)By)a®, k> 1, (1.12)

that is a combination of the steepest-descent method and Krasnosel’skii-Mann
method. We shall prove the strong convergence of {z*}, generated by (1.12),
to uy, solving (1.1) with conditions (C1)-(C3). Next, we show that method
(1.12) contains (1.6), (1.8) and an improvement of (1.11), as special cases.

The paper is organized as follows. In Section 2, we list some related facts
that will be used latter our result. In Section 3, we prove a strong convergence
result for (1.12) and show that modified Krasnosel’skii-Mann type method
can be deduced from our result.

2. PRELIMINARIES

Let X be a real Banach space and let X* be its dual space. For the sake of
simplicity, the norms of X and X* are denoted by ||-||. Let J be the normalized
duality mapping of X. It is well known that if x # 0, then J(—xz) = —J(x)
and J(tx) = tJ(x) for all t > 0. Let A: X — X be a mapping. A is said
to be n-strongly accretive and y-strictly pseudocontractive when the following
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conditions are satisfied:

(Azy — Ay, j(z1 — 22)) > 921 — 2], (2.1)
(A — Aa, j(o1 — 02)) < s — a2l = [[(T = A — (I = A)a?, (2:2)

for all z1,z9 € X and some element j(z1 — x2) € J(x1 — x2), where I denotes
the identity mapping of X, n and v € (0,1) are some positive constants.
Clearly, if A is v-strictly pseudocontractive, then ||Az; — Axs|| < L||lx; — 22|
with L = 1+ 1/ and, in this case, A is called to be L-Lipschitz continuous.
In addition, if L € [0,1), then A is called to be contractive.

Let S1(0) := {z € X : ||z|| = 1}. The space X is said to have a Gateaux
differentiable norm if the limit

t —
ety — o]

t—0 t (2.3)

exists for each x,y € S1(0). Such a space X is also called a smooth Banach
space. The space X is said to have a uniformly Gateaux differentiable norm if
the limit is attained uniformly for = € S1(0). The norm of X is called Fréchet
differentiable, if for all z € S1(0), the limit in (2.3) is attained uniformly for
y € S1(0). The norm of X is called to be uniformly Fréchet differentiable
(and X is called uniformly smooth) if the limit is attained uniformly for all
z,y € S1(0). It is well known that every uniformly smooth real Banach space
is reflexive and has a uniformly Gateaux differentiable norm [12].

Recall that a Banach space X is said to be
(i) uniformly convex if for any 0 < ¢ < 2, the inequalities ||z| < 1,
lyll <1 and ||z — y|| > € imply that there exists a § = d(¢) > 0 such
that [|(z +y)/2|| <1-6;
(ii) strictly convex if for all z,y € S1(0) with = # y

[(1—=MNz+ Ayl <1 forall e (0,1).

It is well known that each uniformly convex Banach space X is reflexive and
strictly convex. If the norm of X is uniformly Gateaux differentiable, then J
is a norm to weak star uniformly continuous mapping on each bounded subset
of X, and if X is smooth, then the duality mapping is single-valued. In the
sequel, we shall denote by j the single-valued normalized duality mapping.

Lemma 2.1. ([11]) Let X be a smooth real Banach space and let A : X —
X be an n-strongly accretive and ~y-strictly pseudocontractive mapping with
n+~v > 1. Then, for any A € (0,1), I — XA is a contraction with constant
1 — A7, where 1 =1 — /(1 —n)/vy. Furthermore, I — A is a contraction with

constant 1 — T.



A steepest-descent Krasnosel’skii-Mann algorithm 661

Lemma 2.2. ([11]) Let X be a smooth real Banach space. Then, the following
inequality holds

lz +yl* < el + 2y, i@ +y), VYa,yeX.

Lemma 2.3. ([32]) Let {ay} be a sequence of nonnegative real numbers sat-
isfying the conditions

apr1 < (1 = bg)ag + brey

for all k, where {by} and {ci} are sequences of real numbers such that by €
0,1] for all k, > 72, by = 00, and limsupy,_, ., ¢k < 0. Then, limy_oa = 0.

Lemma 2.4. ([28]) Let {z*} and {z*} be bounded sequences in a Banach space
X such that

aF T =t 4 (1 — )2

for k >0, where the sequence {ny} satisfies the condition

0 < liminfn, < limsupn, < 1.
k—o0 k—o0

Assume that

limsup (|| 2" — 2F|| — [|l2*T — 2¥))< 0.
k—o00

Then limy_,« ||2% — 2¥|| = 0.

Let o be a continuous linear functional on [*° and let a = (ag,a1,---) €
. We write ug(ax) instead of p((ag,a1,---)). We recall that p is a Banach
limit when p satisfies ||p|| = prp(1) = 1 and pg(ag+1) = pr(ar) for each
(ag,a1,--+) € 1°°. For a Banach limit u, we know that liminfy . ar <
pr(ar) < limsupy_, . ag, for all (ag,aq,---) € 1. If b= (by,b1,---) € I> and
ar, — c (respectively, ay — b — 0), as k — oo, we have pg(ar) = pa) = ¢
(respectively, ux(ax) = pk(br))-

lOO

Lemma 2.5. ([30]) Let C be a closed and convex subset of a Banach space X
whose norm is uniformly Gateaux differentiable. Let {x*} be a bounded subset
of X, let z be an element of C' and let p be a Banach limit. Then,

il = 2|1* = min oy |2 — ul|?

if and only if pp(u — z, j(xF — 2)) <0 for all u € C.
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3. MAIN RESULTS

First of all, we prove the following statement.

Proposition 3.1. Let A be an n-strongly accretive and ~y-strictly pseudocon-
tractive mapping with n+~ > 1 in a uniformly smooth Banach space X. For a
fized nonexpansive mapping F on X and each t € (0,1), choose two numbers
at € (a,b) C (0,1) and A\ € (0,1) arbitrarily such that \y — 0 ast — 0 and
let {y'} be defined by

y' = - MAF'Y', F'=aql+ (1 —a)F. (3.1)

Then, the net {y'} converges strongly to u*, solving (1.1) with C' = Fix(F),
assumed to be nonempty, as t — 0.

Proof. Consider the mapping B; = (I — MA)F! for each t € (0,1). From
Lemma 2.1 and the property of F, it follows that
B — Beyll = (I = MA)F'z — (I = M A)F'y|
< (I = NeT)|[Ffz — Fly||
< (1= Nr) [l — yll + (1 — )| Fa = Fyl]
<A=A7)llz—yll, VryeX
Thus, By is a contraction in A. By Banach’s Contraction Principle, there
exists a unique element y' € A, satisfying (3.1). Next, we show that {y'} is

bounded. Indeed, for any point p € Fix(F), we have p = F'p, and hence, by
virtue of Lemmas 2.1 and 2.2,

Iy = plI> = |(I = MA)F'y" — pl|®

= ||(I = MA)Flyt — (I — \A)F'p — N\ Ap||?

< (1= )l — plI? — 27 (Ap, j(y' — p)) (3:2)
j;(ApJ(f-—pD-

Therefore, {y'} is bounded. So, are the nets {Fy'} and {AF'y'}. Take a
sequence {t,,} in (0,%p) that converges to 0 as m — oo, we have a sequence
{y™} and a functional (), defined by (3.1) and @(x) = pn|y™ — z||* for
all x € X. We see that p(z) — oo as ||z|| — oo and ¢ is continuous and
convex. So as X is reflexive, there exists an element § € X such that ¢(g) =
mingex p(x), i.e., the set

C*={ueX:p)

IN

min p(z)} # 0.

xe

It is easy to see that C* is a bounded, closed and convex subset in X (see,
[1]). Further, from (3.1), Ay, := Ay, — 0 and the boundedness of the sequence
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{AF™y™} with F™™ = oy + (1 — apy)F and ay, = oy, it follows that
[y™ — F™y™|| = A | AF™y™| = 0 as m — occ. (3.3)
Since ||[y™ — Fy™|| = M| AF™y™|| /(1 — o) and auy, € (a,b) C (0,1), we have
i {|y™ — Fy™|| = 0.
On the other hand, from the properties of a Banach limit, we can write

P(Fj) = pm|ly™ — FG1* = pm|Fy™ — Fyl1> < pmlly™ — 3]* = (7).

which means that FFC* C C*, or, C* is invariant under the nonexpansive
mapping F'. So, we have that

F has a fixed point, say p, in C*. (3.4)

It means that p € Fix(F) N C*. Now, from Lemma 2.5, we know that p is a
minimizer of ¢(z) on X, if and only if

pm{x —p,j(y"™ —p)) <0, VzelX. (3.5)

Taking = —Ap + p in (3.5) and replacing y' with p in (3.2) by y™ with p,
respectively, we obtain that ji,,||y™ —5||? = 0. Thus, there exists a subsequence
{y™} of {y™} which converges strongly to p as [ — co. Again, by virtue of
(3.2) and the norm to weak star continuous property of the normalized duality
mapping 7 on bounded subsets of X, we obtain that

(Ap,j(p—p)) <0, Vp e Fix(F). (3.6)

Since p and p belong to Fix(F'), a closed and convex subset, replacing p in
(3.6) by sp+ (1 — s)p for s € (0,1), using the well-known property that
Jj(s(p—p)) = sj(p—p) for s > 0, dividing by s and taking s — 0, we obtain
that

The uniqueness of u,, satisfying (1.1) with C' = Fix(F’), guarantees that p = u,

and all net {y’} converges strongly to u, as t — oo. This completes the
proof. O

Lemma 3.2. Let X, A and F' be as in Proposition 3.1. Assume that A\, and
satisfy conditions (C1)-(C3). Then, if the sequence {x*}, defined by (1.12),
is bounded and limy_,« [|2* — F2*| = 0, we have

lim sup( A, j(u, — z¥)) < 0. (3.7)

k—o0
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Proof. Let y™ = y'™ be as in the proof of Proposition 3.1. Then, by using the
definition of j and the non-expansivity of F"", one can write

ly™ = 2|2 = (I = A A)F™y™ — 2, j(y™ — a))
= (F™y™ — F"ab,j(y" — a¥)
— A AF™y™ jy™ — b)) + (Frak =ty - at))
< ly™ = ¥ [P = X (AF™ Y™, G (y™ — aF)) + | FTat — ¥ M,
where M > [|y™ — z*|. Therefore,

< | Emak — k|| M l—ap

AF™q™ (g™ — k
(AF™y™ j(y™ — z%)) N N

% — Fak|| M.

By the assumption,

lim sup(AF™y™, j(y™ — 2*)) <0,

k—o00
that together with (3.3) and Proposition 3.1 implies (3.7). Lemma is proved.
]

Now, we are in position to prove our main result.

Theorem 3.3. Let X be a uniformly smooth real Banach space, A : X — X
an n-strongly accretive and y-strictly pseudocontractive mapping with n+~y > 1
and, for any k = 1,2,---, B : X — X a nonexpansive mapping such that
N2 Fix(By) # 0, there holds (1.2) for any bounded subset D of X and there
exists By = limy,_,o0 Biy, fory € X such that Fix(B) = N2, Fix(By). Assume
that A\ and oy, satisfy conditions (C1)-(C3). Then, the sequence {x*}, defined
by (1.12), converges strongly to the element u, solving (1.1).

Proof. Put F¥ = o4I + (1 — a;)Byg. Since FFp = p for any point p €
Ny, Fix(By) and k > 1, by Lemma 2.2,

[ — p|| = [[(1 = MeA)FFa® — (1 — A A)FFp — M\ Ap|
< (1= Me7)ll2" = pll + A7l Apl /7
< max {|lz" —pl|, || Apll/7}.

Therefore, {x*} is bounded, so are the sequences { Byz*}, {Fka*}, {FF+1zk}
and {AF*z*F}. Without any loss of generality, we assume that they are
bounded by a positive constant M;. Further, it is easy to see that

e = N (I — A)F*ab 4 (1 — N FRak
= )\k(f — A)Fkl'k + (1 - )\k) [Ozkl‘k + (1 — ak)kak] (3.8)
= kaﬂk + (1 - le)zk7
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where

N = (1 — A\g)ayg, and k=
( ) L —ng 1=

Clearly, 0 < liminfy_, oo nx < limsupy_, ., 7 < 1. Moreover, we have

Appr (I — AR 6 (1 — A)FFgh

1 — k41 1 —ny
A
= KL (1 — A)FMRL (T — A) R
L= My
A
+ (1 = AFFR — (1 - A)FRat]
1T — kg
A A
ML _TF (I — A)FFa
L=mpt1 11—
and
1— )1 — Byt (1 \)(1 — ag) Bak
(1= Aep1) (X = apyn) Bpaz®™ " (1= Ap) (1 — o) By
I — N4 L=y
1—A 1—
_ Tl)( i) [Brs12™t! — Byyya?]
— Nk+1
1—A 1-
N ( I;+1)( et 1) [Bii1z* — Bya®]
— NMk+1
1— Aegr)(1— 1—A)(1—
N [( k) —onga)  ( K ak)]Bkmk,
1— Ne+1 1-— Nk
and hence,
sz—&-l o Zk”
A
< DL () [fab - 2t + 2M1]+\ LMo,
1— npa1 L—=mt1 11—
1—A 1-—
n ( ii+1)( Apy1) (kaﬂ — 2| + sup || Byp1z — BMH)
= Mhk+1 z€D
1— Xpp)(1 — 1—Me)(1—
N ‘ (L= M)A —onr) (=M= ow)])
1-— Nk+-1 L=
A 1—7 1-A l-—a
__[ k1l =7) (1= Ak kﬂﬂ>]nzk+1-xkn4—ém
1 — s L= My

_ Ak (=) + (1= Apyn) (1 = agy)) 125 — 2b| + &

I — g1 + Q1 Mert
< ot — ¥ + &,

)\k(I — A)Fkxk + (1 — )\k)(l — Oék)Bk]Ik

665
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where Dy = D(0, M) is the ball centered at 0 and of radius M, and

A A A
Gpi= L onp(1—my) + | Tk lapg,
L=k L=k 1=
1—A 1-—
p U 2)B =) oy 0 s
— Nk+1 r€Dy
1—A 1— 1—Ap)(1—
Oz A = o) (A= M) o)y
L — kg L=
It is not difficult to verify that ¢ — 0 as k — oo. Therefore,
limsup (|| 2" — 2| — [|2* —2F|)< 0.
k—o00
By virtue of Lemma 2.4,
lim [|z% — 2% = 0. (3.9)
k—o00
Thus, from (3.8) and (3.9) it follows that
lim |z — 2F| = lim (1 — hy)||2* — 2| = 0. (3.10)
k—o0 k—ro0

Next, from (1.12) it follows that ||z**! — FFzk|| < \yM; — 0 as k — oo. This
together with (3.10) implies

lim [|z* — F¥2*|| = 0.
k—o00
Consequently, by (1.12) and the property of ay,
lim ||z* — Byz®|| = 0. (3.11)
k—o0

Let B : X — X be a mapping defined by By = limy_,, Bry for any y € X.
Then, limy_,o sup{||Bry—By|| : * € D(0,M;)} = 0, by the assumption. Now,
we shall show that ||z¥ — Bx¥|| — 0 as k — oo. Indeed, it can be seen from
the assumption that if D is a nonempty and bounded subset of X, then for
€ > 0, there exists kg > 1 such that for all k£ > kg

sup ||Bxy — By|| < e.
yeD

Taking D = {zj : k > 1}, we obtain that

|Bpz® — Bz*| < sup | Brz — Bz|| < e.
yeD

This implies that || Brz* — Bz*|| — 0 as k — oc.
On the other hand, since

lz* = Ba*|| < |la* — Bya|| + | Bya® — Ba*|),
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leading to
lim [|z* — B2*|| = 0. (3.12)
k—o0

It means that {z¥}, defined by (1.12), statisfies (3.7) with F' replaced by B.
Now, the value ||zFT! — u, | can be estimated as follows.

27+ = w|? = (T = A A FFa® — |
= ||(I = MeA)FFzk — (I — M\ A) FRu, — M\ Aus |
<(1- )\kT)H:Ek - U*||2 + 207 (A, J(use — 33k+1)>/7_

= (1= be)lla® — w|® + bex,

(3.13)

where
by, = \iT,
o = 2[(Auey (s — 2%)) + (Au, (0 — 1) = (e — )] /.

Since Y po ;A = 00, > poq by = 00. So, from (3.13), Lemmas 2.3, 3.2 and
the properties of j with (3.10), it follows that limy_,ee [|2¥+! — u.||?> = 0. This
completes the proof. O

If we assume a weaker assumption on X, namely, X is reflexive and has
a uniformly Géateaux differentiable norm, then Theorem 3.3 remains valid
provided that the space X is also a strongly convex Banach space.

Theorem 3.4. Let X be a reflexive and strongly convex Banach space with a
uniformly Gateauz differentiable norm. Let A, F, and C be as in Proposition
3.1. Assume that the parameters ai, A\p are as in Theorem 3.3. Then, the
sequence {x*}, defined by (1.12) converges strongly to the unique solution u.
of the variational inequality (1.1).

Proof. Since a uniformly smooth real Banach space is reflexive and has a
uniformly Gateaux differentiable norm, the proof of Proposition 3.1 is still
correct under the weaker conditions that X is a reflexive Banach space with
a uniformly Gateaux differentiable norm except for the property (3.4): F has
a fixed point in C*. This property holds true in a uniformly smooth Banach
space. So to obtain Proposition 3.1 it remains to prove (3.4) in a reflexive
strictly convex Banach space X. Since any closed convex subset in X is a
Chebyshev set (see [20]), for any fixed point of F, there exists a unique gy € C*
such that

—g|| = inf — x|
ly =gl = inf [ly — =]l
Since y = Fy, Ty € C* and F is nonexpansive,
ly — Fgll = |Fy = Fyll < [ly — 7l
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Consequently, F'g = ¢ and Theorem 3.3 is also valid in a reflexive and strictly
convex Banach space with a uniformly Gateaux differentiable norm. This
completes the proof. O

Remark 3.5. Theorems 3.3 and Theorem 3.4 still hold true for the following
iteration:

1
{ y' € X, any element, (3.14)

ka = (Ozk[ + (1 - Oék)Bk) (I - /\kA)yk, k Z 1,

with the same conditions on X, A, By, A\, and . Indeed, putting y* = (oI +
(1 — ay)Bg)zF in (1.12) we obtain that

Y = (apr I + (1 — 1) Br) (I — Mg A)yF.

Re-denoting ay, := ay,1, we obtain (3.14). Moreover, if A, — 0 then {z¥}
is convergent if and only if {y*} does so and their limits coincide. Indeed,
from (1.12), it follows that ||z** — y*|| < \z||Ay*||. Therefore, when {z*}
is convergent, {2*} is bounded, and hence {y*} is bounded. Consequently,
{Ay*} is also bounded. Since A\, — 0 as k — oo, from the last inequality and
the convegence of {z*} it follows that convergence of {y*} and their limits
coincide. The case, when {y*} converges, is similar.

If A= (1—a)l with a fixed number a € (0, 1), we can write that A =1— f
with f = al and A is an n-strongly accretive and v-strictly pseudocontractive

mapping on X with some positive numbers 1 and + such that n +~ > 1.
Indeed,

(Az— Ay, (o — ) = (1~ a)llo — g
= llz ~ yl1* ~ > llaz — ayll* = l}o — I ~ 117z~ fyll?
= llz—yll* = 2T~ Ay — (T~ Ay
< o =P = AT~ Az — (T~ Ayl

v € [0,1) is a fixed number. Clearly, n+~ > 1 for n = 1 — a and any fixed
v € (a,1). Now, replacing A by (1 — a)l in (1.12), we obtain the following
iteration,

"= (1 - M) (o] + (1 — ag)Bg)a®, k>1, (3.15)
where A} = A\g(1 — a), and the following result.
Theorem 3.6. Let { By} be an infinite family of nonexpansive mappings on an

either uniformly smooth or reflexive and strictly convexr Banach space X with a
uniformly Gateauz differentiable norm such that N2 | Fix(By,) # 0, there holds
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(1.2) for any bounded subset D of X and there exists By = limg_, o Bry, for
y € X such that Fix(B) = N2 Fix(By). Assume that A\, and oy, satisfy
conditions (C1)-(C3). With a fired a € (0,1), the sequence {z*}, generated
by (3.15) converges strongly to a point in N Fix(By).

Remark 3.7. Further, replacing y and A in (3.14) by =z and (1 — a)I, re-
spectively, and re-denoting A\, = X,, we obtain algorithm (1.6). Therefore,
this algorithm converges strongly in an either reflexive and strictly convex
Banach space X with a uniformly Gateaux differentiable norm or a uniformly
smooth one. Meantimes, Shehu and Ugwunnadi [27] obtained this result only
for uniformly smooth Banach spaces with a uniformly convex norm.

Remark 3.8. We note that the mappings Si, Sy and Vj, defined, respectively,
by (1.9), (1.11) and

Vi =F'F2...FF  F'=(1—s)I+s;F;, i <k,
with s; in (1.9) (see, [6]), satisfies condition (1.2).

Therefore, we obtain the following result.

Theorem 3.9. Let {F;} be a nonexpansive mapping on a closed convex subset
C' of an either uniformly smooth Banach space X or reflexive and strictly con-
vez one with a uniformly Gateauz differentiable norm such that N2, Fix(F;) #
0. Assume that N\, and oy, satisfy conditions (C1)-(C3). Then, the sequence
{z*}, generated by

2t € C, any element,
y* = apa® + (1 — ap) V¥, (3.16)
xhtl = AU+ (1 - )\z)yk’, E>1,

where Vj, is one of {W, Sk, Sk, Vi.} defined above, converges strongly to a point
in N2, Fix(F;).
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