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FIXED AND COINCIDENCE POINT

THEOREMS FOR EXPANSIVE MAPPINGS

Guo-Jing Jiang and Jong Kyu Kim

Abstract. In this paper, we give fixed and coincidence point theorems for
expansive mappings, which extend and improve the corresponding results of
Hicks-Saliga, Jachymski, Kang, Kang-Rhoades, Khan-Khan-Sessa, Rhoades,
Taniguchi and Wang-Li-Gao-Iseki.

1. Introduction

The fixed point theorem for expansive mappings was first proved by Machu-
ca [8]. Afterwards, a number of authors obtained also fixed point theorems
for certain expansive mappings in metric spaces ([2], [3], [5], [6], [7], [9], [10],
[12], [13]).
N, Ω and R+ denote the sets of positive integers, nonnegative integers and

nonnegative real numbers, respectively. Let f be a selfmapping of a metric
space (X, d). A point x in X is called a periodic point of f if there exists
k ∈ N such that fkx = x. The least positive integer k satisfying this condition
is called the periodic index of x. Let Of (x) denote the orbit of f at x; i.e.,
Of (x) = {fnx : n ∈ Ω}. Define

F = {F | F : X ×X → R+ is continuous such that

F (x, y) = 0 if and only if x = y}.
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Definition 1.1. [11] A selfmapping f of a metric space (X, d) is said to be
nearly densifying if α(fA) < α(A) whenever α(A) > 0, A is bounded and
f -invariant, where α(A) denotes the measure of noncompactness in the sense
of Kuratowski.

Definition 1.2. [4] Let f and g be selfmappings of a metric space (X, d).
Then f and g are said to be compatible if limn→∞ d(fgxn, gfxn) = 0, whenever
{xn}n∈N is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some
point t in X.

Clearly, commuting mappings are compatible, but the converse is not nec-
essarily true.

Lemma 1.1. [4] Let f and g be compatible selfmappings of a metric space
(X, d). Suppose that limn→∞ fxn = limn→∞ gxn = t for some point t ∈ X.
Then limn→∞ gfxn = ft if f is continuous.

In this paper, we give fixed and coincidence point theorems for expansive
mappings, which extend and improve the corresponding results of Hicks-Saliga
[2], Jachymski [3], Kang [5], Kang-Rhoades [6], Khan-Khan-Sessa [7], Rhoades
[10], Taniguchi [12] and Wang-Li-Gao-Iseki [13].

2. Fixed point theorems for expansive mappings

Taniguchi [12], Jachymski [3] and Ċiriċ [1] considered the following condi-
tions:

d(fx, fy) > min{d(x, y), d(x, fx), d(y, fy)} (2.1)

for all x, y ∈ X with x 6= y, and

d(x, y) > min{d(fx, fy), d(x, fx), d(y, fy)} −min{d(x, fy), d(y, fx)} (2.2)

for all x, y ∈ X with x 6= y.
Inspired by the results of [1], [3] and [12], we have the following

Theorem 2.1. Let C be a compact subset of a metric space (X, d), f : C → X
be continuous and g : C → C be continuous and injective. Assume that there
exists F ∈ F such that

F (fx, fy) >min
{

F (gx, gy), F (fx, gx), F (fy, gy),
F (fx, gx)F (fy, gy)

F (gx, gy)

}

−min{F (fx, gy), F (fy, gx)} (2.3)
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for all distinct x, y ∈ C. If fC = X or C ⊆ fC, then gh has a fixed point in
C, where h = f−1 restricted to C.

Proof. It follows that from (2.3) that F (fx, fy) > 0 if x 6= y. That is, f is
injective. Let t = gh. Then t maps C into itself. Note that f is a contin-
uous bijection of a compact set C onto fC. Thus f is a homeomorphism.
Consequently, t is continuous. (2.3) ensures that

F (w, tw) >min
{

F (tx, ty), F (tx, x), F (ty, y),
F (tx, x)F (ty, y)

F (tx, ty)

}

−min{F (x, ty), F (y, tx)},
(2.4)

for all distinct x, y in C. From the compactness of C and continuity of F and t,
it follows that there exists w ∈ C satisfying F (w, tw) = min{F (x, tx) : x ∈ C}.
We claim that w = tw. Otherwise, F (w, tw) > 0. Using (2.4) we have

F (w, tw) > min
{

F (tw, t2w), F (w, tw), F (tw, t2w),
F (w, tw)F (tw, t2w)

F (tw, t2w)

}

−min{F (w, t2w), F (tw, tw)}
= min{F (tw, t2w), F (w, tw)}
= F (tw, t2w).

That is,

F (w, tw) > F (tw, t2w) ≥ min{F (x, tx) : x ∈ C} = F (w, tw)

which is a contradiction. Hence w is a fixed point of t. This completes the
proof. ¤
Remark 2.1. In case g = iC-the identity mapping on C and F = d, Theorem
2.1 reduces to a result which generalizes Theorem 4.2 of Jachymski [3] and
Theorem 8 of Hicks-Saliga [2].

Remark 2.2. Example 5 of Hicks-Saliga [2] demonstrates that the compact-
ness of C is necessary in the above Theorem 2.1.

Theorem 2.2. Let f be a continuous and nearly densifying selfmapping of a
complete metric space (X, d). Assume that there exists F ∈ F such that

F (fx, fy) > min
{

F (x, y), F (x, fx), F (y, fy),
F (x, fx)F (y, fy)

F (x, y)

}

−min{F (x, fy), F (y, fx)}
(2.5)
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for all distinct x, y ∈ X. Then the following statements are equivalent:
(1) f has a fixed point;
(2) f has a periodic point;
(3) There exists x0 ∈ X such that Of (x0) is compact;
(4) There exists x0 ∈ X such that Of (x0) is bounded.

Proof. (1)=⇒(2) and (3)=⇒(4) are clear.
(2)=⇒(3). Assume that f has a periodic point x0 ∈ X and that k is the

periodic index of x0. It is easy to see that Of (x0) = {f ix0 : 0 ≤ i < k}. Hence
Of (x0) is compact.

(4)=⇒(1). Set A = Of (x0), where Of (x0) denotes the closure of Of (x0).
By the continuity of f and fOf (x0) ⊆ Of (x0), it follows that

fA ⊆ fOf (x0) ⊆ A.

That is, A is invariant under f. Suppose that α(Of (x0)) > 0. Since

α(Of (x0)) = max{α({x0}), α(fOf (x0))}
=α(fOf (x0))

and f is nearly densifying, it follows that A is compact. Since F and f are
continuous, so the function h defined by hx = F (x, fx) for x ∈ A is continuous
and achieves its maximum value at some w ∈ A. Suppose that w 6= fw. It
follows from (2.5) that

F (fw, f2w) > min
{

F (w, fw), F (w, fw), F (fw, f2w),

F (w, fw)F (fw, f2w)
F (w, fw)

}

−min{F (w, f2w), F (fw, fw)}
= F (w, fw)

which implies that

hfw = F (fw, f2w) > F (w, fw) = hw = max{hx : x ∈ A} ≥ hfw

which is impossible. Hence w = fw. This completes the proof. ¤
Let Φ1 denotes the family of all functions φ : (R+)4 → R+ satisfying the

following conditions:
(C1) φ is lower-semicontinuous in each coordinate variable;
(C2) Let v, w ∈ R+ be such that either v ≥ φ(v, w, w, v) or v ≥ φ(w, v, w, v).

Then v ≥ hw, where φ(1, 1, 1, 1) = h > 1.
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Theorem 2.3. Let f and g be surjective selfmappings of a complete metric
space (X, d) satisfying

d(fx, gy) ≥ φ

(
d(fx, x), d(gy, y), d(x, y),

d(fx, x)d(gy, y)
d(x, y)

)
(2.6)

for all distinct x, y in X, where φ ∈ Φ1. Then f and g have a common fixed
point in X.

Proof. Let x0 be an arbitrary point in X. Since f and g are surjective, we can
easily construct a sequence {xn}n∈N in X such that fx2n+1 = x2n, gx2n+2 =
x2n+1 for n ∈ Ω. Set dn = d(xn, xn+1) for n ∈ Ω. Suppose that x2n = x2n+1

for some n ∈ Ω. If x2n+1 6= x2n+2, then we have by (2.6)

d2n = d(fx2n+1, gx2n+2)

≥ φ[d(fx2n+1, x2n+1), d(gx2n+2, x2n+2), d(x2n+1, x2n+2),

d(fx2n+1, x2n+1)d(gx2n+2, x2n+2)
d(x2n+1, x2n+2)

]

= φ(d2n, d2n+1, d2n+1, d2n)

It follows from (C2) and the above inequalities that

0 = d2n ≥ hd2n+1 > 0

which is impossible. Hence x2n+1 = x2n+2. That is, x2n is a common fixed
point of f and g.

Similarly, we may prove that x2n+1 is a common fixed point of f and g if
x2n+1 = x2n+2 for some n ∈ Ω.

Now we can suppose that xn 6= xn+1 for all n ∈ Ω. From (2.6) and (C2) it
follows that

dn ≤ rdn−1 ≤ · · · ≤ rnd0

for n ∈ N, where r = 1
h < 1. It is easily seen that

d(xn, xm) ≤
m−1∑

k=n

dk ≤
m−1∑

k=n

rkd0 ≤ rn

1− r
d0 (2.7)

for n, m ∈ N with m > n. Consequently, {xn}n∈N is a Cauchy sequence. From
the completeness of X, there exists u ∈ X such that xn → u as n →∞. Since
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f and g are surjective, there exist v, w ∈ X such that fv = gw = u. We claim
that w = u. Otherwise w 6= u. We consider two cases:

Case 1. There exists k ∈ N such that x2n+1 = w for all n ≥ k. Letting
m →∞ in (2.7), we have

d(w, u) = d(x2n+1, u) ≤ r2n+1

1− r
d0

for n ≥ k. It is easy to verify that w = u. This is a contradiction.
Case 2. There exists a subsequence {x2ni+1}i∈N of {x2n+1}n∈N such that

x2ni+1 6= w for all i ∈ N. Using (2.6),

d(x2ni
, u) = d(fx2ni+1, gw)

≥ φ

(
d(fx2ni+1, x2ni+1), d(gw, w), d(x2ni+1, w),

d(fx2ni+1, x2ni+1)d(gw, w)
d(x2ni+1, w)

)
.

Letting i →∞, we obtain

0 = d(u, u)

≥ φ

(
d(u, u), d(gw,w), d(u,w),

d(u, u)d(gw, w)
d(u,w)

)

= φ(0, d(u, w), d(u,w), 0)

which implies that u = w. This is also a contradiction. Therefore w = u = gw.
Similarly we can prove that v = u = fv. That is, u is a common fixed point
of f and g. This completes the proof. ¤
Remark 2.3. Theorem 2.3 extends and improves Theorem 2.1 of Kang [5]
and Theorem 2 of Khan-Khan-Sessa [7]. The condition of surjectivity is nec-
essary in Theorem 2.3. To see this, we give the following example inspired by
Kang [5].

Example 2.1. Let X = R+ with the usual metric. Define f and g : X → X
by fx = h(x + 2) for x ∈ X and gx = hx for x ∈ [0, 1] and gx = h(x + 2) for
x > 1, where h > 1.

Consider φ(t1, t2, t3, t4) = ht3 for t1, t2, t3, t4 ∈ X. Then φ ∈ Φ1. Further,
it is easily seen that all the hypothesis of Theorem 2.3 are satisfied except the
surjectivity of f and g. However, f and g do not have a common fixed point
in X.
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Theorem 2.4. Let f and g be surjective selfmappings of a metric space (X, d)
satisfying

d(fx, gy) ≥a1d(fx, x) + a2d(gy, y) + a3d(x, y)

+ a4
d(fx, x)d(gy, y)

d(x, y)
(2.8)

for all distinct x, y ∈ X, where a1, a2, a3, a4 ∈ R+ and a1 +a4 < 1, a2 +a4 < 1
and

∑4
i=1 ai > 1. Then

(i) f = g;
(ii) f is injective;
(iii) f has a fixed point in X if (X, d) is complete.

Proof. (i). Note that fX = gX = X. Then for any x ∈ X, there exists y ∈ X
such that fx = gy. We assert that x = y. Otherwise x 6= y. In view of (2.8),
we immediately obtain a3 = 0. If a4 = 0, then a1 6= 0 and a2 6= 0 because
0 ≤ a1 < 1, 0 ≤ a2 < 1 and a1 + a2 > 1. (2.8) ensures that d(fx, x) =
d(gy, y) = 0. That is, x = fx = gy = y, which is a contradiction. If a4 > 0,
by (2.8) we have d(fx, x)d(fy, y) = 0. This means that d(gy, y) = d(x, y) > 0
or d(fx, x) = d(y, x) > 0. In view of (2.8) we have a2 = 0 or a1 = 0. It follows
that

1 > a1 + a4 =
4∑

i=1

ai > 1

or

1 > a2 + a4 =
4∑

i=1

ai > 1

which are impossible. Hence fx = gx for all x ∈ X.
(ii). Suppose that there exist x, y ∈ X with x 6= y and fx = fy. From (2.8)

and (i) we have
0 = d(fx, fy)

≥ 1
2
(a1 + a2)[d(fx, x) + d(fy, y)]

+ a3d(x, y) + a4
d(fx, x)d(fy, y)

d(x, y)

(2.9)

which implies that a3 = 0. If a4 = 0, then a1 + a2 =
∑4

i=1 ai = 1. It follows
from (2.9) that x = fx = fy = y, which is a contradiction; If a4 > 0, then,
by (2.9) we have d(fx, x)d(fy, y) = 0. This means that

d(fx, x) + d(fy, y) = d(x, y) > 0.
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Thus (2.9) ensures that a1 + a2 = 0. Consequently

1 <
4∑

i=1

ai = a4 < 1

which is absurd. Hence f is injective.
(iii). Let h =

∑4
i=1 ai and φ(t1, t2, t3, t4) =

∑4
i=1 aiti for all t1, t2, t3, t4 ∈

R+. It is easy to verify φ ∈ Φ1. By Theorem 2.3 and (i) of Theorem 2.4 we
immediately conclude that f has a fixed point in X. ¤
Remark 2.4. Theorems 1 and 2 of Wang-Li-Gao-Iseki [13], Theorem 1 of
Taniguchi [12] and Corollary 2.3 of Kang [5] are special cases of (iii) of The-
orem 2.4.

3. Coincidence point theorems for expansive mappings

Let Φ2 denote the family of all real functions φ : (R+)4 → R+ satisfying
conditions (C1) and (C3) :

(C3) Let v, w ∈ R+ − {0} be such that either v ≥ φ(v, w, w, v) or v ≥
φ(w, v, w, v). Then v ≥ hw, where φ(1, 1, 1, 1) = h > 1.

It is easy to see that Φ1 ⊂ Φ2. Let φ(t1, t2, t3, t4) = hmin{ti : i = 1, 2, 3, 4}
for t1, t2, t3, t4 ∈ R+, where h > 1. Then φ ∈ Φ2 but φ 6∈ Φ1. Therefore Φ1 is
a proper subset of Φ2.

Theorem 3.1. Let A, B, S and T be continuous selfmappings of a complete
metric space (X, d) such that

(a) AX ⊇ TX, BX ⊇ SX;
(b) A, S and B, T are compatible.

Suppose that there exists φ ∈ Φ2 satisfying the condition

d(Ax,By) ≥ φ

(
d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Sx)d(By, Ty)
d(Sx, Ty)

)
(3.1)

for all x, y ∈ X with Sx 6= Ty. Then there exists w ∈ X such that either
Aw = Sw or Bw = Tw or Aw = Sw and Bw = Tw.

Proof. Let x0 ∈ X. (a) ensures that there exist sequences {yn }n∈Ω and
{xn}n∈N in X such that y2n = Ax2n+1 = Tx2n and y2n+1 = Bx2n+2 =
Sx2n+1 for all n ∈ Ω. If yn = yn+1 for some n ∈ Ω, then A and S or B
and T have a coincidence point. Suppose that yn 6= yn+1 for all n ∈ Ω.
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From (3.1) and (C3) we easily conclude that {yn}n∈Ω is a Cauchy sequence.
Thus it converges to some point w in X since (X, d) is complete. Clearly,
Ax2n+1, Sx2n+1 → w as n → ∞. Since S is continuous, SAx2n+1 → Sw as
n →∞. From (b) and Lemma 1.1 it follows that SAx2n+1 → Aw as n →∞.
Hence Aw = Sw. Similarly we have Tw = Bw. This completes the proof. ¤
Remark 3.1. In case T = S = iX-the identity mapping of X, Theorem
3.1 reduces to a result which generalizes Theorem 2.6 and Corollary 2.7 of
Kang [5], Theorem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10]
and Theorem 1, Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Let Ψ denote the family of all real function ψ : R+ → R+ satisfying the
following conditions (C4) and (C5) :

(C4) ψ is upper-semicontinuous and nondecreasing;
(C5) ψ(t) < t for each t > 0.

Theorem 3.2. Let A, B, S and T be continuous selfmappings of a complete
metric space (X, d) satisfying (a), (b) and

ψ(d(Ax,By)) ≥ min
{

d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Sx)d(By, Ty)
d(Sx, Ty)

} (3.2)

for all x, y ∈ X with Sx 6= Ty, where ψ ∈ Ψ and
∑∞

n=0 ψn(t) < ∞ for each
t > 0. Then the same conclusion of Theorem 3.1 holds

Proof. Let {yn}n∈Ω and {xn}n∈N be as in the proof of Theorem 3.1. Put
dn = d(yn, yn+1) for n ∈ Ω. If yn = yn+1 for some n ∈ Ω, then A and S or B
and T have a coincidence point. Suppose that yn 6= yn+1 for all n ∈ Ω. From
(3.2), (C4) and (C5) we have

ψ(d2n) = ψ(d(Ax2n+1, Bx2n+2))

≥ min
{

d(Ax2n+1, Sx2n+1), d(Bx2n+2, Tx2n+2), d(Sx2n+1, Tx2n+2),

d(Ax2n+1, Sx2n+1)d(Bx2n+2, Tx2n+2)
d(Sx2n+1, Tx2n+2)

}

= min
{

d2n, d2n+1, d2n+1,
d2nd2n+1

d2n+1

}

= min{d2n, d2n+1}
= d2n+1.
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Similarly we have d2n+2 ≤ ψ(d2n+1). Thus, for any n ∈ N we have

dn ≤ ψ(dn−1) ≤ · · · ≤ ψn(d0).

For any n, m ∈ N with n < m, we have

d(yn, ym) ≤
m−1∑

k=n

dk ≤
m−1∑

k=n

ψk(d0).

Note that
∑∞

n=0 ψn(t) < ∞ for each t > 0. Therefore {yn}n∈Ω is a Cauchy
sequence. The remaining portion of the proof can be derived as in Theorem
3.1. This completes the proof. ¤
Remark 3.2. Theorem 3.2 extends and improves Theorem 2.9 and Corollary
2.7 of Kang [5], Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and
Theorem 3 of Wang-Li-Gao-Iseki [13].

The following example reveals that the Theorem 3.1 and Theorem 3.2 ex-
tend properly Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5], The-
orem 4 of Khan-Khan-Sessa [7], Theorem 3 of Rhoades [10] and Theorem 1,
Theorem 2 and Theorem 3 of Wang-Li-Gao-Iseki [13].

Example 3.1. Let X = {1, 2, 3, 5} with the usual metric. Define mappings
A and B on X by A1 = B1 = 1, A3 = A5 = B2 = B3 = 2 and A2 = B5 = 3.
Then Theorem 2.6, Theorem 2.9 and Corollary 2.7 of Kang [5] and Theorem
4 of Khan-Khan-Sessa [7] are not applicable since A and B are not surjective.
For any h > 1 we have

d(A3, A5) = 0 ≯ h = h min{d(3, A3), d(5, A5), d(3, 5)}

and
d(A2, B5) = 0 ≯ h = h min{d(2, A2), d(5, B5), d(2, 5)}.

That is, Theorem 3 of Rhoades [10] and Theorem 1, Theorem 2 and Theorem
3 of Wang-Li-Gao-Iseki [13] are not applicable.

Now we take that S = A, T1 = T2 = T3 = 2 and T5 = 3. Let

φ(t1, t2, t3, t4) = hmin{ti : i = 1, 2, 3, 4} for t1, t2, t3, t4 ∈ R+

and
ψ(t) =

t

h
for t ∈ R+,
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where h > 1. Then AX = SX, BX = TX, A and S, B and T are commuting.
For any x, y ∈ X with Sx 6= Ty, we have

d(Ax,By) ≥ 0

= hd(Ax, Sx)

= φ

(
d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Sx)d(By, Ty)
d(Sx, Ty)

)

and

ψ(d(Ax,By)) =
1
h

d(Ax,By)

≥ 0

= d(Ax, Sx)

= min
{

d(Ax, Sx), d(By, Ty), d(Sx, Ty),

d(Ax, Sx)d(By, Ty)
d(Sx, Ty)

}
.

All hypothesis of Theorem 3.1 and Theorem 3.2 are therefore satisfied.
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