ON MAZUR-ULAM THEOREM AND MAPPINGS WHICH PRESERVE DISTANCES

Themistocles M. Rassias and Shuhuang Xiang

Abstract

Let X and Y be two real Hilbert spaces with the dimension of X greater than 1. Several cases for a mapping $f: X \rightarrow Y$ preserving two distances with a non-integer ratio are presented.

1. Introduction

Let X and Y be two normed vector spaces. An isometry from X to Y is a mapping $f: X \rightarrow Y$ such that

$$
\|f(x)-f(y)\|=\|x-y\| \quad \text { for all } \quad x, y \in X
$$

Mazur and Ulam [5] proved that every isometry from one normed real vector space onto another normed real vector space is a linear mapping up to translation. The conclusion is not valid for normed complex vector spaces (just consider the complex conjugation on C, see [4]). The hypothesis of surjectivity is essential in general. Without the onto assumption, Baker [1] proved that every isometry from a normed real vector space into a strictly convex normed real vector space must be a linear isometry up to translation.

A mapping $f: X \rightarrow Y$ satisfies the distance one preserving property (DOPP) iff for all $x, y \in X$ with $\|x-y\|=1$, it follows that $\|f(x)-f(y)\|=1$. A mapping $f: X \rightarrow Y$ satisfies the strong distance one preserving property (SDOPP) iff for all $x, y \in X$ with $\mid x-y \|=1$ it follows that $\|f(x)-f(y)\|=1$ and conversely (see [9]).

For Euclidean spaces $X=Y=\mathbb{R}^{n}$, if $2 \leq n<\infty$ and $f: X \rightarrow Y$ satisfies (DOPP) then f must be a linear isometry up to translation due to Beckman
and Quarles [2]; however if $n=1$ or $n=\infty, f: X \rightarrow Y$ satisfying (DOPP) is not necessary to be an isometry (see $[2,6,8]$).

If X and Y are normed real vector spaces, Rassias and Šemrl [9] proved the following results:
Theorem 1.1. ([9]). Let X and Y be normed real vector spaces such that one of them has dimension greater that one. Suppose that $f: X \rightarrow Y$ is a Lipschitz mapping with $k=1$:

$$
\|f(x)-f(y)\| \leq\|x-y\| \quad \text { for all } x, y \in X
$$

Assume also that f is a surjective mapping satisfying (SDOPP). Then f is a linear isometry up to translation.

Especially, if one of the spaces X and Y is strictly convex, it was proved that
Theorem 1.2. ([9]). Let X and Y be normed real vector spaces such that one of them has dimension greater than one. Assume that one of the spaces is strictly convex. Suppose that $f: X \rightarrow Y$ is a surjective mapping satisfying (SDOPP). Then f is a linear isometry up to translation.

Theorem 1.3. ([9]). Let X and Y be normed real vector spaces, $\operatorname{dim} X \geq 2$, such that one of them is strictly convex. Suppose that $f: X \rightarrow Y$ is a homeomorphism satisfying (DOPP). Then f is a linear isometry up to translation.

Furthermore, if Y is strictly convex without the onto assumption on f, Benz and Berens [3] got the following result:
Theorem 1.4. ([3]). Let X and Y be normed real vector spaces. Assume that $\operatorname{dim} X \geq 2$, and Y is strictly convex. Suppose $f: X \rightarrow Y$ satisfies the properties:
(1) for all $x, y \in X$ with $\|x-y\|=\rho, \quad\|f(x)-f(y)\| \leq \rho$;
(2) for all $x, y \in X$ with $\|x-y\|=\lambda \rho, \quad\|f(x)-f(y)\| \geq \lambda \rho$, where λ is a positive integer greater than one.
Then f is a linear isometry up to translation.
If f preserves two distances with a noninteger ratio, and X and Y are real normed vector spaces such that Y is strictly convex and $\operatorname{dim} X \geq 2$, it is an open problem whether or not f must be an isometry (see [7]).

In this paper, we will study some extensions of the Mazur-Ulam theorem for conservative mappings between real Hilbert spaces. We denote by (\cdot, \cdot) the inner products in X and Y.

2. Main Results

Let X and Y be real Hilbert spaces with the dimension of X greater than one.

Definition 2.1. Suppose $f: X \rightarrow Y$ is a mapping. The distance r is called contractive by f if and only if for all $x, y \in X$ with $\|x-y\|=r$, if follows that $\|f(x)-f(y)\| \leq r$; The distance r is called extensive by f if and only if for all $x, y \in X$ with $\|x-y\|=r$, it follows that $\|f(x)-f(y)\| \geq r$; The distance r is called preserved by f if and only if for all $x, y \in X$ with $\|x-y\|=r$, it follows that $\|f(x)-f(y)\|=r$.

It is obvious by the triangle inequality that if $f: X \rightarrow Y$ preserves the distance r, then the distance $n r$ is contractive by $f, n=1,2, \cdots$.

Theorem 2.1. Suppose that $f: X \rightarrow Y$ satisfies (DOPP) and the distances a, b are contractive by f, where a and b are positive numbers with $|a-b|<1$. Then the distance $\sqrt{2 a^{2}+2 b^{2}-1}$ is contractive by f. Especially, if the distance $\sqrt{2 a^{2}+2 b^{2}-1}$ is extensive by f, then the distances a, b and $\sqrt{2 a^{2}+2 b^{2}-1}$ are preserved by f.

Proof. Suppose that $p, q \in X$ with $\|p-q\|=\sqrt{2 a^{2}+2 b^{2}-1}$. We will prove that $\|f(p)-f(q)\| \leq \sqrt{2 a^{2}+2 b^{2}-1}$. Since the dimension of X is greater than one, we can select p_{1}, p_{2} in X and construct a parallelogram with $\left\|p_{1}-p\right\|=$ $\left\|p_{2}-q\right\|=a,\left\|p_{2}-p\right\|=\left\|q-p_{1}\right\|=b,\|q-p\|=\sqrt{2 a^{2}+2 b^{2}-1},\left\|p_{2}-p_{1}\right\|=1:$

Set $x=f\left(p_{1}\right)-f(p), y=f\left(p_{2}\right)-f(p), z=f(q)-f\left(p_{1}\right), u=f(q)-f\left(p_{2}\right)$, $v=f\left(p_{2}\right)-f\left(p_{1}\right)$ and $w=f(q)-f(p)$, then $v=y-x, u=w-y$ and $z=w-x$. Since f satisfies (DOPP) and the distances a, b are contractive by f, then $\|x\| \leq a,\|u\| \leq a,\|y\| \leq b,\|z\| \leq b$ and $\|v\|=1$. By the Cauchy-

Schwartz inequality, we have that

$$
\begin{align*}
1+(w, w) & =(x-y, x-y)+(w, w) \\
& =(x+y, x+y)+(w, w)-4(x, y) \tag{1}\\
& \geq 2(w, x+y)-4(x, y)
\end{align*}
$$

Hence

$$
\begin{align*}
(w, w) & \geq 2(w, x+y)-4(x, y)-1 \\
& =1+2(w, x+y)-2(x-y, x-y)-4(x, y) \tag{2}\\
& =1+2(w, x+y)-2(x, x)-2(y, y)
\end{align*}
$$

Therefore

$$
\begin{align*}
(w, w) & \leq 2(w, w)+2(x, x)+2(y, y)-2(w, x+y)-1 \\
& =(x, x)+(y, y)+(w-x, w-x)+(w-y, w-y)-1 \\
& =(x, x)+(y, y)+(z, z)+(u, u)-1 \tag{3}\\
& \leq \sqrt{2 a^{2}+2 b^{2}-1}
\end{align*}
$$

Hence, the distance $\sqrt{2 a^{2}+2 b^{2}-1}$ is contractive by f.
According to (3), if $f: X \rightarrow Y$ satisfies (DOPP), the distances a, b are contractive by f and the distance $\sqrt{2 a^{2}+2 b^{2}-1}$ is extensive by f, then the distances a, b and $\sqrt{2 a^{2}+2 b^{2}-1}$ are preserved by f.

Note. For the special case in Theorem 2.1, where $|a-b|=1$, f must be a linear isometry up to translation due to [10].
Corollary 2.2. Suppose that $f: X \rightarrow Y$ satisfied (DOPP) and the distance a is contractive by f, where a is a positive number. Then the distance $\sqrt{4 a^{2}-1}$ is contractive by f. Especially, if the distance $\sqrt{4 a^{2}-1}$ is extensive by f, then the distances a and $\sqrt{4 a^{2}-1}$ are preserved by f.

Suppose that $f: X \rightarrow Y$ satisfies (DOPP). By Corollary 2.2, the distances $\sqrt{4 k^{2}-1}, \sqrt{4\left(4 k^{2}-1\right)-1}, \cdots, \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ are contractive by f where $k=1,2, \cdots, m=1,2, \cdots$. Together with Theorem 1.4, Corollary 2.2 and S. Xiang [11], we get the following result.

Theorem 2.3. Suppose that $f: X \rightarrow Y$ satisfies (DOPP). Assume the distance $n \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ is extensive by f for some positive integers n, k and m. Then f must be a linear isometry up to translation.

Proof. (1) In case the distance $\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ is extensive by f for some positive integers k and m : by induction on m and Corollary 2.2, the distances $\sqrt{4 k^{2}-1}$ and k are preserved by f. If $k \geq 2$, by Theorem 1.4, it follows that the mapping f is a linear isometry up to translation; if $k=1$, then $\sqrt{3}$ is preserved by f. By S. Xiang [11], f is a linear isometry up to translation.
(2) In case $n \geq 2$, for any $p, q_{1} \in X$ with $\left\|p-q_{1}\right\|=\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$, set

$$
q_{j}=p+j\left(p-q_{1}\right), \quad j=1,2, \cdots, n .
$$

Then $\left\|q_{j+1}-q_{j}\right\|=\left\|q_{1}-p\right\|=\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ for $j=1,2, \cdots, n-1$ and $\left\|q_{n}-p\right\|=n \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$. Since f satisfies (DOPP) and $\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ is contractive by f, it follows that

$$
\begin{aligned}
\left\|f\left(q_{1}\right)-f(p)\right\| & \leq \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}, \\
\left\|f\left(q_{j+1}\right)-f\left(q_{j}\right)\right\| & \leq \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}, \quad j=1,2, \cdots, n-1
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|f\left(q_{n}\right)-f(p)\right\| & \leq\left\|f\left(q_{1}\right)-f(p)\right\|+\sum_{j=1}^{n-1}\left\|f\left(q_{j}+1\right)-f\left(q_{j}\right)\right\| \\
& \leq n \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}} .
\end{aligned}
$$

Since $n \sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ is extensive by f, we have

$$
\begin{aligned}
\left\|f\left(q_{1}\right)-f(p)\right\| & =\left\|f\left(q_{2}\right)-f\left(q_{1}\right)\right\| \\
& =\cdots \\
& =\left\|f\left(q_{n}\right)-f\left(q_{n-1}\right)\right\| \\
& =\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}} .
\end{aligned}
$$

Hence the distance $\sqrt{4^{m} k^{2}-\frac{4^{m}-1}{3}}$ is also preserved by f. By step (1), f is a linear isometry up to translation.

Acknowledgment. We thank Professor Soon-Mo Jung for helpful comments.

References

1. J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658.
2. F. S. Beckman and D. A. Quarles, On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953), 810-815.
3. W. Benz and H. Berens, A contribution to a theorem of Ulam and Mazur, Aeq. Math. 34 (1987), 61-63.
4. R. Bhatia and P. Šemrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997), 497-504.
5. S. Mazur and S. Ulam, Sur les transformations isometriques d' espaces vectoriels normes, C.R. Acad. Sci. Paris 194 (1932), 946-948.
6. B. Mielnik and Th. M. Rassias, On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc. 116 (1992), 1115-1118.
7. Th. M. Rassias, Mappings that preserve unit distance, Indian J. Math. 32 (1990), 275-278.
8. Th. M. Rassias, Properties of isometries and approximate isometries, Recent Progress in Inequalities, MIA Kluwer Academic Publishers (1998), 325-345.
9. Th. M. Rassias and P. S̆emrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. Amer. Math. Soc. 118 (1993), 919-925.
10. Th. M. Rassias and Shuhuang Xiang, On mappings with conservative distances and the Mazur-Ulam theorem, Publ. Fac. Electr. Engineering, Univ. Belgrade, Series: Mathematics (to appear) (2000).
11. Shuhuang Xiang, Mappings of conservative distances and Mazur-Ulam theorem (preprint).

Themistocles M. Rassias
Department of Mathematics
National Technical University of Athens
Zografou Campus
15780 Athens, Greece
E-mail address: trassias@math.ntua.gr

Shumuang Xiang
Department of Applied Mathematics and Software
Central South University of Technology
Changsha, Hunan 410083, P. R. China
E-mail address: xiangsh20@263.net

