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Abstract. The purpose of this paper is to study the existence of subharmonic solutions for
the following non-autonomous second order Hamiltonian systems

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R.

Some existence theorems are obtained by the minimax methods in critical point theory.

1. Introduction and Preliminaries

Consider the second order Hamiltonian systems

ü(t) +5F (t, u(t)) = 0 a. e. t ∈ R (1)

where F : R×RN → R is T−periodic (T > 0) in t for all x ∈ RN , that is

F (t + T, x) = F (t, x) (2)
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for all x ∈ RN and a. e. t ∈ R, and satisfies the following assumption:
(A) F (t, x) is measurable in t for each x ∈ RN and continuously differ-

entiable in x for a. e. t ∈ [0, T ], and there exist a ∈ L1(R+; R+), b ∈
L1(0, T ; R+), such that |F (t, x)| ≤ a(|x|)b(t), | 5 F (t, x)| ≤ a(|x|)b(t) for all
x ∈ RN and a. e. t ∈ R.

A solution of problem (1) is called to be subharmonic if it is kT−periodic
solution for some positive integer k.

A function G : RN → R is called to be (λ, µ)−subconvex if

G(λ(x + y)) ≤ µ(G(x) + G(y))

for some λ, µ > 0 and all x, y ∈ RN .
Let H1

kT = {u : [0, kT ] → RN |u is absolutely continuous, u(0) = u(kT ) and
u̇ ∈ L2(0, kT ;RN )} is a Hilbert space with the norm defined by

‖u‖ = [
∫ kT

0
|u(t)|2dt +

∫ kT

0
|u̇(t)|2dt]

1
2

and ‖u‖∞ = max0≤t≤kT |u(t)| for u ∈ H1
kT .

The corresponding functional ϕk on H1
kT given by

ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
F (t, u(t))dt

is continuously differentiable and weakly lower semi-continuous on H1
kT (see

[3]). Moreover one has

< ϕ′k(u), v >=
∫ kT

0
[(u̇(t), v̇(t))− (5F (t, u(t)), v(t))]dt

for all u, v ∈ H1
kT . It is well known that the kT−periodic solutions of problem

(1) correspond to the critical points of functional ϕk.
For u ∈ H1

kT , let u = (kT )−1
∫ kT
0 u(t)dt and ũ(t) = u(t)− u. Then one has

Sobolev’s inequality

‖ũ‖2
∞ ≤ kT

12

∫ kT

0
|u̇(t)|2dt (3)

and Wertinger’s inequality
∫ kT

0
|ũ(t)|2dt ≤ k2T 2

4π2

∫ kT

0
|u̇(t)|2dt. (4)

Under the conditions that there exists h ∈ L1(0, T ; R+) such that

| 5 F (t, x)| ≤ h(t) (5)

for all x ∈ RN and a. e. t ∈ [0, T ], and that
∫ T

0
F (t, x)dt → +∞ (6)
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as |x| → +∞, the existence of T−periodic solutions is proved in [3]. Mean-
while, [2] proves that problem has infinitely distinct subharmonic solutions
under (5) and the condition that

F (t, x) → +∞ (7)

as |x| → +∞ uniformly for t ∈ [0, T ]. Motivated by the results of [3, 2], a
natural question is whether problem (1) has infinitely distinct subharmonic
solutions under (5) and (6). In [1] a positive answer was given if in addition
F (t, x) is convex in x for every t ∈ [0, T ]. Tang in [4] generalizes the existence
result of T−periodic solutions in [3] to the sublinear case. The existence of
T−periodic solutions is proved in [4] under the conditions that there exist
g, h ∈ L1(0, T ;R+) and α ∈ [0, 1) such that

| 5 (F (t, x)| ≤ g(t)|x|α + h(t)

for all x ∈ RN and a. e. t ∈ [0, T ], and that

|x|−2α

∫ kT

0
F (t, x)dt → +∞

as |x| → +∞. Recently, Tang-Wu [5] considered the nonconvex case and
generalized the existence result of subharmonic solutions to the sublinear case
under a condition weaker than (6) but stronger than (7).

Inspired and motivated by the results due to Mawhin-Willem [3], F. Gian-
noni [2], Fonda-Ramos [1], Tang-Wu [5] and Zhao-Wu [6], in this paper, we
shall continue to consider the existence of subharmonic solutions under some
new conditions by using the least action principle and minimax methods. The
results in this paper develop and generalize the corresponding results.

In the sequel, we set

ek(t) = k(cosk−1ωt)x0

for all t ∈ R and some x0 ∈ RN with |x0| = 1, where ω = 2π/T .

2. Main results and proof

Now we state and prove our main result.

Theorem 2.1. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i) there exist g, h ∈ L1(0, T ; R+) and α ∈ [0, 1) such that

| 5 F (t, x)| ≤ g(t)|x|α + h(t) (8)

for all x ∈ RN and a. e. t ∈ [0, T ];
(ii)

(5F (t, u), ek) ≥ (sek, ek)
for all u = x + sek where x ∈ RN and s ∈ (0, 1) and a. e. t ∈ [0, T ];
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(iii)

|x|−2α

∫ T

0
F (t, x)dt → +∞ as |x| → +∞. (9)

Then problem (1) has kT−periodic solutions uk ∈ H1
kT for every positive in-

teger k such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Without loss of generality, we may assume that functions b in assump-
tion (A) , g, h in (8) are T− periodic and assumption (A) , (8) hold for all
t ∈ R by the T− periodicity of F (t, x) in the first variable.

First we prove that ϕk satisfies the (PS) condition. Suppose that {un} is a
(PS) sequence for ϕk, that is ϕ′k(un) → 0 as n → ∞ and ϕk(un) is bounded.
By Wertinger’s inequality, we have

∫ kT

0
|u̇(t)|2dt ≤ ‖ũ‖2 ≤ (

k2T 2

4π2
+ 1)

∫ kT

0
|u̇(t)|2dt. (10)

In the same way in [5], we have

|
∫ kT

0
(5F (t, u(t)), ũ(t))dt| ≤ 1

4

∫ kT

0
|u̇(t)|2dt + C1|u|2α

+ C2(
∫ kT

0
|u̇(t)|2dt)

α+1
2 + C3(

∫ kT

0
|u̇(t)|2dt)

1
2

(11)

for all u ∈ H1
kT and some positive constants C1, C2 and C3. Hence one has

‖ũn(t)‖ ≥< ϕ′k(un), ũn >

=
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
(5F (t, un(t)), ũn(t))dt

≥ 3
4

∫ kT

0
|u̇(t)|2dt− C1|un|2α

− C2(
∫ kT

0
|u̇n(t)|2dt)

α+1
2 − C3(

∫ kT

0
|u̇n(t)|2dt)

1
2

(12)

for large n. By (10) and the above inequality we have

C|un|α ≥ (
∫ kT

0
|u̇n(t)|2dt)

1
2 − C4 (13)

for some constants C > 0, C4 > 0 and all large n, which implies that

(
∫ kT

0
|u̇n(t)|2dt)

1
2 ≤ C5(|un|α + 1) (14)

and moreover that
‖ũn‖∞ ≤ C5(|un|α + 1) (15)
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for large n and some positive constants C5 by Sobolev’s inequality and (10).
Then it follows from Sobolev’s inequality one has

|
∫ kT

0
[F (t, un(t))− F (t, un)]dt|

≤
∫ kT

0

∫ 1

0
| 5 F (t, un + sũn)| · |ũn|dsdt

≤
∫ kT

0

∫ 1

0
g(t)|un + sũn|α · |ũn|dsdt +

∫ kT

0

∫ 1

0
h(t)|ũn|dsdt

≤
∫ kT

0
2g(t)

∫ 1

0
(|un|α + sα|ũn|α)|ũn|dsdt +

∫ kT

0
h(t)|ũn|dt

≤ 2(|un|α +
1

α + 1
‖ũn‖α

∞)‖ũn‖∞
∫ kT

0
g(t)dt + ‖ũn‖∞

∫ kT

0
h(t)dt

≤ 3
kT
‖ũn‖∞ +

kT

3
|un|2α(

∫ kT

0
g(t)dt)2

+
2

α + 1
‖ũn‖α+1

∞

∫ kT

0
g(t)dt + ‖ũn‖∞

∫ kT

0
h(t)dt

≤ 1
4

∫ kT

0
|u̇n(t)|2dt + C6|un|2α + C7(

∫ kT

0
|u̇n(t)|2dt)

α+1
2

+ C8(
∫ kT

0
|u̇n(t)|2dt)

1
2

(16)

for large n. By (14) and (16) and the boundedness of {ϕk(un)}, we have

C9 ≤ ϕk(un)

=
1
2

∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
[F (t, un)− F (t, un)]dt−

∫ kT

0
F (t, un)dt

≤ 1
2

∫ kT

0
|u̇n(t)|2dt + |

∫ kT

0
[F (t, un)− F (t, un)]dt| −

∫ kT

0
F (t, un)dt

≤ 3
4

∫ kT

0
|u̇n(t)|2dt + C6|un|2α + C7(

∫ kT

0
|u̇n(t)|2dt)

α+1
2

+ C8(
∫ kT

0
|u̇n(t)|2dt)

1
2 − k

∫ T

0
F (t, un)dt

≤ C2
5 (|un|α + 1)2 + C6|un|2α + C7C5(|un|α + 1)α+1

+ C8C5(|un|α + 1)− k

∫ T

0
F (t, un)dt
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≤ C10|un|2α + C11|un|α + C12 − k

∫ T

0
F (t, un)dt

= |un|2α[
−k

|un|2α

∫ T

0
F (t, un)dt + C10 +

C11

|un|α +
C12

|un|2α
]

for all large n and some real constants C10, C11 and C12. The above inequality
and condition (9) imply that {|un|} is bounded. Hence {un} is bounded from
(14). Arguing then as in Proposition 4.1 in [3], we conclude that the (PS)
condition is satisfied.

To complete our theorem, we now prove that ϕk satisfies the other conditions
of the saddle point theorem.
Since

|x|−2α

∫ T

0
F (t, x)dt → +∞

as |x| → +∞, so for every β > 0 there exists M ≥ 1 such that

|x|−2α

∫ T

0
F (t, x)dt ≥ β (17)

which implies that ∫ T

0
F (t, x)dt ≥ βM2α (18)

for all |x| ≥ M.
For ek(t) = k(cosk−1ωt)x0 we have

ėk(t) = −ω(sink−1ωt)x0

for all t ∈ R which implies that
∫ kT

0
|ėk(t)|2dt =

1
2
kTω2.

Hence one has

ϕk(x + ek) =
1
4
kTω2 −

∫ kT

0
F (t, x + k(cosk−1ωt)x0)dt

for all x ∈ RN . So by (18) one has

ϕk(x + ek) =
1
4
kTω2 −

k−1∑

i=0

∫ T

0
F (t, x + k(cosk−1ω(t + iT ))x0)dt

≤ 1
4
kTω2 − kβM2α

for all |x| ≥ M + k, which implies that

ϕk(x + ek) → −∞ (19)

as |x| → +∞ by the arbitrariness of β.
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On the other hand, we have

ϕk(u) → +∞ (20)

as ‖u‖ → ∞ in H̃1
kT = {u ∈ H1

kT |u = 0}. In fact, in a similar way to (16) we
have

|
∫ kT

0
[F (t, u(t))− F (t, 0)]dt|

≤ C13(
∫ kT

0
|u̇(t)|2dt)

α+1
2 + C14(

∫ kT

0
|u̇(t)|2dt)

1
2

for all u ∈ H̃1
kT and some positive constants C13 and C14. Hence we have

ϕk(u) =
1
2

∫ kT

0
|u̇(t)|2dt−

∫ kT

0
[F (t, u(t))− F (t, 0)]dt−

∫ kT

0
F (t, 0)dt

≥ 1
2

∫ kT

0
|u̇(t)|2dt− C13(

∫ kT

0
|u̇(t)|2dt)

α+1
2

− C14(
∫ kT

0
|u̇(t)|2dt)

1
2 −

∫ kT

0
F (t, 0)dt

for all u ∈ H̃1
kT . By Wertinger’s inequality, one has

‖u‖ → ∞⇔ ‖u̇‖2 →∞

on H̃1
kT . Hence (20) follows from the above inequality.

So by (19), (20) and the saddle point Theorem (see Theorem 4.6 in [3]),
there exists a critical point uk ∈ H̃1

kT for ϕk such that

−∞ < inf
H̃1

kT

ϕk ≤ ϕk(uk) ≤ sup
RN+ek

ϕk.

Now we prove that ‖uk‖∞ → +∞ as k → +∞. By condition (ii) we have

k−1ϕk(x + ek)

≤ 1
4
Tω2 − k−1

∫ kT

0
[F (t, x + ek)− F (t, x)]dt− k−1

∫ kT

0
F (t, x)dt

=
1
4
Tω2 − k−1

∫ kT

0

∫ 1

0
(5F (t, x + sek), ek)dsdt−

∫ T

0
F (t, x)dt



374 Zhao-Hong Sun et al.

=
1
4
Tω2 −

∫ kT

0
cos(k−1ωt)

∫ 1

0
(5F (t, x + sek), x0))dsdt−

∫ T

0
F (t, x)dt

≤ 1
4
Tω2 −

∫ kT

0
cos(k−1ωt)

∫ 1

0
(sek, x0))dsdt−

∫ T

0
F (t, x)dt

≤ 1
4
Tω2 − k

2

∫ kT

0
cos2(k−1ωt)dt−

∫ T

0
F (t, x)dt

=
1
4
Tω2 − Tk2

4
−

∫ T

0
F (t, x)dt

(21)
Hence for β = 1 there is some M > 1 by assumption (A) and condition (iii)
there exists some constant C such that

k−1ϕk(x + ek) ≤ C − Tk2

4

for all x ∈ RN and all k. Hence one has

sup
x∈RN

k−1ϕk(x + ek) ≤ C − Tk2

4

for all k, so we obtain

lim sup
k→+∞

sup
x∈RN

k−1ϕk(x + ek) = −∞. (22)

Then following the same way in [5] we complete our proof.
¤

Theorem 2.2. Suppose that F satisfies assumption (A), (2) and the following
conditions:
(i) there exists a function γ ∈ L1(0, T ; R) with

∫ T
0 γ(t)dt > 0 and α ∈ [1, 2)

such that
(5F (t, x)−5F (t, y), x− y) ≤ γ(t)|x− y|α (23)

for all x, y ∈ RN and a. e. t ∈ [0, T ];
(ii) F (t, ·) is (λ, µ)−subconvex, and 5F (t, 0) = 0, and there exist g, h ∈
L1(0, T ; R+) such that

F (t, x) ≤ g(t)|x|2 + h(t) (24)

for all x ∈ RN and a. e. t ∈ [0, T ];
(iii)

(5F (t, u), ek) ≥ (sek, ek)

for all u = x + sek where x ∈ RN and s ∈ (0, 1) and a. e. t ∈ [0, T ];
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(iv) assume that a(t) is bounded and that

∫ T

0
F (t, x)dt → +∞ as |x| → +∞. (25)

Then problem (1) has kT−periodic solutions uk ∈ H1
kT for every positive in-

teger k such that ‖uk‖∞ → +∞ as k → +∞.

Proof. Without loss of generality, we may assume that γ in (23) and g, h in
(24) are T− periodic and assumption (A) , (23) and (24) hold for all t ∈ R by
the T− periodicity of F (t, x) in the first variable.

Let us prove that ϕk satisfies the (PS) condition. Suppose that {un} is
a (PS) sequence for ϕk. As a(t) is bounded function, we can assume that
a0 = maxt∈R+ |a(t)| < +∞. By condition (i), (ii) and Sobolev’s inequality, it
follows that

‖ũn(t)‖ ≥< ϕ′k(un), ũn >

=
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
(5F (t, un(t)), ũn(t))dt

=
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
(5F (t, un(t))−5F (t, un), ũn(t))dt

−
∫ kT

0
(5F (t, un), ũn(t))dt

≥
∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
γ(t)|ũn(t)|αdt− a0‖ũn‖∞

∫ kT

0
b(t)dt

≥
∫ kT

0
|u̇n(t)|2dt− C ′

1‖ũn‖α/2
∞ − C ′

2‖ũn‖∞

for large n. By (10) and above inequality we have

C(
∫ kT

0
|u̇n(t)|2dt)α/2 ≥

∫ kT

0
|u̇n(t)|2dt− C1(

∫ kT

0
|u̇n(t)|2dt)1/2,

that is

(
∫ kT

0
|u̇n(t)|2dt)1/2 − C(

∫ kT

0
|u̇n(t)|2dt)α/4 ≤ C2

which implies
∫ kT

0
|u̇n(t)|2dt ≤ C3 (26)
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for large n and some constant C3 as α ∈ [1, 2). Then by the boundedness of
{ϕk(un)}, condition (ii) and Sobolev’s inequality one has

C4 ≤ ϕk(un) =
1
2

∫ kT

0
|u̇n(t)|2dt−

∫ kT

0
F (t, un)

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt +

∫ kT

0
F (t,−ũn(t))dt

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt +

∫ kT

0
[g(t)|ũn(t)|2 + h(t)]dt

≤ 1
2

∫ kT

0
|u̇n(t)|2dt− 1

µ

∫ kT

0
F (t, λun)dt + C5

∫ kT

0
|u̇n(t)|2dt + C6

(27)
for all large n and some constants C4, C5 and C6. Hence by (26), (27) and
(25) we obtain

|un| ≤ C7

for all large n and some constant C7. Hence {un} is a bounded sequence, and
(PS) condition is satisfied.

Then the rest of proof continue as similar as in Theorem 1. We omit the
details. So we complete our proof. ¤
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