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Abstract. In this paper, by simple calculations we find norms of the d’Alembert and
Lobaczevski difference operators connected with the d’Alembert and Lobaczevski functional
equations. Because of nonlinearity of these operators, we use a norm for a quadratic operator
and introduce a new class of operators, which are a sum of a linear and a quadratic operator,
and provide a norm for this class. As an example, we find norms of these operators in X
spaces. Then, we study Pexider type generalizations of the d’Alembert and Lobaczevski
difference operators in X spaces. This paper is based on the article ”Cauchy and Pexider
operators in some function spaces” by S. Czerwik and K. Dlutek [2] and its continuation in
a certains sense. The aim of the paper is drawing a reader’s attention to a problem of a
boundedness of a quadratic operator.

1. INTRODUCTION

We will define a bounded quadratic operator analogously as a bounded
linear operator. The Lobaczevski difference operator

£ =2 (52 ) - 10s),

where f belongs to a function space and x,y are vectors from a linear space
is a quadratic operator. Using introduced definitions we will show that it is

OReceived February 12, 2007. Revised February 5, 2008.

92000 Mathematics Subject Classification: 39B99; 46T99, 46E99.

OKeywords: D’Alembert difference operator, Lobaczevski difference operator, bounded
quadratic operator.



396 S. Czerwik and K. Krdl

bounded and find its norm in X space, i.e. a space containing all functions
f: X — Y such that || f| < Mfe/\”x”, where X, Y are normed vector spaces,
A > 0 and My is a constant depending on f. Similarly, because of nonlinearity
of d’Alembert difference operator

A(f)(z,y) = flx+y) + flz —y) = 2f(2) f(y),

where f belongs to a function space and x,y are vectors from a linear space,
we will introduce a new class of operators that are a sum of a linear and a
quadratic operator and provide a norm for this class. Then we will show that
the d’Alembert difference operator belongs to this class. In this way, it will be
possible to find a norm of the d’Alembert difference operator in some function
spaces. As an example, we will find a norm in a X, spaces. Then we will
study Pexider type generalizations of the d’Alembert difference operator

Ap((f,9,h, k) (z,y) = f(z +y) +g(z —y) — 2h(z)k(y)

and Lobaczevski difference operator

Er((fah kD) = (5 ) o (T3 ) = hato)

where f, g, h, k belong to a function space.

The X, spaces were introduced by Stefan Czerwik (see [2]). Bielecki also
studied similar spaces in his paper [1]. The result from [3] will be presented
later in remarks.

Our aim is to prove that the norm of the d’Alembert difference operator is
equal 4 and the norm of the Lobaczevski difference operator ie equal 2 (for
norms defined below). In this paper we use a standard notation (especially
from [2]). New symbols will be introduced in a text.

For more information concerning similar problems the reader is referred to [4],

[5], [6]-

2. PRELIMINARIES

In this section we will recall a definition of a quadratic operator and provide
a norm for it (the Lobaczevski difference operator is an example of a quadratic
operator). Next we will introduce a class of operators which are a sum of a
bounded linear and a bounded quadratic operator. Such an operator in X
spaces is the d’Alembert difference operator.
Let X,Y be vector spaces over a field K.

Definition 2.1. An operator Q: X — Y is called quadratic if it fulfils the
following equations:

(a) Vo,ye X Q(r +y) + Q(r — y) = 2Q(x) + 2Q(y),
(b) VEeKVzre X Q(kx) Q
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Definition 2.2. A quadratic operator (: X — Y is called bounded if
Je>0VzeX Q)| < x|
A norm of a quadratic operator (J: X — Y is defined by
QI == inf{c>0] Q)| < cl]? = e X}. (2.1)

If such a number ¢ does not exists we define ||Q]| := oo.
By Bo(X,Y) we denote a set of all quadratic operators Q: X — Y such that

QI < oo

Remark 2.3. Analogously as for a bounded linear operator one can prove an
alternative definition:

QI = sup{[|Q(@)[| | = € X, |=[| = 1}. (2.2)

It is easy to prove that the (Bo(X,Y), || - ||) space is a linear normed space.
Now we are ready to define a linear-quadratic operator.

Definition 2.4. By Brg we denote the set
Bro(X,Y)={T cY¥* |IL e B(X,Y)AIQ € Bu(X,Y) T = L+ Q}.
Moreover, for all T'= L+ Q € Brgo(X,Y) we define
1Tl = 1120+ QI
An operator T' € Brg(X,Y) is called a bounded linear-quadratic operator.

Remark 2.5. A norm in the Brg(X,Y) space may be defined in different
ways, especially by [T = /[[L[|* + [|Q|[* or |T|| = max{[|L],[[Q[]}. The

provided definition has to satisfy well know axioms of a norm.

Let us notice that the space (Brg, || -||) is a linear normed space. The proof
is just straightforward.

3. THE D’ALEMBERT AND LOBACZEVSKI DIFFERENCE OPERATORS

A standard symbol C denotes the set of complex numbers, for a set X a
symbol CX denotes a set of all functions f: X — C.

Definition 3.1. Let X be a linear normed space. The Lobaczevski difference
operator £: CX — CX ? is defined by
Tty

e =1 (S50 - f@f, swex. @D

Lemma 3.2. The Lobaczevski difference operator £: CX — cX* defined above
s a quadratic operator.
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Proof. Obviously, for f € CX,z,y € X and k € K we get

Lkf)(ry) = <kf>2( )—kf(m)-kf(:g)

T4y
2
R (‘;y) = F@) ) = KLU ().

Moreover, for f,g € CX,z,y € X we obtain

+

xT

L0+ 0)(@y) + L0 —g)(ry) = (f+g)2< y>—<f+g><x><f+g><y>

+ N

w - () - U -0 - 9))

— of? ('x;y> + 242 (x;y>
= 2f(2)f(y) — 29(x)g(y)
= 2L(f)(z,y) +2L(g9)(z,y).

Thus the Lobaczevski difference operator is a quadratic operator, as claimed.
O

Definition 3.3. Let X be a linear normed space. The d’Alembert difference
operator A: CX — CX ® is defined by

A(f)(@,y) == flz+y) + flz —y) = 2f(2)f(y), x,y€X. (3.2)

Lemma 3.4. Let A: CX — CX° be the d’Alembert difference operator, then
there exist a linear operator Lo and a quadratic operator Q 4 such that

A(f)(.%', y) = LA(f)(xa y) + QA(f)(xa y)v z,y € X. (3'3)

Proof. From the definition we obtain

Af)y) = fle+y) + flz—y)—2f(2)f()
= [fl@+y)+ fla—y]+[-2f(@)f(y)]
= LA(f)(ﬂ’J,y) + QA(f)(x’y)v
where L: CX — CX? and Qa: CX — CX? are defined by:

La(f)(z,y) = flz+y)+ flz—y),
Qalf)(z,y) = —=2f(x)f(y).
It is obvious that Ly is linear and Q4 is quadratic (a proof is simple and

analogous as the proof of previous lemma). Consequently, A is a sum of a
linear and a quadratic operator and the lemma holds. ]
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Now we are ready to use previous definitions of a bounded quadratic and a
bounded linear-quadratic operator. First, we will show that the Lobaczevski
difference operator is a bounded quadratic operator in X, spaces and then
knowing that the d’Alembert difference operator is the sum of the linear op-
erator L4 and the quadratic operator Q4 defined above, we will prove that
d’Alembert difference operator is bounded and find its norm in X spaces.

4. THE D’ALEMBERT AND THE LOBACZEVSKI DIFFERENCE OPERATORS
IN X) SPACES

4.1. The X, and Xf spaces.

Definition 4.1. Let X and Y be normed vector spaces, A > 0. Let X be a
set defined by

Xy i={f: X =V | |f@)] < MpeMl, 2 € X},

where My is a constant depending on f. Moreover, for all f € X we define
1£11 == sup{e™ W f ()]}
zeX

Remark 4.2. The X, spaces with the norm defined above where considered
by S. Czerwik and K. Dutek in [3] (see also [2]).

Clearly holds the following lemma.

Lemma 4.3. The (X, | - ||) space, where || -|| is the norm defined above, is a
linear normed space.

Definition 4.4. Let X and Y be linear normed spaces, A > 0. Let X% be a
set defined by

X}i={g: X x X =Y | |lg(z,y)|| < My elFle 5y e X7,

where M, is a constant depending on g. Moreover, for all g € X/% we define

lgll == sup {e" 2l g2 )]}
z,yeX

Let us notice that (X3, | - ||) space is a linear normed space.

The next lemmas establish images of X, space by the d’Alembert and
Lobaczevski difference operators.
We assume that Y = C.

Lemma 4.5. Let A: CX — CX* be the d’Alembert difference operator. Then
VfeXy A(f) € X3
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Proof. Let f € X,. Then we obtain
AN ()l = [f@+y) + fz—y) —2f(2)f(y)]

< [f@+y)l+ 1@ =yl +2f @) f ()l
< MyeMll o pppeMlie—vll QM]%G/\(IIIIIJrHyH) < NpeMlli+lyl)
where Ny = max{Mjy, 2M]%} Thus the lemma holds. O

Lemma 4.6. Let £: CX — CX” be the Lobaczevski difference operator. Then
VfeXy L(f) e X3
Proof. Let f € X). Then we obtain

LH@yl = | (“y> f<x>f<y>]
< ‘f <“y)\ 1f@) )
< MM L a2 < gpp2 A,
thus £(f) € X3 as claimed. O

5. BOUNDNESS OF THE D’ALEMBERT AND LOBACZEVSKI DIFFERENCE
OPERATORS

We will prove

Theorem 5.1. Let Y = C. The Lobaczevski difference operator L: X, — X%
defined by (3.1) belongs to Bo(Xy, X3) space and for all f € Xy we have

LI < 2] £1I-
Proof. We have

IEG = sup (e b2 (TE8)  p g
< S;epx{e ||x||+||y||)(f <x;y>‘+|f(:z;) (W)}
T Tty z
< s (e AIAID |2 (ZEV ) sup om0 ) )
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2
< s {e-”“””?““]f(“y> b+ sup {e el £ fy))
T, yeX z,yeX
< (sup { M= ‘f ( - y) \} T sup{e M| £ (@)} sup{e M £ )y
z,yeX rzeX yeX

< AP+ 1P = 207117
Thus £ € Bgo(X ), X3) as claimed. O

Theorem 5.2. Let Y = C. The d’Alembert difference operator A: X, — Xf
defined by (3.2) belongs to Bro(Xx, X3) space and for all f € X, we have

LAHI < 201 £l + 20171

Proof. In view of (3.3) we get that A = L4 + Q4, where the linear operator
Ly Xy — X/% and the quadratic operator Q4: X\ — X/Q\ are given by:

La(f)(@,y) = flz+y)+flz—y),
Qa(f)(z,y) = —2f(@)f(y).
The operator L4 is linear and for f € X, we obtain
ILa(AI = sup {e XD £(@ 4 y) + f(z —y)[}
z,yeX
< sup {e MWD £z +y) 4+ | f(2 - )}
zyeX
< sup {e MEFHYD| £z 4 )} + sup {e XD | £z — )}
z,yeX z,yeX
< sup {e (@ + )} + sup {e M fe -y} =201
z,yeX z,yeX

Thus Ly € B(X), X%). We shall show that Q4 is bounded and [|Qal = 2.
Let f € X, then

QAN = SUI;({G M=l +viD|2 £ (2) £ (y) [}
Y€
= 2 Sueg({e‘k”x”If(w)le‘k”y”lf(y)l}

= 2sup{e Ml f(2) [} sup{e | £ (y)[} = 2/l FII.
zeX yeX

Because @4 is quadratic and bounded so Q4 € BQ(XA,Xi). In view of
A=Ls+ Q4 we get that A € BLQ(X,\,Xi) and

IAH = ILa(f) + Qa(AIl < ILAN + 1Qa(AI < 201 f1| + 2 f11*.
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6. NORMS OF THE D’ALEMBERT AND LOBACZEVSKI DIFFERENCE
OPERATORS

In this part of paper we will find norms of the d’Alembert and Lobaczevski
difference operators under some additional assumptions.
Theorem 6.1. Let Ry C X, Y =C and ||z|| = |z| for x € Ry. Then
1]l =2,

where L is given by (3.1).
Proof. Let {x,, | z, > 0} be a decreasing sequence such that

lim z, = 0.

n—oo

Let us define for n € N a function f,, by

_i y L= Tnp,

2A\xy, _

fn(l’) — eé)\w ) xr = zxnv
e2n, x = 51y,
0, otherwise.

Clearly we have
Az Azl
n — 9y )
Ifn(z)]] < ere reX
so fn € X, for all n € N. Moreover,

_ 1, z€{xn, 3z, 22,},
e ““an<:c>uz{ DRSO

so ||fn]| =1 for all n € N. Then,

1L = sup geMellelub | g2 (”y)— n<x>fn<y>\}
z,yeX 2
> 6_3)\”xn” f¢2L <2xn> - fn($n)fn(2$n)

— 6—3)\mn 63)\rn +6Axne2)\mn -9
and
L] = sup{[I LN | f € Xn, [IfI] =1} = [IL(fa)ll = 2.
In view of the previous lemma ||£|| < 2, thus || £]| = 2. O

Theorem 6.2. Let Ry C X, Y =C and ||z|| = |z| for x € Ry. Then
HA” =4,
where A is given by (5.2).
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Proof. Because ||A|| = || Lall + ||Qal|, where L4 and Q4 are defined above, we
will find || L4l (||Qall = 2 as proved before).
Let {x,} be a decreasing sequence of nonnegative numbers such that

lim z, = 0.
n—oo

Let us define for n € N a function f, by

e e {0,22,},
fn(@) = { 0, otherwise.

Clearly we have
(@) < el 2 e X,
so fn € X, for all n € N. Moreover,

e n =0,
e M £ (@)l = < 1, T = 2y,
0, otherwise.

Because the sequence {z,} is a decreasing sequence of nonnegative numbers

convergent to 0, we obtain that e?**» > 1, so ||f.|| = €***» for all n € N.
Moreover,
IZa(falll = sup {e WD (@ 4 y) + oz — )1}
z,yeX

> e N £ (2w,) 4 fu(0)] = €722 = 2,

Thus ||[La(f)]| > 2. Now suppose that ||L4|| < 2, then there exists ¢ > 0 such
that

[La(f)ll < 2 =e)llfull,  fn € X,
on the other hand, for f,, € X we have
2 < || La(fa)ll < (2 - )e**™n.

Let us notice that if n — oo then z, — 0 and e?***» — 1, thus

(2 —€)e*Mn — 2 — ¢, 50 we get 2 < 2 — ¢, where € > 0, which is impossible.
Thus we obtain that |L4|| = 2.

Because [|Al| = || Lal| + [|Qa| we get ||A| = 4. O

Remark 6.3. In the paper [3] S. Czerwik and K. Dlutek have proved that
the Cauchy difference operator C: X — Xf defined by

C(f)z,y)=flx+y)— flz) - fly), =>yeX

is a linear bounded operator and for all f € X it satisfies the inequality

ICHI < 3111
Moreover, if Ry € X, Y =C and ||z|| = |z| for € Ry then ||C]| = 3.
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7. REMARKS ABOUT PEXIDER TYPE GENERALIZATIONS

7.1. The X;\?’ and Xﬁ spaces.
Definition 7.1. We define

XS\O’ = {(f7gvh) ‘ fagah GX/\},

1Cf5 9, | := max{ [ £1], [lgl], [|]]}-
Analogously,

Xy ={(f,9.h.k) | f.g.h.k € X)\},
(£, g, h, k)| == max{|[ fII, lgll, 2l | |}

It is obvious that X f and Xj\1 with norms provided above are vector normed
spaces.

Remark 7.2. In the paper [3] S. Czerwik and K. Dutek have proved that the
Pexider difference operator P: X ::’ — Xf defined by

P((f,9.0)(x,y) = f(x+y) —g(x) —h(y), xzyeX
is a linear bounded operator and for all u € X § it satisfies the inequality
1P (u)]| < 3wl
Moreover, if Ry € X, Y =C and ||z|| = || for z € Ry then || P|| = 3.

7.2. Pexider type generalization of the Lobaczevski difference
operator.

Definition 7.3. Let X be a linear normed space. The Pexider - Lobaczevski
difference operator Lp: (CX)* — CX” is defined by

coltha kD)= (52 ) g (F5) - bk, wye X (1)

This operator is not quadratic. For f = g = h = k we obtain the
Lobaczevski difference operator which is quadratic. We will prove the fol-
lowing theorem.

Theorem 7.4. LetY = C. Forallu € X;f the Pexider - Lobaczevski difference
operator Lp: Xy — X3 defined by (7.1) satisfies the inequality

I£p @)l < 2[ul.
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Proof. 1t is easy to show that Vu € X{ Lp(u) € X;. Take u = (f,g,h, k),
then we have by the definition

I1LP((f;g,h: k)
= sup {eMlel+lvD ‘f <$ i y) g <a: + y) _ h(x)k(y)’}

z,yeX 2 9
< sup {e i+l ‘f <5L' + y) g <m + y> ‘}
- z,yeX 2 9
+ sup {e—A(IIxHHIyII) h(2)k(y)|}
z,yeX
< e () B2
z,yeX 2 9
+ sup {e M) e [k(y) [}
T,yeX
< fllgl+ Al 1) = 2(masc{ 11 gl [ 13)2 = 2]

Corollary 7.5. Let Ry C X, Y =C and ||z| = |z| for x € Ry. Then
inf{c >0 | [Lp(u)ll < cllull®, we X3} =2,
where Lp 1is given by (7.1).
Proof. Assume on the contrary that
d:=inf{c>0]|Lp(w)| <dul?, uweXi}<2
Then for f =g=h =k, we get
1P| = ILHIN < IS £, f, OIF = dll f11%,

whence

I£CHI < dlLfI>.
By the hypothesis, d < 2 and therefore we infer that ||| < 2, which is
impossible in view of the previous lemma. O

7.3. Pexider type generalization of the d’Alembert difference
operator.

Definition 7.6. Let X be a linear normed space. The Pexider - d’Alembert
difference operator Ap: (CX)4 — C** is defined by

Ap((f,9,h, k) (@, y) := flz+y) +9(z—y) - 2h(@)k(y), =zyeX. (7.2)
We shall prove the following theorem
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Theorem 7.7. LetY = C. Forallu € X§ the Pexider - d’Alembert difference
operator Ap: X§ — X3 defined by (7.2) satisfies the inequality

AP ()| < 2l|ull + 2[|u]*.

Proof. 1t is easy to show that Vu € X} Ap(u) € X3. Take u = (f,g,h, k),
then we have by the definition

[AP((f, 9:h, k)
= sup {e MWD £z 4 y) + g(z — y) — 2h(2)k(y) [}

z,yeX
< sup {e MWD £z 4 )} + sup {eAIHIID | gz — o)}
T,yeX T, yeX
+2 sup {e—A(IIwHHIyII)|h(x)k(y)|}
z,yeX
< sup {e Moz 4 )|} + sup {e M ¥lg(@ — y)[}
r,yeX r,yeX
+2 sup {e M=l |n(a)|e I |k (y)[}
z,yeX

11+ llgll + 2[Rl [[E]
2max{|| £, lgll, 2], I1EII} + 2(max{[I£[], lgll, [1R]l, I£]})*

= 2flufl +2ul.
O
Definition 7.8. In X3 := {(f,g) | /.9 € X)} we define
1(f5 9) || := max{][| f]], [lgll}-
Corollary 7.9. Let Y = C. For allu € Xf the difference operator
Lp: X/Q\ — Xi defined by
Le((f,9)(@,y) = flz+y) +9(z—y), zyeX (7.3)
18 linear and satisfies the inequality
ILp(u)]| < 2uf.

The proof is simple and analogous as the proof of the previous theorem.

Corollary 7.10. Let Ry C X, Y =C and ||z|| = |z| for x € Ry. Then
ILp[l = 2.
Proof. Assume on the contrary that ||Lp|| < 2. Then for f = g, we get

ILp((f, o)l = ILa(HI < ILplIIIC HIF = ILpIIFI

whence ||[La(f)|| < ||Lpll||f]|- By the hypothesis, ||Lp|| < 2 and therefore we
infer that ||L 4| < 2, which is impossible in view of Theorem 6.2. O
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