Nonlinear Funct. Anal. & Appl., Vol. 5, No. 2 (2000), pp. 123-134

FIXED AND COINCIDENCE POINT THEOREMS FOR EXPANSIVE MAPPINGS

GUO-JING JIANG AND JONG KYU KIM

ABSTRACT. In this paper, we give fixed and coincidence point theorems for expansive mappings, which extend and improve the corresponding results of Hicks-Saliga, Jachymski, Kang, Kang-Rhoades, Khan-Khan-Sessa, Rhoades, Taniguchi and Wang-Li-Gao-Iseki.

1. INTRODUCTION

The fixed point theorem for expansive mappings was first proved by Machuca [8]. Afterwards, a number of authors obtained also fixed point theorems for certain expansive mappings in metric spaces ([2], [3], [5], [6], [7], [9], [10], [12], [13]).

N, Ω and \mathbb{R}^+ denote the sets of positive integers, nonnegative integers and nonnegative real numbers, respectively. Let f be a selfmapping of a metric space (X, d). A point x in X is called a *periodic point* of f if there exists $k \in \mathbb{N}$ such that $f^k x = x$. The least positive integer k satisfying this condition is called the *periodic index* of x. Let $O_f(x)$ denote the orbit of f at x; i.e., $O_f(x) = \{f^n x : n \in \Omega\}$. Define

 $\mathcal{F} = \{ F \mid F : X \times X \to \mathbb{R}^+ \text{ is continuous such that} \\ F(x, y) = 0 \text{ if and only if } x = y \}.$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Received June 26, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 54H25.

Key words and phrases: Expansive mappings, non-self mappings, nearly densifying mappings, compatible, fixed point, coincidence point.

This work was supported by Korea Research Foundation Grant(KRF-99-041-D00025).

Definition 1.1. [11] A selfmapping f of a metric space (X, d) is said to be *nearly densifying* if $\alpha(fA) < \alpha(A)$ whenever $\alpha(A) > 0$, A is bounded and f-invariant, where $\alpha(A)$ denotes the measure of noncompactness in the sense of Kuratowski.

Definition 1.2. [4] Let f and g be selfmappings of a metric space (X, d). Then f and g are said to be *compatible* if $\lim_{n\to\infty} d(fgx_n, gfx_n) = 0$, whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some point t in X.

Clearly, commuting mappings are compatible, but the converse is not necessarily true.

Lemma 1.1. [4] Let f and g be compatible selfmappings of a metric space (X, d). Suppose that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some point $t \in X$. Then $\lim_{n\to\infty} gfx_n = ft$ if f is continuous.

In this paper, we give fixed and coincidence point theorems for expansive mappings, which extend and improve the corresponding results of Hicks-Saliga [2], Jachymski [3], Kang [5], Kang-Rhoades [6], Khan-Khan-Sessa [7], Rhoades [10], Taniguchi [12] and Wang-Li-Gao-Iseki [13].

2. FIXED POINT THEOREMS FOR EXPANSIVE MAPPINGS

Taniguchi [12], Jachymski [3] and Čirič [1] considered the following conditions:

$$d(fx, fy) > \min\{d(x, y), d(x, fx), d(y, fy)\}$$
(2.1)

for all $x, y \in X$ with $x \neq y$, and

$$d(x,y) > \min\{d(fx,fy), d(x,fx), d(y,fy)\} - \min\{d(x,fy), d(y,fx)\}$$
(2.2)

for all $x, y \in X$ with $x \neq y$.

Inspired by the results of [1], [3] and [12], we have the following

Theorem 2.1. Let C be a compact subset of a metric space $(X, d), f : C \to X$ be continuous and $g : C \to C$ be continuous and injective. Assume that there exists $F \in \mathcal{F}$ such that

$$F(fx, fy) > \min\left\{F(gx, gy), F(fx, gx), F(fy, gy), \frac{F(fx, gx)F(fy, gy)}{F(gx, gy)}\right\} - \min\{F(fx, gy), F(fy, gx)\}$$
(2.3)

for all distinct $x, y \in C$. If fC = X or $C \subseteq fC$, then gh has a fixed point in C, where $h = f^{-1}$ restricted to C.

Proof. It follows that from (2.3) that F(fx, fy) > 0 if $x \neq y$. That is, f is injective. Let t = gh. Then t maps C into itself. Note that f is a continuous bijection of a compact set C onto fC. Thus f is a homeomorphism. Consequently, t is continuous. (2.3) ensures that

$$F(w,tw) > \min\left\{F(tx,ty), F(tx,x), F(ty,y), \frac{F(tx,x)F(ty,y)}{F(tx,ty)}\right\} - \min\{F(x,ty), F(y,tx)\},$$
(2.4)

for all distinct x, y in C. From the compactness of C and continuity of F and t, it follows that there exists $w \in C$ satisfying $F(w, tw) = \min\{F(x, tx) : x \in C\}$. We claim that w = tw. Otherwise, F(w, tw) > 0. Using (2.4) we have

$$\begin{split} F(w,tw) &> \min \left\{ F(tw,t^2w), F(w,tw), F(tw,t^2w), \frac{F(w,tw)F(tw,t^2w)}{F(tw,t^2w)} \right\} \\ &\quad -\min\{F(w,t^2w), F(tw,tw)\} \\ &= \min\{F(tw,t^2w), F(w,tw)\} \\ &= F(tw,t^2w). \end{split}$$

That is,

$$F(w, tw) > F(tw, t^2w) \ge \min\{F(x, tx) : x \in C\} = F(w, tw)$$

which is a contradiction. Hence w is a fixed point of t. This completes the proof.

Remark 2.1. In case $g = i_C$ -the identity mapping on C and F = d, Theorem 2.1 reduces to a result which generalizes Theorem 4.2 of Jachymski [3] and Theorem 8 of Hicks-Saliga [2].

Remark 2.2. Example 5 of Hicks-Saliga [2] demonstrates that the compactness of C is necessary in the above Theorem 2.1.

Theorem 2.2. Let f be a continuous and nearly densifying selfmapping of a complete metric space (X, d). Assume that there exists $F \in \mathcal{F}$ such that

$$F(fx, fy) > \min\left\{F(x, y), F(x, fx), F(y, fy), \frac{F(x, fx)F(y, fy)}{F(x, y)}\right\} - \min\{F(x, fy), F(y, fx)\}$$
(2.5)

G. J. Jiang. and J. K. Kim

for all distinct $x, y \in X$. Then the following statements are equivalent:

- (1) f has a fixed point;
- (2) f has a periodic point;
- (3) There exists $x_0 \in X$ such that $O_f(x_0)$ is compact;
- (4) There exists $x_0 \in X$ such that $O_f(x_0)$ is bounded.

Proof. $(1) \Longrightarrow (2)$ and $(3) \Longrightarrow (4)$ are clear.

 $(2) \Longrightarrow (3)$. Assume that f has a periodic point $x_0 \in X$ and that k is the periodic index of x_0 . It is easy to see that $O_f(x_0) = \{f^i x_0 : 0 \le i < k\}$. Hence $O_f(x_0)$ is compact.

(4) \Longrightarrow (1). Set $A = \overline{O_f(x_0)}$, where $\overline{O_f(x_0)}$ denotes the closure of $O_f(x_0)$. By the continuity of f and $fO_f(x_0) \subseteq O_f(x_0)$, it follows that

$$fA \subseteq \overline{fO_f(x_0)} \subseteq A.$$

That is, A is invariant under f. Suppose that $\alpha(O_f(x_0)) > 0$. Since

$$\alpha(O_f(x_0)) = \max\{\alpha(\{x_0\}), \alpha(fO_f(x_0))\}$$
$$= \alpha(fO_f(x_0))$$

and f is nearly densifying, it follows that A is compact. Since F and f are continuous, so the function h defined by hx = F(x, fx) for $x \in A$ is continuous and achieves its maximum value at some $w \in A$. Suppose that $w \neq fw$. It follows from (2.5) that

$$\begin{split} F(fw, f^{2}w) &> \min \bigg\{ F(w, fw), F(w, fw), F(fw, f^{2}w), \\ &\qquad \frac{F(w, fw)F(fw, f^{2}w)}{F(w, fw)} \bigg\} \\ &\qquad -\min\{F(w, f^{2}w), F(fw, fw)\} \\ &= F(w, fw) \end{split}$$

which implies that

$$hfw = F(fw, f^2w) > F(w, fw) = hw = \max\{hx : x \in A\} \ge hfw$$

which is impossible. Hence w = fw. This completes the proof.

Let Φ_1 denotes the family of all functions $\phi : (\mathbb{R}^+)^4 \to \mathbb{R}^+$ satisfying the following conditions:

- (C₁) ϕ is lower-semicontinuous in each coordinate variable;
- (C₂) Let $v, w \in \mathbb{R}^+$ be such that either $v \ge \phi(v, w, w, v)$ or $v \ge \phi(w, v, w, v)$. Then $v \ge hw$, where $\phi(1, 1, 1, 1) = h > 1$.

Theorem 2.3. Let f and g be surjective selfmappings of a complete metric space (X, d) satisfying

$$d(fx,gy) \ge \phi\left(d(fx,x), d(gy,y), d(x,y), \frac{d(fx,x)d(gy,y)}{d(x,y)}\right)$$
(2.6)

for all distinct x, y in X, where $\phi \in \Phi_1$. Then f and g have a common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. Since f and g are surjective, we can easily construct a sequence $\{x_n\}_{n\in\mathbb{N}}$ in X such that $fx_{2n+1} = x_{2n}$, $gx_{2n+2} = x_{2n+1}$ for $n \in \Omega$. Set $d_n = d(x_n, x_{n+1})$ for $n \in \Omega$. Suppose that $x_{2n} = x_{2n+1}$ for some $n \in \Omega$. If $x_{2n+1} \neq x_{2n+2}$, then we have by (2.6)

$$d_{2n} = d(fx_{2n+1}, gx_{2n+2})$$

$$\geq \phi[d(fx_{2n+1}, x_{2n+1}), d(gx_{2n+2}, x_{2n+2}), d(x_{2n+1}, x_{2n+2}), \frac{d(fx_{2n+1}, x_{2n+1})d(gx_{2n+2}, x_{2n+2})}{d(x_{2n+1}, x_{2n+2})}]$$

$$= \phi(d_{2n}, d_{2n+1}, d_{2n+1}, d_{2n})$$

It follows from (C_2) and the above inequalities that

$$0 = d_{2n} \ge h d_{2n+1} > 0$$

which is impossible. Hence $x_{2n+1} = x_{2n+2}$. That is, x_{2n} is a common fixed point of f and g.

Similarly, we may prove that x_{2n+1} is a common fixed point of f and g if $x_{2n+1} = x_{2n+2}$ for some $n \in \Omega$.

Now we can suppose that $x_n \neq x_{n+1}$ for all $n \in \Omega$. From (2.6) and (C₂) it follows that

$$d_n \leq rd_{n-1} \leq \cdots \leq r^n d_0$$

for $n \in \mathbb{N}$, where $r = \frac{1}{h} < 1$. It is easily seen that

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d_k \le \sum_{k=n}^{m-1} r^k d_0 \le \frac{r^n}{1-r} d_0$$
(2.7)

for $n, m \in \mathbb{N}$ with m > n. Consequently, $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence. From the completeness of X, there exists $u \in X$ such that $x_n \to u$ as $n \to \infty$. Since f and g are surjective, there exist $v, w \in X$ such that fv = gw = u. We claim that w = u. Otherwise $w \neq u$. We consider two cases:

Case 1. There exists $k \in \mathbb{N}$ such that $x_{2n+1} = w$ for all $n \geq k$. Letting $m \to \infty$ in (2.7), we have

$$d(w,u) = d(x_{2n+1}, u) \le \frac{r^{2n+1}}{1-r}d_0$$

for $n \ge k$. It is easy to verify that w = u. This is a contradiction.

Case 2. There exists a subsequence $\{x_{2n_i+1}\}_{i\in\mathbb{N}}$ of $\{x_{2n+1}\}_{n\in\mathbb{N}}$ such that $x_{2n_i+1} \neq w$ for all $i \in \mathbb{N}$. Using (2.6),

$$d(x_{2n_i}, u) = d(fx_{2n_i+1}, gw)$$

$$\geq \phi \bigg(d(fx_{2n_i+1}, x_{2n_i+1}), d(gw, w), d(x_{2n_i+1}, w), \frac{d(fx_{2n_i+1}, x_{2n_i+1})d(gw, w)}{d(x_{2n_i+1}, w)} \bigg).$$

Letting $i \to \infty$, we obtain

$$\begin{split} 0 &= d(u, u) \\ &\geq \phi \bigg(d(u, u), d(gw, w), d(u, w), \frac{d(u, u)d(gw, w)}{d(u, w)} \bigg) \\ &= \phi(0, d(u, w), d(u, w), 0) \end{split}$$

which implies that u = w. This is also a contradiction. Therefore w = u = gw. Similarly we can prove that v = u = fv. That is, u is a common fixed point of f and g. This completes the proof.

Remark 2.3. Theorem 2.3 extends and improves Theorem 2.1 of Kang [5] and Theorem 2 of Khan-Khan-Sessa [7]. The condition of surjectivity is necessary in Theorem 2.3. To see this, we give the following example inspired by Kang [5].

Example 2.1. Let $X = \mathbb{R}^+$ with the usual metric. Define f and $g: X \to X$ by fx = h(x+2) for $x \in X$ and gx = hx for $x \in [0,1]$ and gx = h(x+2) for x > 1, where h > 1.

Consider $\phi(t_1, t_2, t_3, t_4) = ht_3$ for $t_1, t_2, t_3, t_4 \in X$. Then $\phi \in \Phi_1$. Further, it is easily seen that all the hypothesis of Theorem 2.3 are satisfied except the surjectivity of f and g. However, f and g do not have a common fixed point in X.

Theorem 2.4. Let f and g be surjective selfmappings of a metric space (X, d) satisfying

$$d(fx, gy) \ge a_1 d(fx, x) + a_2 d(gy, y) + a_3 d(x, y) + a_4 \frac{d(fx, x) d(gy, y)}{d(x, y)}$$
(2.8)

for all distinct $x, y \in X$, where $a_1, a_2, a_3, a_4 \in \mathbb{R}^+$ and $a_1 + a_4 < 1$, $a_2 + a_4 < 1$ and $\sum_{i=1}^4 a_i > 1$. Then

(i) f = g;

- (ii) f is injective;
- (iii) f has a fixed point in X if (X, d) is complete.

Proof. (i). Note that fX = gX = X. Then for any $x \in X$, there exists $y \in X$ such that fx = gy. We assert that x = y. Otherwise $x \neq y$. In view of (2.8), we immediately obtain $a_3 = 0$. If $a_4 = 0$, then $a_1 \neq 0$ and $a_2 \neq 0$ because $0 \leq a_1 < 1, 0 \leq a_2 < 1$ and $a_1 + a_2 > 1$. (2.8) ensures that d(fx, x) = d(gy, y) = 0. That is, x = fx = gy = y, which is a contradiction. If $a_4 > 0$, by (2.8) we have d(fx, x)d(fy, y) = 0. This means that d(gy, y) = d(x, y) > 0 or d(fx, x) = d(y, x) > 0. In view of (2.8) we have $a_2 = 0$ or $a_1 = 0$. It follows that

$$1 > a_1 + a_4 = \sum_{i=1}^4 a_i > 1$$

or

$$1 > a_2 + a_4 = \sum_{i=1}^4 a_i > 1$$

which are impossible. Hence fx = gx for all $x \in X$.

(ii). Suppose that there exist $x, y \in X$ with $x \neq y$ and fx = fy. From (2.8) and (i) we have

$$0 = d(fx, fy)$$

$$\geq \frac{1}{2}(a_1 + a_2)[d(fx, x) + d(fy, y)] + a_3d(x, y) + a_4\frac{d(fx, x)d(fy, y)}{d(x, y)}$$
(2.9)

which implies that $a_3 = 0$. If $a_4 = 0$, then $a_1 + a_2 = \sum_{i=1}^4 a_i = 1$. It follows from (2.9) that x = fx = fy = y, which is a contradiction; If $a_4 > 0$, then, by (2.9) we have d(fx, x)d(fy, y) = 0. This means that

$$d(fx, x) + d(fy, y) = d(x, y) > 0.$$

G. J. Jiang. and J. K. Kim

Thus (2.9) ensures that $a_1 + a_2 = 0$. Consequently

$$1 < \sum_{i=1}^{4} a_i = a_4 < 1$$

which is absurd. Hence f is injective.

(iii). Let $h = \sum_{i=1}^{4} a_i$ and $\phi(t_1, t_2, t_3, t_4) = \sum_{i=1}^{4} a_i t_i$ for all $t_1, t_2, t_3, t_4 \in \mathbb{R}^+$. It is easy to verify $\phi \in \Phi_1$. By Theorem 2.3 and (i) of Theorem 2.4 we immediately conclude that f has a fixed point in X.

Remark 2.4. Theorems 1 and 2 of Wang-Li-Gao-Iseki [13], Theorem 1 of Taniguchi [12] and Corollary 2.3 of Kang [5] are special cases of (iii) of Theorem 2.4.

3. Coincidence point theorems for expansive mappings

Let Φ_2 denote the family of all real functions $\phi : (\mathbb{R}^+)^4 \to \mathbb{R}^+$ satisfying conditions (C₁) and (C₃) :

(C₃) Let $v, w \in \mathbb{R}^+ - \{0\}$ be such that either $v \ge \phi(v, w, w, v)$ or $v \ge \phi(w, v, w, v)$. Then $v \ge hw$, where $\phi(1, 1, 1, 1) = h > 1$.

It is easy to see that $\Phi_1 \subset \Phi_2$. Let $\phi(t_1, t_2, t_3, t_4) = h \min\{t_i : i = 1, 2, 3, 4\}$ for $t_1, t_2, t_3, t_4 \in \mathbb{R}^+$, where h > 1. Then $\phi \in \Phi_2$ but $\phi \notin \Phi_1$. Therefore Φ_1 is a proper subset of Φ_2 .

Theorem 3.1. Let A, B, S and T be continuous selfmappings of a complete metric space (X, d) such that

- (a) $AX \supseteq TX, BX \supseteq SX;$
- (b) A, S and B, T are compatible.

Suppose that there exists $\phi \in \Phi_2$ satisfying the condition

$$d(Ax, By) \ge \phi\left(d(Ax, Sx), d(By, Ty), d(Sx, Ty), \frac{d(Ax, Sx)d(By, Ty)}{d(Sx, Ty)}\right) \quad (3.1)$$

for all $x, y \in X$ with $Sx \neq Ty$. Then there exists $w \in X$ such that either Aw = Sw or Bw = Tw or Aw = Sw and Bw = Tw.

Proof. Let $x_0 \in X$. (a) ensures that there exist sequences $\{y_n\}_{n\in\Omega}$ and $\{x_n\}_{n\in\mathbb{N}}$ in X such that $y_{2n} = Ax_{2n+1} = Tx_{2n}$ and $y_{2n+1} = Bx_{2n+2} = Sx_{2n+1}$ for all $n \in \Omega$. If $y_n = y_{n+1}$ for some $n \in \Omega$, then A and S or B and T have a coincidence point. Suppose that $y_n \neq y_{n+1}$ for all $n \in \Omega$.

From (3.1) and (C₃) we easily conclude that $\{y_n\}_{n\in\Omega}$ is a Cauchy sequence. Thus it converges to some point w in X since (X,d) is complete. Clearly, $Ax_{2n+1}, Sx_{2n+1} \to w$ as $n \to \infty$. Since S is continuous, $SAx_{2n+1} \to Sw$ as $n \to \infty$. From (b) and Lemma 1.1 it follows that $SAx_{2n+1} \to Aw$ as $n \to \infty$. Hence Aw = Sw. Similarly we have Tw = Bw. This completes the proof. \Box

Remark 3.1. In case $T = S = i_X$ -the identity mapping of X, Theorem 3.1 reduces to a result which generalizes Theorem 2.6 and Corollary 2.7 of Kang [5], Theorem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Let Ψ denote the family of all real function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the following conditions (C₄) and (C₅):

- $(C_4) \psi$ is upper-semicontinuous and nondecreasing;
- (C₅) $\psi(t) < t$ for each t > 0.

Theorem 3.2. Let A, B, S and T be continuous selfmappings of a complete metric space (X, d) satisfying (a), (b) and

$$\psi(d(Ax, By)) \ge \min\left\{ d(Ax, Sx), d(By, Ty), d(Sx, Ty), \frac{d(Ax, Sx)d(By, Ty)}{d(Sx, Ty)} \right\}$$
(3.2)

for all $x, y \in X$ with $Sx \neq Ty$, where $\psi \in \Psi$ and $\sum_{n=0}^{\infty} \psi^n(t) < \infty$ for each t > 0. Then the same conclusion of Theorem 3.1 holds

Proof. Let $\{y_n\}_{n\in\Omega}$ and $\{x_n\}_{n\in\mathbb{N}}$ be as in the proof of Theorem 3.1. Put $d_n = d(y_n, y_{n+1})$ for $n \in \Omega$. If $y_n = y_{n+1}$ for some $n \in \Omega$, then A and S or B and T have a coincidence point. Suppose that $y_n \neq y_{n+1}$ for all $n \in \Omega$. From (3.2), (C₄) and (C₅) we have

$$\psi(d_{2n}) = \psi(d(Ax_{2n+1}, Bx_{2n+2}))$$

$$\geq \min\left\{ d(Ax_{2n+1}, Sx_{2n+1}), d(Bx_{2n+2}, Tx_{2n+2}), d(Sx_{2n+1}, Tx_{2n+2}), \frac{d(Ax_{2n+1}, Sx_{2n+1})d(Bx_{2n+2}, Tx_{2n+2})}{d(Sx_{2n+1}, Tx_{2n+2})} \right\}$$

$$= \min\left\{ d_{2n}, d_{2n+1}, d_{2n+1}, \frac{d_{2n}d_{2n+1}}{d_{2n+1}} \right\}$$

$$= \min\{d_{2n}, d_{2n+1}\}$$

$$= d_{2n+1}.$$

Similarly we have $d_{2n+2} \leq \psi(d_{2n+1})$. Thus, for any $n \in \mathbb{N}$ we have

$$d_n \le \psi(d_{n-1}) \le \dots \le \psi^n(d_0).$$

For any $n, m \in \mathbb{N}$ with n < m, we have

$$d(y_n, y_m) \le \sum_{k=n}^{m-1} d_k \le \sum_{k=n}^{m-1} \psi^k(d_0).$$

Note that $\sum_{n=0}^{\infty} \psi^n(t) < \infty$ for each t > 0. Therefore $\{y_n\}_{n \in \Omega}$ is a Cauchy sequence. The remaining portion of the proof can be derived as in Theorem 3.1. This completes the proof.

Remark 3.2. Theorem 3.2 extends and improves Theorem 2.9 and Corollary 2.7 of Kang [5], Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

The following example reveals that the Theorem 3.1 and Theorem 3.2 extend properly Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5], Theorem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Example 3.1. Let $X = \{1, 2, 3, 5\}$ with the usual metric. Define mappings A and B on X by A1 = B1 = 1, A3 = A5 = B2 = B3 = 2 and A2 = B5 = 3. Then Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5] and Theorem 4 of Khan-Khan-Sessa [7] are not applicable since A and B are not surjective. For any h > 1 we have

$$d(A3, A5) = 0 \neq h = h \min\{d(3, A3), d(5, A5), d(3, 5)\}$$

and

$$d(A2, B5) = 0 \neq h = h \min\{d(2, A2), d(5, B5), d(2, 5)\}.$$

That is, Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13] are not applicable.

Now we take that S = A, T1 = T2 = T3 = 2 and T5 = 3. Let

$$\phi(t_1, t_2, t_3, t_4) = h \min\{t_i : i = 1, 2, 3, 4\}$$
 for $t_1, t_2, t_3, t_4 \in \mathbb{R}^+$

and

$$\psi(t) = \frac{t}{h} \text{ for } t \in \mathbb{R}^+,$$

where h > 1. Then AX = SX, BX = TX, A and S, B and T are commuting. For any $x, y \in X$ with $Sx \neq Ty$, we have

$$\begin{aligned} d(Ax, By) &\geq 0 \\ &= hd(Ax, Sx) \\ &= \phi \bigg(d(Ax, Sx), d(By, Ty), d(Sx, Ty), \frac{d(Ax, Sx)d(By, Ty)}{d(Sx, Ty)} \bigg) \end{aligned}$$

and

$$\psi(d(Ax, By)) = \frac{1}{h}d(Ax, By)$$

$$\geq 0$$

$$= d(Ax, Sx)$$

$$= \min\left\{d(Ax, Sx), d(By, Ty), d(Sx, Ty), \frac{d(Ax, Sx)d(By, Ty)}{d(Sx, Ty)}\right\}$$

All hypothesis of Theorem 3.1 and Theorem 3.2 are therefore satisfied.

References

- L. B. Cirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17(31) (1974), 52–58.
- T. L. Hicks and L. M. Saliga, Fixed point theorems for non-self maps II, Math. Japon. 38 (1993), 953–956.
- J. Jachymski, Fixed point theorems for expansive mappings, Math. Japon. 42 (1995), 131–136.
- G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771–779.
- 5. S. M. Kang, Fixed points for expansion mappings, Math. Japon. 38 (1993), 713–717.
- S. M. Kang and B. E. Rhoades, Fixed points for four mappings, Math. Japon 37 (1992), 1053–1059.
- M. A. Khan, M. S. Khan and S. Sessa, Some theorems on expansion mappings and their fixed points, Demonstratio Math. 19 (1986), 673–683.
- 8. R. Machuca, A coincidence theorem, Amer. Math. Month. 74 (1967), 569.
- S. Park and B. E. Rhoades, Some fixed point theorems for expansion mappings, Math. Japon. 33 (1988), 129–132.
- B. E. Rhoades, Some fixed point theorems for pairs of mappings, Jñānābha 15 (1985), 151–156.
- K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for nearly densifying maps, Nep. Math. Sci. Rep. 7 (1982), 41–44.

- T. Taniguchi, Common fixed point theorems on expansion type mappings on complete metric spaces, Math. Japon. 34 (1989), 139–142.
- S. Z. Wang, B. Y. Li, Z. M. Gao and K. Iseki, Some fixed point theorems on expansion mappings, Math. Japon. 29 (1984), 631–636.

Guo-Jing Jiang Dalian Management Cadre's College Dalian, Liaoning, 116031, People's Republic of China

Jong Kyu Kim Department of Mathematics Kyungnam University Masan, Kyungnam, 631-701 Korea *E-mail address*: jongkyuk@kyungnam.ac.kr