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FIXED AND COINCIDENCE POINT
THEOREMS FOR EXPANSIVE MAPPINGS

GUO-JING JIANG AND JoNG KyUu KiMm

ABSTRACT. In this paper, we give fixed and coincidence point theorems for
expansive mappings, which extend and improve the corresponding results of
Hicks-Saliga, Jachymski, Kang, Kang-Rhoades, Khan-Khan-Sessa, Rhoades,
Taniguchi and Wang-Li-Gao-Iseki.

1. INTRODUCTION

The fixed point theorem for expansive mappings was first proved by Machu-
ca [8]. Afterwards, a number of authors obtained also fixed point theorems
for certain expansive mappings in metric spaces ([2], [3], [5], [6], [7], [9], [10],
[12], [13]).

N, Q and R™ denote the sets of positive integers, nonnegative integers and
nonnegative real numbers, respectively. Let f be a selfmapping of a metric
space (X,d). A point z in X is called a periodic point of f if there exists
k € N such that f*z = x. The least positive integer k satisfying this condition
is called the periodic index of x. Let Of(x) denote the orbit of f at z; i.e.,
Of(z) ={f"z : n € Q}. Define

F={F|F:X xX — R" is continuous such that
F(z,y) =0 if and only if z = y}.
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Definition 1.1. [11] A selfmapping f of a metric space (X,d) is said to be
nearly densifying if a(fA) < «a(A) whenever o(A) > 0, A is bounded and
f-invariant, where a(A) denotes the measure of noncompactness in the sense
of Kuratowski.

Definition 1.2. [4] Let f and g be selfmappings of a metric space (X, d).
Then f and g are said to be compatible if lim,, o d(fgxn, gfx,) = 0, whenever
{zn }nen is a sequence in X such that lim,, o fz, = lim, . gz, = t for some
point ¢ in X.

Clearly, commuting mappings are compatible, but the converse is not nec-
essarily true.

Lemma 1.1. [4] Let f and g be compatible selfmappings of a metric space
(X,d). Suppose that lim, .o fz, = lim, . gz, =t for some point t € X.
Then lim,, o gfx, = ft if f is continuous.

In this paper, we give fixed and coincidence point theorems for expansive
mappings, which extend and improve the corresponding results of Hicks-Saliga
[2], Jachymski [3], Kang [5], Kang-Rhoades [6], Khan-Khan-Sessa [7], Rhoades
[10], Taniguchi [12] and Wang-Li-Gao-Iseki [13].

2. FIXED POINT THEOREMS FOR EXPANSIVE MAPPINGS

Taniguchi [12], Jachymski [3] and Ciri¢ [1] considered the following condi-
tions:

d(fz, fy) > min{d(z,y),d(z, fz),d(y, fy)} (2.1)
for all z,y € X with x # y, and

d(z,y) > min{d(fz, fy),d(z, fz),d(y, fy)} — min{d(z, fy),d(y, fz)} (2.2)

for all z,y € X with x #£ y.
Inspired by the results of [1], [3] and [12], we have the following

Theorem 2.1. Let C be a compact subset of a metric space (X,d), f: C — X
be continuous and g : C — C be continuous and injective. Assume that there
exists F' € F such that

F(fz, fy) >min{F(gx’gy)vF(ffﬁ,gx),F(fy,gy)’ F(fx},;gng(yf)y,gy)}

—min{F(fz,gy), F(fy,9x)} (2.3)
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for all distinct x,y € C. If fC =X or C C fC, then gh has a fized point in
C, where h = f~ restricted to C.

Proof. Tt follows that from (2.3) that F(fz, fy) > 0 if x # y. That is, f is
injective. Let ¢ = gh. Then ¢ maps C' into itself. Note that f is a contin-
uous bijection of a compact set C' onto fC. Thus f is a homeomorphism.
Consequently, ¢ is continuous. (2.3) ensures that

F(w,tw) > min{F(taz, ty), F(tx, x), F(ty,y), F(t?(?gﬁgi/’ ! } (2.4)

— min{F(z,ty), F(y, tx)},
for all distinct z, y in C. From the compactness of C' and continuity of F' and t,

it follows that there exists w € C satisfying F(w, tw) = min{F(x,tx) : x € C}.
We claim that w = tw. Otherwise, F'(w,tw) > 0. Using (2.4) we have

F(w, tw)F(tw, t*
F(w,tw) > min{F(tw,tzw),F(w,tw),F(tw,th), (w, tw) F(tw, w)}

F(tw, t?w)
— min{F(w, *w), F(tw, tw)}

= min{F(tw, t*w), F(w, tw)}

= F(tw, t*w).
That is,

F(w,tw) > F(tw,t?w) > min{F(z,tz) : € C} = F(w, tw)

which is a contradiction. Hence w is a fixed point of ¢. This completes the
proof. O

Remark 2.1. In case g = ic-the identity mapping on C and F' = d, Theorem
2.1 reduces to a result which generalizes Theorem 4.2 of Jachymski [3] and
Theorem 8 of Hicks-Saliga [2].

Remark 2.2. Ezxample 5 of Hicks-Saliga [2] demonstrates that the compact-
ness of C' is necessary in the above Theorem 2.1.

Theorem 2.2. Let f be a continuous and nearly densifying selfmapping of a
complete metric space (X, d). Assume that there exists F' € F such that

F(z, fz)F(y, fy) }
F(z,y) (2.5)

F(fa, fy) > min{F<x, y), F(x, f), F(y, fy),

—min{ F(z, fy), F(y, fx)}
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for all distinct x,y € X. Then the following statements are equivalent:
(1) f has a fixed point;
(2) f has a periodic point;
(3) There exists xo € X such that O¢(zg) is compact;
(4) There exists xo € X such that O¢(zo) is bounded.

Proof. (1)==(2) and (3)=(4) are clear.

(2)=(3). Assume that f has a periodic point 2o € X and that k is the
periodic index of . It is easy to see that Of(xg) = {f'wo : 0 < i < k}. Hence
Of(xp) is compact.

(4)=(1). Set A = Oy(xo), where O¢(zo) denotes the closure of O(x).
By the continuity of f and fO(xo) C Of(x0), it follows that

FAC O (z0) C A.
That is, A is invariant under f. Suppose that o(Of(zo)) > 0. Since
a(Of(xo)) =max{a({zo}),a(fOy(x0))}
=a(fOy(x0))

and f is nearly densifying, it follows that A is compact. Since F' and f are
continuous, so the function h defined by ha = F(z, fz) for x € A is continuous
and achieves its maximum value at some w € A. Suppose that w # fw. It
follows from (2.5) that

F(fw,wi) > min{F(w,fw),F(w,fw),F(fw,f2w),

F(w, fw)F(fw, f*w) }
F(w, fw)

— min{F(w, f*w), F(fw, fw)}
= F(w, fw)
which implies that
hfw = F(fw, fw) > F(w, fw) = hw = max{hx : x € A} > hfw
which is impossible. Hence w = fw. This completes the proof. O

Let ®; denotes the family of all functions ¢ : (R*)* — R satisfying the
following conditions:
(C1) ¢ is lower-semicontinuous in each coordinate variable;
(Cy) Let v,w € R be such that either v > ¢(v, w, w,v) or v > ¢(w, v, w,v).
Then v > hw, where ¢(1,1,1,1) = h > 1.
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Theorem 2.3. Let f and g be surjective selfmappings of a complete metric
space (X,d) satisfying

d(fz. gy) > ¢<d(f:c,z),dwy,y),d(z,y), utl x’x)d(gy’y)> (2.6)

d(z,y)

for all distinct x,y in X, where ¢ € ®1. Then f and g have a common fized
point in X.

Proof. Let xg be an arbitrary point in X. Since f and g are surjective, we can
easily construct a sequence {z,},en in X such that fro,11 = Ton, gTonio =
ZTon+1 for n € Q. Set d,, = d(zp, zn41) for n € Q. Suppose that za, = z2,11
for some n € Q. If x9,,41 # T2,42, then we have by (2.6)

dan = d(fTan+1, gTon+2)
> ¢ld(fron+1, Tant1), A(9T2n+2, Tant2), d(T2n+1, Tant2),
d(fT2n+1, T2nt1)d(gT2n42, $2n+2)]
d($2n+1, $2n+2)

= ¢(d2n7 d2n+1; d2n+17 dQT'L)

It follows from (Cz) and the above inequalities that
0=dsy > hdopy1 >0

which is impossible. Hence 22,41 = xa,42. That is, x4, is a common fixed
point of f and g.
Similarly, we may prove that x2,41 is a common fixed point of f and g if
Tont1 = Tapyo for some n € Q.
Now we can suppose that x,, # x, 1 for all n € Q. From (2.6) and (Cs) it
follows that
dn < rdn—l < - < rndO

for n € N, where r = % < 1. It is easily seen that

m—1 m—1 n
,
A(Tpy T) < kz di, < kz r*dy < - do (2.7)

for n,m € N with m > n. Consequently, {z,, }»en is a Cauchy sequence. From
the completeness of X, there exists u € X such that x,, — u as n — oco. Since
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f and g are surjective, there exist v, w € X such that fv = gw = u. We claim
that w = u. Otherwise w # u. We consider two cases:

Case 1. There exists k € N such that zs,11 = w for all n > k. Letting
m — o0 in (2.7), we have

2n+1
d(w,u) = d(z2p41,u) < q

do

for n > k. It is easy to verify that w = w. This is a contradiction.
Case 2. There exists a subsequence {x2,,+1}ien of {Z2n+1}nen such that
Zon,+1 7 w for all ¢ € N. Using (2.6),

d(x2ni ) U) = d(f:EQni-‘rlv gw)
> ¢<d(fl“2ni+17$2ni+1)7 d(ngw)v d(932n,-,+1,w),

d(fliQni—&—la x2ni+1)d(ng ’LU) >
d(T2n,+1, W) '

Letting ¢ — oo, we obtain

0= d(u,u)

> (Z)(d(u,u),d(gw,w), d(u,w),
= ¢(0,d(u,w), d(u,w),0)

d(u,u)d(gw,w)
d(u,w) )

which implies that © = w. This is also a contradiction. Therefore w = u = gw.
Similarly we can prove that v = v = fv. That is, v is a common fixed point
of f and g. This completes the proof. O

Remark 2.3. Theorem 2.3 extends and improves Theorem 2.1 of Kang [5]
and Theorem 2 of Khan-Khan-Sessa [7]. The condition of surjectivity is nec-

essary in Theorem 2.3. To see this, we give the following example inspired by
Kang [5].

Example 2.1. Let X = R" with the usual metric. Define f and g: X — X
by fr = h(zx+2) for x € X and gx = hx for x € [0,1] and gx = h(x + 2) for
x > 1, where h > 1.

Consider ¢(t1,ta,ts,ts) = htg for ty,ta,t3,ty € X. Then ¢ € ®1. Further,
it is easily seen that all the hypothesis of Theorem 2.3 are satisfied except the
surjectivity of f and g. However, f and g do not have a common fixed point
m X.
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Theorem 2.4. Let f and g be surjective selfmappings of a metric space (X, d)
satisfying
d(fz,gy) 2ard(fx, ) + azd(gy,y) + asd(z,y)
d(fx, z)d(gy,y) (2.8)
d(z,y)
for all distinct z,y € X, where a1, as,a3,a4 € RT and a1 +as <1, as+ay <1
and Z?:l a; > 1. Then
(i) f=g;
(ii) f is injective;
(iii) f has a fized point in X if (X,d) is complete.

+ ay

Proof. (i). Note that fX = gX = X. Then for any x € X, there exists y € X
such that fo = gy. We assert that 2z = y. Otherwise z # y. In view of (2.8),
we immediately obtain a3 = 0. If ag4 = 0, then a; # 0 and as # 0 because
0<a; <1,0<a <1anda; +ax > 1. (2.8) ensures that d(fz,z) =
d(gy,y) = 0. That is, z = fx = gy = y, which is a contradiction. If a4 > 0,
by (2.8) we have d(fz,x)d(fy,y) = 0. This means that d(gy,y) = d(x,y) >0
ord(fx,x) =d(y,z) > 0. In view of (2.8) we have az = 0 or a; = 0. It follows
that

4
1 > a1+ aa :Zai > 1
=1
or

4
1>a2+a4:Zai > 1
=1

which are impossible. Hence fx = gz for all x € X.
(ii). Suppose that there exist x,y € X with x # y and fz = fy. From (2.8)
and (i) we have

0=d(fz, fy)
(a1 + az)[d(fz,2) + d(fy,y)] (2.9)
d(fz,x)d(fy,y)

d(z,y)

which implies that ag = 0. If a4 = 0, then a; + as = 2?21 a; = 1. It follows
from (2.9) that z = fx = fy = y, which is a contradiction; If a4 > 0, then,
by (2.9) we have d(fx,z)d(fy,y) = 0. This means that

d(fz,z) +d(fy,y) = d(x,y) > 0.

1
>
-2
+

azd(z,y) + ay
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Thus (2.9) ensures that a; + as = 0. Consequently

4
1<Zai:a4<1
=1

which is absurd. Hence f is injective.

(111) Let h = Z?:l a; and ¢(t1,t2,t3,t4) = Z?:l a;t; for all t1,t9,t3,t4 €
RT. It is easy to verify ¢ € ®;. By Theorem 2.3 and (i) of Theorem 2.4 we
immediately conclude that f has a fixed point in X. O

Remark 2.4. Theorems 1 and 2 of Wang-Li-Gao-Iseki [13], Theorem 1 of
Taniguchi [12] and Corollary 2.3 of Kang [5] are special cases of (iii) of The-
orem 2.4.

3. COINCIDENCE POINT THEOREMS FOR EXPANSIVE MAPPINGS
Let ®5 denote the family of all real functions ¢ : (RT)* — R satisfying
conditions (C;) and (Cs) :
(C3) Let v,w € RT — {0} be such that either v > ¢(v,w,w,v) or v >
¢(w,v,w,v). Then v > hw, where ¢(1,1,1,1) = h > 1.

It is easy to see that ®; C ®o. Let ¢(t1,t2,t3,t4) = hmin{t; : i = 1,2,3,4}
for t1,to,t3,t4 € RT, where h > 1. Then ¢ € 3 but ¢ € ®;. Therefore ®, is
a proper subset of ®,.

Theorem 3.1. Let A, B, S and T be continuous selfmappings of a complete
metric space (X,d) such that

(a) AX DTX, BX D SX;
(b) A, S and B, T are compatible.

Suppose that there exists ¢ € ®o satisfying the condition

d(Azx, Sx)d(By,Ty)
d(Sz, Ty) > (3.1)

d(Az, By) > qb(d(Ax,Sx),d(By,Ty),d(Sx,Ty),

for all xz,y € X with Sx # Ty. Then there exists w € X such that either
Aw = Sw or Bw =Tw or Aw = Sw and Bw = Tw.

Proof. Let o € X. (a) ensures that there exist sequences {y, }necq and
{Zn}nen in X such that yo, = Azony1 = Txo, and yont1 = Brogio =
Sxopy1 for all n € Q. If y,, = yn41 for some n € Q, then A and S or B
and T have a coincidence point. Suppose that y, # y,i1 for all n € Q.
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From (3.1) and (C3) we easily conclude that {y,}neq is a Cauchy sequence.
Thus it converges to some point w in X since (X,d) is complete. Clearly,
Axoni1,S5%Ton11 — w as n — oo. Since S is continuous, SAzre,11 — Sw as
n — oo. From (b) and Lemma 1.1 it follows that SAzs,+1 — Aw as n — oc.
Hence Aw = Sw. Similarly we have Tw = Bw. This completes the proof. [J

Remark 3.1. In case T = S = ix-the identity mapping of X, Theorem
3.1 reduces to a result which generalizes Theorem 2.6 and Corollary 2.7 of
Kang [5], Theorem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10]
and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Let ¥ denote the family of all real function ¢ : Rt — R¥ satisfying the
following conditions (Cy4) and (Cs) :

(C4) 9 is upper-semicontinuous and nondecreasing;
(Cs) ¥(t) <t for each t > 0.

Theorem 3.2. Let A, B, S and T be continuous selfmappings of a complete
metric space (X,d) satisfying (a), (b) and

Y(d(Az, By)) > min{d(Ax, Sz),d(By,Ty),d(Sz, Ty),
(3.2)

d(Azx,Sx)d(By,Ty) }
d(Sz,Ty)

for all z,y € X with Sz # Ty, where ¢ € ¥ and Y~ " (t) < oo for each
t > 0. Then the same conclusion of Theorem 3.1 holds

Proof. Let {yn}nen and {z,}nen be as in the proof of Theorem 3.1. Put
dp, = d(Yn, Ynt1) for n € Q. If y,, = Y41 for some n € Q, then A and S or B

and 7T have a coincidence point. Suppose that y,, # y,+1 for all n € Q. From
(3.2), (Cy4) and (Cs) we have

¢(d2n) = ¢(d(AfC2n+1, Bl‘2n+2))
> min{d(Aﬂfan, Sxon41), d(Broni2, TTony2), d(STont1, TT2n42),

d(Azony1, ST2n41)d(Bran o, Tr2n12) }
d(Sw2n41, TT2n42)
d2nd2n+1 }
dont1

= min{d2n7 dopy1,dont1,

= min{day, d2n+1}

=dopy1-
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Similarly we have day, 12 < ¥(dap+1). Thus, for any n € N we have

For any n, m € N with n < m, we have

m— m—1
ymym Z Z dO)'

Note that Y- Ow”( ) < oo for each t > 0. Therefore {y,}neq is a Cauchy
sequence. The remaining portion of the proof can be derived as in Theorem
3.1. This completes the proof. O

Remark 3.2. Theorem 3.2 extends and improves Theorem 2.9 and Corollary
2.7 of Kang [5], Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and
Theorem 3 of Wang-Li-Gao-Iseki [13].

The following example reveals that the Theorem 3.1 and Theorem 3.2 ex-
tend properly Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5], The-
orem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10] and Theorem 1,
Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Example 3.1. Let X = {1,2,3,5} with the usual metric. Define mappings
Aand B on X by A1 =Bl =1, A3=A5=B2=B3=2 and A2 = B5=3.
Then Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5] and Theorem
4 of Khan-Khan-Sessa [7] are not applicable since A and B are not surjective.
For any h > 1 we have

d(A3,A5) =0 % h = hmin{d(3, A3),d(5, A5),d(3,5)}
and
d(A2,B5) =0 % h = hmin{d(2, A2),d(5, B5),d(2,5)}.

That is, Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem
3 of Wang-Li-Gao-Iseki [13] are not applicable.

Now we take that S = A, T1=T2=T3=2and T5 = 3. Let
¢(t1,t2,t3,t4) = hmin{ti 1= 1,2,3,4} for tl,tg,tg,t4 S R+
and

w(t) = % for ¢ € RY,
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where h > 1. Then AX = SX, BX =TX, Aand S, B and T are commuting.
For any z, y € X with Sz # Ty, we have

and

d(Az, By) > 0
= hd(Azx, Sx)
Az, Sz
- ¢<d(Am’ §),d(By, Ty), d(S, Ty), X &(Ssg)cd(TiZ)% Ty))
Y(d(Az, By)) = %d(Ax, By)
>0
= d(Az, Sx)

— wind (A, 52), (B, Ty), (ST,

d(Azx, Sx)d(By,Ty) }
d(Sz,Ty) ‘

All hypothesis of Theorem 3.1 and Theorem 3.2 are therefore satisfied.

10.

11.
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