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Abstract. In this paper, we introduce and study a new class of (H(., .), η)-monotone op-

erator in Banach spaces. We define the generalized η-proximal operator associated with

(H(., .), η)-monotone operator and show its Lipschitz continuity. As an application, we

consider the generalized system of variational-like inclusions involving (H(., .), η)-monotone

operators in Banach spaces and by using proximal operator technique, we construct an iter-

ative algorithm for solving this system. Also, we prove the existence of solution and discuss

the convergence analysis of the iterative algorithm for the generalized system of variational-

like inclusions. The theorems presented in this paper improve and generalize many known

results in the literature.

1. Introduction

Variational inclusions, as the generalization of variational inequalities have
been widely studied by many authors in recent years. One of the most inter-
esting and important problem in the theory of variational inequalities is the
development of an efficient and implementable iterative algorithm. Various
kinds of iterative algorithms have been studied to find solutions for variational
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inequalities and variational inclusions. Among these methods, the proximal
operator technique for solving variational inclusions have been widely used by
many authors. For further study on approximation solvability of variational
inequalities and variational inclusions, see for example [1]-[16], [18]-[20], [22],
[24]-[33] and the related references cited therein.

In the recent past many researchers see for example [4]-[8], [15,16], [18]-
[20], [22,25], [28]-[33] and the related references cited therein have introduced
the concepts of η-subdifferential operators, maximal η-monotone operators,
H-monotone operators, (H, η)-monotone operators, A-monotone operators,
(A, η)-monotone operators, G-η-monotone operators, M -monotone operators,
M -η-monotone operators in Hilbert spaces; H-monotone operators, H-η- mono-
tone operators and (H(., .), η)-monotone operators in Banach spaces, respec-
tively. By using the proximal operator technique, many systems of variational
inequalities and variational inclusions have been studied by some authors, see
for example Ding and Feng [4], Kazmi et.al., [15], Peng and Zhu [22], Zeng
[31] and the related references cited therein.

Motivated and inspired by the research works mentioned above, in this pa-
per, we introduce and study a new class of (H(., .), η)-monotone operators
in Banach spaces which provides a unifying framework for maximal mono-
tone operators, η-subdifferential operators, maximal η-monotone operators,
H-monotone operators, (H, η)-monotone operators, A-monotone operators, G-
η-monotone operators, M -monotone operators, H-η-monotone operators and
(H(., .), η)-monotone operators. We also define a generalized η-proximal op-
erator associated with (H(., .), η)-monotone operator and show its Lipschitz
continuity. As an application, we consider the solvability of a generalized sys-
tem of variational-like inclusions involving (H(., .), η)-monotone operators in
Banach spaces. By using the technique of proximal operator, we construct
an iterative algorithm for solving such generalized system of variational-like
inclusions. Under some suitable conditions, we prove the convergence of it-
erative sequences generated by the algorithm. The results presented in this
paper improve and extend many known results in the literature.

2. Preliminaries and basic results

Let X be a real Banach space with dual space X?, 〈·, ·〉 be the dual pair
between X and X?, 2X denote the family of all the nonempty subsets of X.
The normalized duality mapping J : X −→ 2X

?
is defined by

J(u) = {f ∈ X? : 〈f, u〉 = ‖f‖‖u‖, ‖f‖ = ‖u‖}, ∀u ∈ X.

If X ≡ H, a Hilbert space, then J is an identity mapping.
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Let CB(X) denotes the family of all nonempty closed and bounded subsets
of X; D(·, ·) is the Hausdorff metric on CB(X) defined by

D(A,B) = max
{

sup
u∈A

d(u,B), sup
v∈B

d(A, v)
}
, A,B ∈ CB(X).

The following concepts and results are needed in the sequel:

Definition 2.1. ([21]) Let X be a complete metric space, T : X → CB(X)
be a set-valued mapping. Then for any ε > 0 and for any u, v ∈ X, x ∈ T (u),
there exists y ∈ T (v) such that

d(x, y) ≤ (1 + ε)D(T (u), T (v)),

where D is the Hausdorff metric on CB(X).

Definition 2.2. Let A,B : X → X, T : X → X?, H : X × X → X? and
η : X ×X → X be single-valued mappings. Then ∀u, v, · ∈ X,

(i) T is monotone if 〈
Tu− Tv, u− v

〉
≥ 0.

(ii) T is strictly monotone if〈
Tu− Tv, u− v

〉
≥ 0,

and equality holds if and only if u = v.
(iii) T is α-strongly monotone if there exists a constant α > 0 such that〈

Tu− Tv, u− v
〉
≥ α‖u− v‖2.

(iv) T is γ-Lipschitz continuous if there exists a constant γ > 0 such that

‖Tu− Tv‖ ≤ γ‖u− v‖.
(v) T is η-monotone if〈

Tu− Tv, η(u, v)
〉
≥ 0.

(vi) T is strictly η-monotone if〈
Tu− Tv, η(u, v)

〉
≥ 0,

and equality holds if and only if u = v.
(vii) A is said to be δ-strongly accretive if there exists a constant δ > 0 and

j(u− v) ∈ J(u− v) such that〈
Au−Av, j(u− v)

〉
≥ δ‖u− v‖2,

where J is the normalized duality mapping.
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(viii) H(A, ·) is α1-strongly η-monotone with respect to A if there exists a
constant α1 > 0 such that〈

H(Au, ·)−H(Av, ·), η(u, v)
〉
≥ α1‖u− v‖2.

(ix) H(·, B) is α2-relaxed η-monotone with respect to B if there exists a
constant α2 > 0 such that〈

H(·, Bu)−H(·, Bv), η(u, v)
〉
≥ −α2‖u− v‖2.

(x) H(·, ·) is λ-Lipschitz continuous with respect to A if there exists a
constant λ > 0 such that

‖H(Au, ·)−H(Av, ·)‖ ≤ λ‖u− v‖.
(xi) η is τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(u, v)‖ ≤ τ‖u− v‖.

Remark 2.3. If X is a Hilbert space, η(u, v) = u − v, ∀u, v ∈ X, then (viii)
and (ix) of Definition 2.2 reduce to (i) and (ii) of Definition 1.2, respectively
in [24].

Definition 2.4. Let M : X −→ 2X
?

be a multi-valued mapping, H : X → X?

and η : X ×X → X be single-valued mappings. Then

(i) M is monotone if

〈x− y, u− v〉 ≥ 0, ∀ u, v ∈ X, x ∈M(u), y ∈M(v).

(ii) M is η-monotone if

〈x− y, η(u, v)〉 ≥ 0, ∀ u, v ∈ X, x ∈M(u), y ∈M(v).

(iii) M is strictly η-monotone if

〈x− y, η(u, v)〉 ≥ 0, ∀ u, v ∈ X, x ∈M(u), y ∈M(v),

and equality holds if and only if u = v.
(iv) M is λ-strongly η-monotone if there exists a constant λ > 0, such that

〈x− y, η(u, v)〉 ≥ λ‖u− v‖2, ∀ u, v ∈ X, x ∈M(u), y ∈M(v).

(v) M is m-relaxed η-monotone if there exists a constant m > 0, such that

〈x− y, η(u, v)〉 ≥ −m‖u− v‖2, ∀ u, v ∈ X, x ∈M(u), y ∈M(v).

(vi) M is maximal monotone if M is monotone and

(J + λM)(X) = X?, ∀ λ > 0,

where J is the normalized duality mapping.
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(vii) M is maximal η-monotone if M is η-monotone and

(J + λM)(X) = X?, ∀ λ > 0.

(viii) M is H-monotone if M is monotone and

(H + λM)(X) = X?, ∀ λ > 0.

(ix) M is (H, η)-monotone if M is η-monotone and

(H + λM)(X) = X?, ∀ λ > 0.

(x) M is H-η-monotone if M is m-relaxed η-monotone and

(H + λM)(X) = X?, ∀ λ > 0.

Definition 2.5. For all u, v, · ∈ X, a mapping N : X ×X −→ X? is said to
be

(i) β1-Lipschitz continuous with respect to first argument, if there exists
a constant β1 > 0 such that

‖N(u, ·)−N(v, ·)‖ ≤ β1‖u− v‖.
(ii) β2-Lipschitz continuous with respect to second argument, if there exists

a constant β2 > 0 such that

‖N(· , u)−N(· , v)‖ ≤ β2‖u− v‖.

Definition 2.6. For all u, v, · ∈ X, a mapping F : X ×X ×X −→ X? is said
to be

(i) ε1-Lipschitz continuous with respect to first argument, if there exists
a constant ε1 > 0 such that

‖F (u, · , ·)− F (v, · , ·)‖ ≤ ε1‖u− v‖.
(ii) ε2-Lipschitz continuous with respect to second argument, if there exists

a constant ε2 > 0 such that

‖F (· , u, ·)− F (· , v, ·)‖ ≤ ε2‖u− v‖.
(iii) ε3-Lipschitz continuous with respect to third argument, if there exists

a constant ε3 > 0 such that

‖F (· , · , u)− F (· , · , v)‖ ≤ ε3‖u− v‖.

Lemma 2.7. ([23]) Let X be a real Banach space and J : X → 2X
?

be the
normalized duality mapping. Then, for all u, v ∈ X,

‖u+ v‖2 ≤ ‖u‖2 + 2
〈
v, j(u+ v)

〉
, ∀j(u+ v) ∈ J(u+ v).
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3. (H(., .), η)-monotone operator and formulation
of the problem

Definition 3.1. Let X be a Banach space with the dual space X?. Let H :
X×X → X?, η : X×X → X, A,B : X → X be single-valued mappings. Then
the set-valued mapping M : X → 2X

?
is said to be (H(., .), η)-monotone with

respect to A and B if M is m-relaxed-η-monotone and (H(A,B) +ρM)(X) =
X? for all ρ > 0.

Remark 3.2. (i) If H(Au,Bu) = Au, ∀u ∈ X, then Definition 3.1 reduces to
the definition of H-η-monotone operators considered in [19]. It follows that
this class of operators in Banach spaces provides a unifying framework for
the class of η-subdifferential operators, maximal monotone operators, max-
imal η-monotone operators, H-monotone operators, (H, η)-monotone opera-
tors, G-η-monotone operators, A-monotone operators, A-η-monotone opera-
tors in Hilbert spaces andH-η-monotone operators, H-monotone operators, A-
monotone operators in Banach spaces . We remark that (H(., .), η)-monotone
operator in Banach spaces acts from X to X?.

(ii) If X ≡ H, a Hilbert space, m = 0 and η(u, v) = u − v, ∀u, v ∈ H, then
Definition 3.1 reduces to M -monotone operator studied in [24].

Now we give some properties of (H(., .), η)-monotone operator.

Theorem 3.3. Let A,B : X → X, η : X ×X → X and H : X ×X → X? be
single-valued mappings and H(A,B) be α-strongly η-monotone with respect to
A, β-relaxed η-monotone with respect to B and α > β. Let M : X → 2X

?
be

(H(., .), η)-monotone operator with respect to A and B. If〈
x− y, η(u, v)

〉
≥ 0, ∀ (v, y) ∈ Graph (M),

then (u, x) ∈ Graph(M), where Graph (M) =
{

(a, b) ∈ X ×X : b ∈M(a)
}

.

Proof. Since M is (H(., .), η)-monotone operator with respect to A and B and
(H(A,B) + ρM)(X) = X? holds for all ρ > 0. Thus there exists (u1, x1) ∈
Graph(M) such that

H(Au,Bu) + ρx = H(Au1, Bu1) + ρx1.

SinceH(A,B) is α-strongly η-monotone with respect toA, β-relaxed η-monotone
with respect to B and α > β, we have

0 ≤ ρ〈x− x1, η(u, u1)〉 ≤ −〈H(Au,Bu)−H(Au1, Bu1), η(u, u1)〉
= −〈H(Au,Bu)−H(Au1, Bu), η(u, u1)〉
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− 〈H(Au1, Bu)−H(Au1, Bu1), η(u, u1)〉
≤ −(α− β) ‖ u− u1 ‖2≤ 0.

This implies that u = u1 and x = x1. Thus (u, x) = (u1, x1) ∈ Graph(M).
This completes the proof. �

Theorem 3.4. Let A,B : X → X, η : X × X → X and H : X × X → X?

be single-valued mappings and H(A,B) be α-strongly η-monotone with respect
to A, β-relaxed η-monotone with respect to B and α > β. Let M : X → 2X

?

be (H(., .), η)-monotone operator with respect to A and B. Then (H(A,B) +

ρM)−1 is a single-valued mapping for 0 < ρ <
α− β
m

.

Proof. For any given u? ∈ X?, let u, v ∈ (H(A,B) + ρM)−1(u?). It follows
that

−H(Au,Bu) + u? ∈ ρM(u) and −H(Av,Bv) + u? ∈ ρM(v).

Since M : X → 2X
?

be (H(., .), η)-monotone operator with respect to A
and B and H(A,B) is α-strongly η-monotone with respect to A, β-relaxed
η-monotone with respect to B and α > β, we have

−m ‖ u− v ‖2 ≤ 1

ρ

〈(
−H(Au,Bu) + u?

)
−
(
−H(Av,Bv) + u?

)
, η(u, v)

〉
= −1

ρ

〈
H(Au,Bu)−H(Av,Bv), η(u, v)

〉
= −1

ρ

〈
H(Au,Bu)−H(Av,Bu), η(u, v)

〉
− 1

ρ

〈
H(Av,Bu)−H(Av,Bv), η(u, v)

〉
≤ −1

ρ
(α− β) ‖ u− v ‖2 .

This shows that

mρ ‖ u− v ‖2≥ (α− β) ‖ u− v ‖2 .

If u 6= v, then ρ ≥ α− β
m

contradicts with 0 < ρ <
α− β
m

. Thus, u = v, that is

(H(A,B) + ρM)−1 is a single-valued mapping. This completes the proof. �

Based on Theorem 3.4, we define the generalized η-proximal operator asso-
ciated with (H(A,B), η)-monotone operator as under:

Definition 3.5. Let A,B : X → X, η : X ×X → X and H : X ×X → X?

be single-valued mappings and H(., .) be α-strongly η-monotone with respect
to A, β-relaxed η-monotone with respect to B and α > β. Let M : X ×X →
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2X
?

be (H(., .), η)-monotone operator with respect to A and B. Then the

generalized η-proximal operator J
H(.,.),η
M(·,z′),ρ : X → X for fixed z′ ∈ X is defined

by

J
H(.,.),η
M(·,z′),ρ(u) =

(
H(A,B) + ρM(·, z′)

)−1
(u), ∀u ∈ X.

Remark 3.6. The generalized η-proximal operator associated with (H(., .), η)-
monotone operator include as special cases the corresponding proximal opera-
tors associated with maximal monotone operators, η-subdifferential operators,
maximal η-monotone operators, H-monotone operators, (H, η)-monotone op-
erators, G-η-monotone operators, A-monotone operators, A-η-monotone op-
erators.

One of the important properties of generalized η-proximal operator is its
Lipschitz continuity which we prove as under:

Theorem 3.7. Let η : X ×X → X be a τ -Lipschitz continuous mapping. Let
A,B : X → X and H : X ×X → X? be single-valued mappings and H(A,B)
be α-strongly η-monotone with respect to A, β-relaxed η-monotone with respect
to B and α > β. Let M : X×X → 2X

?
be (H(., .), η)-monotone operator with

respect to A and B. Then the generalized η-proximal operator J
H(.,.),η
M(·,z′),ρ : X →

X for fixed z′ ∈ X is k-Lipschitz continuous, where k =
τ

α− β −mρ
, that is

‖JH(.,.),η
M(·,z′),ρ(u)− JH(.,.),η

M(·,z′),ρ(v)‖ ≤ k‖u− v‖, ∀u, v ∈ X.

Proof. Let u, v ∈ X. It follows that J
H(.,.),η
M(·,z′),ρ(u) =

(
H(A,B) + ρM(·, z′)

)−1
(u);

J
H(.,.),η
M(·,z′),ρ(v) =

(
H(A,B) + ρM(·, z′)

)−1
(v)

and hence
1

ρ

{
u−H

(
A(J

H(.,.),η
M(·,z′),ρ(u)), B(J

H(.,.),η
M(·,z′),ρ(u))

)}
∈M

(
J
H(.,.),η
M(·,z′),ρ(u), z′

)
;

1

ρ

{
v −H

(
A(J

H(.,.),η
M(·,z′),ρ(v)), B(J

H(.,.),η
M(·,z′),ρ(v))

)}
∈M

(
J
H(.,.),η
M(·,z′),ρ(v), z′

)
.

For the sake of brevity, let b1 = J
H(.,.),η
M(·,z′),ρ(u) and b2 = J

H(.,.),η
M(·,z′),ρ(v). Since M is

m-relaxed η-monotone, we have

−m ‖ b1 − b2 ‖2

≤ 1

ρ

〈(
u−H

(
A(b1), B(b1)

))
−
(
v −H

(
A(b2), B(b2)

))
, η(b1, b2)

〉
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=
1

ρ

〈
u− v −

[
H
(
A(b1), B(b1)

)
−H

(
A(b2), B(b2)

)]
, η(b1, b2)

〉
.

By the given hypothesis and above inequality, we have

τ ‖ u− v ‖‖ b1 − b2 ‖
≥‖ u− v ‖‖ η(b1, b2) ‖≥ 〈u− v, η(b1, b2)〉

≥
〈
H
(
A(b1), B(b1)

)
−H

(
A(b2), B(b2)

)
, η(b1, b2)

〉
−mρ ‖ b1 − b2 ‖2

≥
〈
H
(
A(b1), B(b1)

)
−H

(
A(b2), B(b1)

)
, η(b1, b2)

〉
+
〈
H
(
A(b2), B(b1)

)
−H

(
A(b2), B(b2)

)
, η(b1, b2)

〉
−mρ ‖ b1 − b2 ‖2

≥ (α− β −mρ) ‖ b1 − b2 ‖2 .

Hence

‖JH(.,.),η
M(·,z′),ρ(u)− JH(.,.),η

M(·,z′),ρ(v)‖ ≤ τ

α− β −mρ
‖u− v‖, ∀u, v ∈ X

or

‖JH(.,.),η
M(·,z′),ρ(u)− JH(.,.),η

M(·,z′),ρ(v)‖ ≤ k‖u− v‖, ∀u, v ∈ X.

�

Now we formulate our main problem:

LetX be a real Banach space. Let S, T,G : X → CB(X) be three set-valued
mappings and N,H : X ×X → X?, η : X ×X → X, F : X ×X ×X → X?,
A,B, p, g : X → X be single-valued mappings. Let M : X × X → 2X

?

be set-valued mapping such that for fixed z′, z ∈ G(X), M(., z′), M(., z) :
X × X → 2X

?
is an (H(., .), η)-monotone operator with respect to A and B

and Range(g − p) ∩ dom(M(., z′)) 6= ∅, Range(g − p) ∩ dom(M(., z)) 6= ∅. For
any given f ∈ X?, we consider the following generalized system of variational-
like inclusion problem (in short, GSVLIP):

Find u, v ∈ X, x ∈ S(u), y ∈ T (u), z ∈ G(u), x′ ∈ S(v), y′ ∈ T (v), z′ ∈ G(v)
such that

θ? ∈ H
(
A((g − p)(u)), B((g−p)(u))

)
−H

(
A((g−p)(v)), B((g−p)(v))

)
+ ρ
{
N(x′, y′) +M

(
(g − p)(u), z′

)
+ F (v, v, z′) + f

}
θ? ∈ H

(
A((g−p)(v)), B((g−p)(v))

)
−H

(
A((g−p)(u)), B((g−p)(u))

)
+ γ
{
N(x, y) +M

(
(g − p)(v), z

)
+ F (u, u, z) + f

}
,

(3.1)

where θ? is the zero element in X?.
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We remark that if ρ = γ = 1, u = v, x′ = x, y′ = y, z′ = z and f ≡ 0,
then GSVLIP (3.1) reduces to a variational inclusion of finding u ∈ X, x ∈
S(u), y ∈ T (u), z ∈ G(u) such that

θ? ∈ F (u, u, z) +N(x, y) +M
(

(g − p)(u), z
)
. (3.2)

Variational inclusion (3.2) is an important generalization of variational in-
clusions considered by many researchers including [9,12,14,27,30]. For the
applications of such variational inclusions, see [17].

Some More Special Cases:

If ρ = γ = 1, u = v, x′ = x, y′ = y, z′ = z, if F = p = f = 0
and X ≡ H, a Hilbert space, then GSVLIP (3.1) reduces to a generalized
mixed quasi-variational-like inclusion with (H(·, ·), η)-monotone operators in
a Hilbert space:

Find u ∈ X, x ∈ S(u), y ∈ T (u), z ∈ G(u) such that

θ? ∈ N(x, y) +M(g(u), z). (3.3)

If M is H-monotone in the first argument, then the problem (3.3) was intro-
duced and studied by Zeng [31].

If (g−p) ≡ I, F ≡ 0, f ≡ 0, GSVLIP (3.1) reduces to a variational inclusion of
finding u, v ∈ X, x ∈ S(u), y ∈ T (u), z ∈ G(u), x′ ∈ S(v), y′ ∈ T (v), z′ ∈ G(v)
such that θ? ∈ H

(
A(u), B(u)

)
−H

(
A(v), B(v)

)
+ ρ
{
N(x′, y′)+M(u, z′)

}
θ? ∈ H

(
A(v), B(v)

)
−H

(
A(u), B(u)

)
+ γ
{
N(x, y) +M(v, z)

}
.

(3.4)

Variational inclusion (3.4) is an important generalization of variational inclu-
sion considered by Kazmi and Bhat [12]. For applications of such variational
inclusions, see [15,29].

We remark that for the suitable choices of mappings A,B, S, T,G,N,H,
F, M, η, g, p and the underlying space X, GSVLIP (3.1) reduces to different
classes of new and already known systems of variational inclusions/inequalities
considered by many researchers including [20,25,27,33] and the related refer-
ences cited therein.

4. Existence of solution, iterative algorithm
and convergence analysis

First, we give the following important result:
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Theorem 4.1. Let X, A, B, S, T, G, N, H, F, M, η, g, p be same as in
the GSVLIP (3.1). Then (u, v, x, y, z, x′, y′, z′), where x ∈ S(u), y ∈ T (u), z ∈
G(u), x′ ∈ S(v), y′ ∈ T (v), z′ ∈ G(v) is the solution of GSVLIP (3.1) if and
only if

(g − p)(u)

= J
H(.,.),η
M(.,z′),ρ

[
H
(
A((g−p)(v)), B((g−p)(v))

)
−ρ
{
N(x′, y′)+F (v, v, z′)+f

}]
,

where

(g − p)(v)

= J
H(.,.),η
M(.,z),γ

[
H
(
A((g−p)(u)), B((g−p)(u))

)
−γ
{
N(x, y)+F (u, u, z)+f

}]
,

J
H(.,.),η
M(.,z′),ρ(u) =

(
H(A,B) + ρM(., z′)

)−1
(u),

and

J
H(.,.),η
M(.,z),γ(v) =

(
H(A,B) + γM(., z)

)−1
(v)

are generalized η-proximal operators and ρ > 0, γ > 0 are constants.

Proof. From the definition of J
H(.,.),η
M(.,z′),ρ and J

H(.,.),η
M(.,z),γ , we have for

(g − p)(u)

= J
H(.,.),η
M(.,z′),ρ

[
H
(
A((g−p)(v)), B((g−p)(v))

)
−ρ
{
N(x′, y′)+F (v, v, z′)+f

}]
⇐⇒ H

(
A((g − p)(v)), B((g − p)(v))

)
− ρ
{
N(x′, y′) + F (v, v, z′) + f

}
∈
(
H(A,B) + ρM(., z′)

)
(g − p)(u)

⇐⇒ θ? ∈ H
(
A((g − p)(u)), B((g − p)(u))

)
−H

(
A((g − p)(v)), B((g − p)(v))

)
+ ρ
{
N(x′, y′) +M

(
(g − p)(u), z′

)
+ F (v, v, z′) + f

}
.

Similarly, we have the other inclusion, that is,

θ? ∈H
(
A((g − p)(v)), B((g − p)(v))

)
−H

(
A((g − p)(u)), B((g − p)(u))

)
+ γ
{
N(x, y) +M

(
(g − p)(v), z

)
+ F (u, u, z) + f

}
.

This proves the theorem. �

The above result along with Nadler’s Theorem [21] allow us to suggest the
following iterative algorithm for solving GSVLIP (3.1).
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Iterative Algorithm 4.2. For any arbitrary chosen u0, v0 ∈ X, x0 ∈ S(u0),
y0 ∈ T (u0), z0 ∈ G(u0), x

′
0 ∈ S(v0), y

′
0 ∈ T (v0) and z′0 ∈ G(v0), compute the

sequences {un}, {vn}, {xn}, {yn}, {zn}, {x′n}, {y′n} and {z′n} by the iterative
schemes such that

(g − p)(un+1) = J
H(.,.),η
M(.,z′n),ρ

[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n) + f

}]
,

where

(g − p)(vn) = J
H(.,.),η
M(.,zn),γ

[
H
(
A((g − p)(un)), B((g − p)(un))

)
− γ
{
N(xn, yn) + F (un, un, zn) + f

}]
.

xn ∈ S(un) : ‖xn+1 − xn‖ ≤
(

1 + (1 + n)−1
)
D
(
S(un+1), S(un)

)
;

yn ∈ T (un) : ‖yn+1 − yn‖ ≤
(

1 + (1 + n)−1
)
D
(
T (un+1), T (un)

)
;

zn ∈ G(un) : ‖zn+1 − zn‖ ≤
(

1 + (1 + n)−1
)
D
(
G(un+1), G(un)

)
;

x′n ∈ S(vn) : ‖x′n+1 − x′n‖ ≤
(

1 + (1 + n)−1
)
D
(
S(vn+1), S(vn)

)
;

y′n ∈ T (vn) : ‖y′n+1 − y′n‖ ≤
(

1 + (1 + n)−1
)
D
(
T (vn+1), T (vn)

)
;

z′n ∈ G(vn) : ‖z′n+1 − z′n‖ ≤
(

1 + (1 + n)−1
)
D
(
G(vn+1), G(vn)

)
.

Now, we prove the following theorem which ensures the convergence of
iterative sequences generated by the Iterative Algorithm 4.2.

Theorem 4.3. Let X be a real Banach space. Let S, T,G : X → CB(X)
be α1, α2, α3-D-Lipschitz continuous mappings, respectively. Let N : X ×
X → X? be l1 and l2-Lipschitz continuous with respect to first and second
arguments, respectively, η : X ×X → X be τ -Lipschitz continuous, F : X ×
X × X → X? be βj-Lipschitz continuous with respect to jth argument for
j = 1, 2, 3 and p, g : X → X be single-valued mappings such that (g − p) is s-
Lipschitz continuous and (g− p− I) is λ-strongly accretive. Let H : X ×X →
X? be α-strongly η-monotone with respect to A, β-relaxed η-monotone with
respect to B and h1 and h2-Lipschitz continuous with respect to A and B,
respectively. Let M : X ×X → 2X

?
be set-valued mapping such that for fixed

z′, z ∈ G(X), M(., z′),M(., z) : X × X → 2X
?

is an (H(., .), η)-monotone
operator with respect to A and B and Range(g − p) ∩ dom(M(., z′)) 6= ∅,
Range(g − p) ∩ dom(M(., z)) 6= ∅. In addition, suppose there exist constants
µ1, µ2 > 0 such that∥∥∥JH(.,.),η

M(.,z′n+1),ρ
(u)− JH(.,.),η

M(.,z′n),ρ
(u)
∥∥∥ ≤ µ1 ‖ z′n+1 − z′n ‖,
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M(.,zn+1),γ

(u)− JH(.,.),η
M(.,zn),γ

(u)
∥∥∥ ≤ µ2 ‖ zn+1 − zn ‖ . (4.1)

Furthermore, suppose the following condition is satisfied

0 < Q < 1,

where Q is given by,

Q

=
1

1+2λ

[
k

{√
s2h21−2ρl1α1

(
sh1+ρl1α1

)
+

√
s2h22−2ρl2α2

(
sh2+ρl2α2

)
+
(
β1 + β2 + β3α3

)}
+ µ1α3

]

×

[
k′

{√
s2h22−2γl2α2

(
sh2+γl2α2

)
+

√
s2h21−2γl1α1

(
sh1+γl1α1

)
+
(
β1 + β2 + β3α3

)}
+ µ2α3

]
, here k′ =

τ

α− β −mγ
,

(4.2)

then the sequences {un}, {vn}, {xn}, {yn}, {zn}, {x′n}, {y′n} and {z′n}
generated by the Iterative Algorithm 4.2 converge strongly to the unique solu-
tion (u, v, x, y, z, x′, y′, z′), respectively, where u, v ∈ X, x ∈ S(u), y ∈ T (u),
z ∈ G(u), x′ ∈ S(v), y′ ∈ T (v) and z′ ∈ G(v) is the solution of GSVLIP (3.1).

Proof. From Iterative Algorithm 4.2 and Theorem 3.7, we have

‖(g − p)un+2 − (g − p)un+1‖

=
∥∥∥JH(.,.),η

M(.,z′n+1),ρ

[
H
(
A((g − p)(vn+1)), B((g − p)(vn+1))

)
− ρ
{
N(x′n+1, y

′
n+1) + F (vn+1, vn+1, z

′
n+1) + f

}]
− JH(.,.),η

M(.,z′n),ρ

[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n) + f

}]∥∥∥
≤
∥∥∥JH(.,.),η

M(.,z′n+1),ρ

[
H
(
A((g − p)(vn+1)), B((g − p)(vn+1))

)
− ρ
{
N(x′n+1, y

′
n+1) + F (vn+1, vn+1, z

′
n+1) + f

}]
− JH(.,.),η

M(.,z′n+1),ρ

[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n) + f

}]∥∥∥
+
∥∥∥JH(.,.),η

M(.,z′n+1),ρ

[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n) + f

}]
− JH(.,.),η

M(.,z′n),ρ

[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
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− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n) + f

}]∥∥∥
≤ k

∥∥∥[H(A((g − p)(vn+1)), B((g − p)(vn+1))
)

− ρ
{
N(x′n+1, y

′
n+1) + F (vn+1, vn+1, z

′
n+1)

}]
−
[
H
(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n) + F (vn, vn, z

′
n)
}]∥∥∥+ µ1

∥∥∥z′n+1 − z′n
∥∥∥

≤ k
[∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)
− ρ
{
N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

}∥∥∥
+
∥∥∥H(A

(
(g − p)(vn)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ
{
N(x′n, y

′
n+1)−N(x′n, y

′
n)
}∥∥∥+

∥∥∥F (vn+1, vn+1, z
′
n+1)− F (vn, vn, z

′
n)
∥∥∥]

+ µ1

∥∥∥z′n+1 − z′n
∥∥∥. (4.3)

Since (g − p) is s-Lipschitz continuous and H(., .) is h1-Lipschitz continuous
with respect to A and from Lemma 2.7, we have∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)
− ρ

{
N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

}∥∥∥2
≤
∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)∥∥∥2
− 2ρ

〈
N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1), j

(
H
(
A((g − p)(vn+1)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)
− ρ
{
N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

})〉
≤
∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)∥∥∥2
− 2ρ

∥∥∥N(x′n+1, y
′
n+1)−N(x′n, y

′
n+1)

∥∥∥× [∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))
)

−H
(
A((g − p)(vn)), B((g − p)(vn+1))

)∥∥∥+ ρ
∥∥∥N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

∥∥∥]
≤ s2h21‖vn+1 − vn‖2 − 2ρ‖N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)‖

×
[
sh1‖vn+1 − vn‖+ ρ‖N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)‖

]
. (4.4)

Since N(., .) is l1-Lipschitz continuous with respect to first argument and l2-
Lipschitz continuous with respect to second argument and S is α1-D-Lipschitz
continuous and T is α2-D-Lipschitz continuous, we have∥∥∥N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

∥∥∥ ≤ l1α1

(
1 + (1 + n)−1

)
‖vn+1 − vn‖. (4.5)
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′
n+1)−N(x′n, y

′
n)
∥∥∥ ≤ l2α2

(
1 + (1 + n)−1

)
‖vn+1 − vn‖. (4.6)

Using (4.5) in (4.4), we have∥∥∥H(A((g − p)(vn+1)), B((g − p)(vn+1))
)
−H

(
A((g − p)(vn)), B((g − p)(vn+1))

)
− ρ

{
N(x′n+1, y

′
n+1)−N(x′n, y

′
n+1)

}∥∥∥2
≤
[
s2h21−2ρl1α1

(
1+(1+n)−1

){
sh1+ρl1α1

(
1+(1+n)−1

)}]
‖vn+1−vn‖2. (4.7)

Similarly, using h2-Lipschitz continuity ofH(., .) with respect toB, s-Lipschitz
continuity of (g − p), Lemma 2.7 and (4.6), we have the following estimate:∥∥∥H(A((g − p)(vn)), B((g − p)(vn+1))

)
−H

(
A((g − p)(vn)), B((g − p)(vn))

)
− ρ

{
N(x′n, y

′
n+1)−N(x′n, y

′
n)
}∥∥∥2

≤
[
s2h22−2ρl2α2

(
1+(1+n)−1

){
sh2+ρl2α2

(
1+(1+n)−1

)}]
‖vn+1−vn‖2. (4.8)

Since F (., ., .) is βj-Lipschitz continuous in the jth argument, for j = 1, 2, 3,
G is α3-D-Lipschitz continuous and using Iterative Algorithm 4.2, we have the
following estimate:

‖ F (vn+1, vn+1, z
′
n+1)− F (vn, vn, z

′
n) ‖

≤‖ F (vn+1, vn+1, z
′
n+1)− F (vn, vn+1, z

′
n+1 ‖

+ ‖ F (vn, vn+1, z
′
n+1)− F (vn, vn, z

′
n+1) ‖ + ‖ F (vn, vn, z

′
n+1)− F (vn, vn, z

′
n ‖

≤
(
β1 + β2

)
‖vn+1 − vn‖+ β3

(
1 + (1 + n)−1

)
D(G(vn+1), G(vn))

≤
(
β1 + β2 + β3α3

(
1 + (1 + n)−1

)
‖vn+1 − vn‖. (4.9)

Using (4.7)-(4.9) in (4.3), we have

‖(g − p)un+2 − (g − p)un+1‖

≤
[
k

{√
s2h21 − 2ρl1α1(1 + (1 + n)−1)

(
sh1 + ρl1α1(1 + (1 + n)−1)

)
+

√
s2h22 − 2ρl2α2(1 + (1 + n)−1)

(
sh2 + ρl2α2(1 + (1 + n)−1)

)
+
(
β1 + β2 + β3α3(1 + (1 + n)−1)

)}
+ µ1α3(1 + (1 + n)−1)

]
‖vn+1 − vn‖. (4.10)
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Since (g − p − I) is λ-strongly accretive, by Lemma 2.7 and (4.10), we have
the following estimate:

‖un+2 − un+1‖2 ≤
∥∥∥(g − p)un+2 − (g − p)un+1 + un+2 − un+1

−
(

(g − p)un+2 − (g − p)un+1

)∥∥∥2
≤ ‖(g − p)un+2 − (g − p)un+1‖2

− 2
〈

(g − p− I)un+2 − (g − p− I)un+1, j(un+2 − un+1)
〉

≤ ‖(g − p)un+2 − (g − p)un+1‖2 − 2λ‖un+2 − un+1)‖2.

Hence,

‖un+2 − un+1‖

≤ 1√
1 + 2λ

‖(g − p)un+2 − (g − p)un+1‖

=
1√

1 + 2λ

[
k

{√
s2h21 − 2ρl1α1(1 + (1 + n)−1)

(
sh1 + ρl1α1(1 + (1 + n)−1)

)
+

√
s2h22 − 2ρl2α2(1 + (1 + n)−1)

(
sh2 + ρl2α2(1 + (1 + n)−1)

)
+
(
β1 + β2 + β3α3(1 + (1 + n)−1)

)}
+ µ1α3(1 + (1 + n)−1)

]
‖vn+1 − vn‖.

(4.11)

Similarly, using Iterative Algorithm 4.2, we have the following estimate:

‖vn+1 − vn‖

≤ 1√
1 + 2λ

[
k′

{√
s2h22 − 2γl2α2(1 + (1 + n)−1)

(
sh2 + γl2α2(1 + (1 + n)−1)

)
+

√
s2h21 − 2γl1α1(1 + (1 + n)−1)

(
sh1 + γl1α1(1 + (1 + n)−1)

)
+
(
β1 + β2 + β3α3(1 + (1 + n)−1)

)}
+ µ2α3(1 + (1 + n)−1)

]
‖un+1 − un‖. (4.12)

Combining (4.11) and (4.12), we have

‖un+2 − un+1‖ ≤ φn+1 ‖un+1 − un‖, (4.13)

where

φn+1 =
1

1 + 2λ

[
k

{√
s2h21 − 2ρl1α1(1 + (1 + n)−1)

(
sh1 + ρl1α1(1 + (1 + n)−1)

)
+

√
s2h22 − 2ρl2α2(1 + (1 + n)−1)

(
sh2 + ρl2α2(1 + (1 + n)−1)

)
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+
(
β1 + β2 + β3α3(1 + (1 + n)−1)

)}
+ µ1α3(1 + (1 + n)−1)

]
×
[
k′

{√
s2h22 − 2γl2α2(1 + (1 + n)−1)

(
sh2 + γl2α2(1 + (1 + n)−1)

)
+

√
s2h21 − 2γl1α1(1 + (1 + n)−1)

(
sh1 + γl1α1(1 + (1 + n)−1)

)
+
(
β1 + β2 + β3α3(1 + (1 + n)−1)

)}
+ µ2α3(1 + (1 + n)−1)

]
.

Let

φ =
1

1 + 2λ

[
k

{√
s2h21 − 2ρl1α1

(
sh1 + ρl1α1

)
+

√
s2h22 − 2ρl2α2

(
sh2 + ρl2α2

)
+
(
β1 + β2 + β3α3

)}
+ µ1α3

]
×
[
k′

{√
s2h22 − 2γl2α2

(
sh2 + γl2α2

)
+

√
s2h21 − 2γl1α1

(
sh1 + γl1α1

)
+
(
β1 + β2 + β3α3

)}
+ µ2α3

]
.

Then we know that φn → φ as n → ∞. By condition (4.2), we know that
φ ∈ (0, 1) and hence there exist n0 > 0 and φ0 ∈ (0, 1) such that φn+1 ≤ φ0
for all n ≥ n0. Therefore, by (4.13), we have

‖un+2 − un+1‖ ≤ φ0‖un+1 − un‖, ∀ n ≥ n0.
This implies

‖un+1 − un‖ ≤ φn−n0
0 ‖un0+1 − un0‖.

Hence, for any m ≥ n > n0, we have

‖um − un‖ ≤
m−1∑
t=n

‖ut+1 − ut‖ ≤
m−1∑
t=n

φt−n0
0 ‖un0+1 − un0‖.

It follows ‖um − un‖ → 0 as n→∞ so that {un} is a Cauchy sequence in X.
Hence, there exists u ∈ X such that un → u as n→∞. Also from (4.12), we
see that {vn} is a Cauchy sequence in X. Hence, there exists v ∈ X such that
vn → v as n→∞.

Now from D-Lipschitz continuity of S and Iterative Algorithm 4.2, we have

‖xn+1 − xn‖ ≤
(

1 + (1 + n)−1
)
D
(
S(un+1), S(un)

)
≤
(

1 + (1 + n)−1
)
l1‖un+1 − un‖. (4.14)

Since {un} being Cauchy in X, (4.14) implies that {xn} is a Cauchy sequence
in X. Similarly, we can prove that {yn}, {zn}, {x′n}, {y′n} and {z′n} are also
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Cauchy sequences in X. Thus, in general, there exist x, y, z, x′, y′, z′ in X
such that xn → x, yn → y, zn → z, x′n → x′, y′n → y′, z′n → z′ as n→∞.

Now, we show that x ∈ S(u). Since xn ∈ S(un), we have

d(x, S(u)) ≤ ‖x− xn‖+ d(xn, S(u))

≤ ‖x− xn‖+D
(
S(un), S(u)

)
≤ ‖x− xn‖+ l1‖un − u‖
−→ 0 as n→∞.

Since S(u) is closed, it implies that x ∈ S(u). Similarly, we can show that
y ∈ T (u), z ∈ G(u), x′ ∈ S(v), y′ ∈ T (v), z′ ∈ G(v). By assumption (4.1),

Lipschitz continuity of proximal mapping J
H(.,.),η
M(.,z′),ρ, continuity of the respective

mappings and Iterative Algorithm 4.2, it follows that u, v ∈ X, x ∈ S(u),
y ∈ T (u), z ∈ G(u), x′ ∈ S(v), y′ ∈ T (v) and z′ ∈ G(v), where

J
H(.,.),η
M(.,z′),ρ(u) =

(
H(A,B) + ρM(., z′)

)−1
(u),

J
H(.,.),η
M(.,z),γ(v) =

(
H(A,B) + γM(., z)

)−1
(v)

and ρ, γ > 0 are constants. By Theorem 4.1, (u, v, x, y, z, x′, y′, z′) is the
solution of the problem. This completes the proof. �

Remark 4.4. Using the technique developed in this paper we can extend
the results of Adly [1], Hassouni and Moudafi [9], Kazmi and Bhat [12,14],
Mitrovic [20], Verma [26] and the related results cited therein for the system
of variational inclusion.
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