FIXED POINT THEOREMS IN COMPLEX VALUED CONVEX METRIC SPACES
Abstract
Our purpose in this paper is to introduce the concept of complex valued convex metric spaces and introduce an analogue of the Picard-Ishikawa hybrid iterative scheme, recently proposed by Okeke [24] in this new setting. We approximate (common) fixed points of certain contractive conditions through these two new concepts and obtain several corollaries. We prove that the Picard-Ishikawa hybrid iterative scheme [24] converges faster than all of Mann, Ishikawa and Noor [23] iterative schemes in complex valued convex metric spaces. Also, we give some numerical examples to validate our results.
Refbacks
- There are currently no refbacks.
ISSN: 1229-1595 (Print), 2466-0973 (Online)
(51767) 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do, Republic of Korea