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Abstract. We use the penalty methods in order to study two constrained minimization

problems in Hilbert spaces. A penalty function is said to have the exact penalty property if

there is a penalty coefficient for which a solution of an unconstrained penalized problem is a

solution of the corresponding constrained problem. We establish simple sufficient conditions

for the exact penalty property.

1. Introduction and the main results

Penalty methods are an important and useful tool in constrained optimiza-
tion. See, for example, [1], [2], [4]-[6], [8]-[13], [15]-[20] and the references
mentioned there. In this paper we use the penalty approach in order to study
two constrained nonconvex minimization problems with smooth cost functions.
Note that classes of minimization problems with smooth objective functions
and smooth constraints are considered in [3]. A penalty function is said to
have the exact penalty property [1], [2], [8], [10] if there is a penalty coefficient
for which a solution of an unconstrained penalized problem is a solution of
the corresponding constrained problem. The notion of exact penalization was
introduced in [9], [18]. For a review of the literature on exact penalization see
[1], [2], [8]. We will establish simple sufficient conditions for the exact penalty
property.
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Let (X, < ·, · >) be a Hilbert space with the inner product < ·, · > and the
norm ||x|| = < x, x >1/2, x ∈ X. Let U be a nonempty open subset of X.
Denote by C1(U ; R1) the set of all Frechet differentiable functions f : U → R1

such that the mapping x → f ′(x), x ∈ U is continuous. Here f ′(x) ∈ X is a
Frechet derivative of f at x ∈ U .

Denote by C2(U ; R1) the set of all Frechet differentiable functions f ∈
C1(U ; R1) such that the mapping x → f ′(x), x ∈ U is also Frechet differen-
tiable and that the mapping x → f ′′(x), x ∈ U is continuous. Here f ′′(x)
is a Frechet second order derivative of f at x ∈ U . It is a linear continuous
self-mapping of X.

For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ||x− y|| ≤ r}, Bo(x, r) = {y ∈ X : ||x− y|| < r},
B(r) = B(0, r), Bo(r) = Bo(0, r).

For each function h : X → R1 ∪ {∞} and each A ⊂ X put

inf(h) = inf{h(z) : z ∈ X} and inf(h; A) = inf{h(x) : x ∈ A}.
For each x ∈ X and each B ⊂ X set d(x,B) = inf{||x− y|| : y ∈ B}.

Let g ∈ C2(U ;R1). A point x ∈ U is called a critical point of g if g′(x) = 0.
Denote by Cr(g) the set of all critical points of g. A real number c is a critical
value of g if there exists x ∈ Cr(g) such that g(x) = c. Denote by Cr(g, +)
the set of all x ∈ Cr(g) such that

< g′′(x)u, u >≥ 0 for all u ∈ X

and by Cr(g,−) the set of all x ∈ Cr(g) such that

< g′′(x)u, u >≤ 0 for all u ∈ X.

Let g : X → R1 be a continuous function, c ∈ R1 be such that g−1(c) 6= ∅
and let f : X → R1∪{∞} be a lower semicontinuous function which is bounded
from below and satisfies the growth condition

lim
||x||→∞

f(x) = ∞. (1.1)

Clearly, g−1(c) is a closed subset of (X, || · ||). We consider the constrained
problems

f(x) → min subject to x ∈ g−1(c) (Pe)
and

f(x) → min subject to x ∈ g−1((−∞, c]). (Pi)
We associate with these two problems the corresponding families of uncon-
strained minimization problems

f(x) + λ|g(x)− c| → min, x ∈ X (Pλe)
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and

f(x) + λmax{g(x)− c, 0} → min, x ∈ X (Pλi)

where λ > 0.
In [19] we showed the existence of exact penalty for problems (Pi) and

(Pe) with locally Lipschitzian functions f and g. In [20] assuming that g ∈
C2(X; R1), f ∈ C1(X; R1) and that the mapping f ′ : X → X is locally
Lipschitzian we established that exact penalty exists for the problem (Pe)
if g−1(c) ∩ (Cr(g, +) ∪ Cr(g,−)) = ∅ and that exact penalty exists for the
problem (Pi) if g−1(c) ∩ Cr(g,+) = ∅. In this paper we improve the results
of [20]. It turns our that they remain in force if g and f are smooth only
in small neighborhoods of minimizers of problems (Pe) and (Pi) respectively.
(See assumptions (A2) and (A3) below).

In this paper we suppose that there exists γ > 0 such that the following
assumption holds.

(A1) For each r > 0 the set B(r) ∩ g−1([c− γ, c + γ]) is compact.
Note that in [20] instead of (A1) we use a Palais-Smale type condition [14].

In this paper we also use the following two assumptions.
(A2) If x ∈ g−1(c) satisfies f(x) = inf(f ; g−1(c)), then there exists ∆x > 0

such that:
the restriction of g to Bo(x,∆x) denoted by g̃ belongs to C2(Bo(x,∆x);R1)

and x 6∈ Cr(g̃+) ∪ Cr(g̃−);
the restriction of f to Bo(x,∆x) belongs to C1(Bo(x,∆x);R1) and is Lips-

chitz and the mapping f ′ : Bo(x,∆x) → X is locally Lipschitz.
(A3) If x ∈ g−1(c) satisfies f(x) = inf(f ; g−1((−∞, c])), then there exists

∆x > 0 such that:
the restriction of g to Bo(x,∆x) denoted by g̃ belongs to C2(Bo(x,∆x);R1)

and x 6∈ Cr(g̃+);
the restriction of f to Bo(x,∆x) belongs to C1(Bo(x,∆x);R1) and is Lips-

chitz and the mapping f ′ : Bo(x,∆x) → X is locally Lipschitz.

The next two theorems are the main results of the paper.

Theorem 1.1. Assume that (A2) holds and that inf(f ; g−1(c)) < ∞. Then
there exists a positive number Λ0 such that for each ε > 0 there exists δ ∈ (0, ε)
such that the following assertion holds:

If λ ≥ Λ0 and if x ∈ X satisfies

f(x) + λ|g(x)− c| ≤ inf{f(z) + λ|g(z)− c| : z ∈ X}+ δ,

then there exists y ∈ g−1(c) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; g−1(c)) + ε.
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Theorem 1.2. Assume that (A3) holds and that inf(f ; g−1((−∞, c])) < ∞.
Then there is Λ0 > 0 such that for each ε > 0 there exists δ ∈ (0, ε) such that
the following assertion holds:

If λ ≥ Λ0 and if x ∈ X satisfies

f(x) + λmax{g(x)− c, 0} ≤ inf{f(z) + λmax{g(z)− c, 0} : z ∈ X}+ δ,

then there exists y ∈ g−1((−∞, c]) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; g−1((−∞, c])) + ε.

Theorems 1.1 and 1.2 will be proved in Section 2. In this section we present
several important results which easily follow from Theorems 1.1 and 1.2.

Theorems 1.1 and 1.2 imply the following result.

Theorem 1.3. 1. Assume that (A2) holds and that inf(f ; g−1(c)) < ∞. Then
there exists Λ0 > 0 such that for each λ ≥ Λ0 and each sequence {xi}∞i=1 ⊂ X
which satisfies

lim
i→∞

[f(xi) + λ|g(xi)− c|] = inf{f(z) + λ|g(z)− c| : z ∈ X}

there exists a sequence {yi}∞i=1 ⊂ g−1(c) such that

lim
i→∞

f(yi) = inf(f ; g−1(c)) and lim
i→∞

||yi − xi|| = 0.

2. Assume that (A3) holds and that inf(f ; g−1((−∞, c])) < ∞. Then there
exists Λ0 > 0 such that for each λ ≥ Λ0 and each sequence {xi}∞i=1 ⊂ X which
satisfies

lim
i→∞

[f(xi) + λmax{g(xi)− c, 0}] = inf{f(z) + λmax{g(z)− c, 0} : z ∈ X}

there exists a sequence {yi}∞i=1 ⊂ g−1((−∞, c]) such that

lim
i→∞

f(yi) = inf(f ; g−1((−∞, c])) and lim
i→∞

||yi − xi|| = 0.

The next result easily follows from Theorem 1.3.

Theorem 1.4. 1. Assume that (A2) holds and that inf(f ; g−1(c)) < ∞. Then
there exists Λ0 > 0 such that if λ ≥ Λ0 and if x ∈ X satisfies

f(x) + λ|g(x)− c| = inf{f(z) + λ|g(z)− c| : z ∈ X},
then g(x) = c and f(x) = inf(f ; g−1(c)).

2. Assume that (A3) holds and that inf(f ; g−1((−∞, c])) < ∞. Then there
exists Λ0 > 0 such that if λ ≥ Λ0 and if x ∈ X satisfies

f(x) + λmax{g(x)− c, 0} = inf{f(z) + λmax{g(z)− c, 0} : z ∈ X},
then g(x) ≤ c and f(x) = inf(f ; g−1((−∞, c])).
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Theorem 1.3 implies the following result.

Theorem 1.5. 1. Assume that (A2) holds and that x̄ ∈ g−1(c) satisfies the
following conditions:

f(x̄) = inf(f ; g−1(c)) < ∞;
any sequence {xn}∞n=1 ⊂ g−1(c) which satisfies

lim
n→∞ f(xn) = inf(f ; g−1(c))

converges to x̄ in the norm topology.
Then there exists Λ0 > 0 such that for each λ ≥ Λ0 the point x̄ is a unique

solution of the minimization problem f(z) + λ|g(z)− c| → min, z ∈ X.
2. Assume that (A3) holds and that x̄ ∈ g−1((−∞, c]) satisfies the following

conditions:
f(x̄) = inf(f ; g−1((−∞, c])) < ∞;

any sequence {xn}∞n=1 ⊂ g−1((−∞, c]) which satisfies

lim
n→∞ f(xn) = inf(f ; g−1((−∞, c]))

converges to x̄ in the norm topology.
Then there exists Λ0 > 0 such that for each λ ≥ Λ0 the point x̄ is a unique

solution of the minimization problem f(z)+λmax{g(z)−c, 0} → min, z ∈ X.

2. Proofs of theorems 1.1 and 1.2

We prove Theorems 1.1 and 1.2 simultaneously. There exists ā > 0 such
that

f(x) ≥ −ā for all x ∈ X. (2.1)
Set A = g−1(c) in the case of Theorem 1.1 and A = g−1((−∞, c]) in the case
of Theorem 1.2. Clearly A is a nonempty closed subset of (X, || · ||). For each
λ > 0 we define a function ψλ : X → R1 ∪ {∞} as follows:

ψλ(z) = f(z) + λ|g(z)− c|, z ∈ X (2.2)

in the case of Theorem 1.1 and

ψλ(z) = f(z) + λmax{g(z)− c, 0}, z ∈ X (2.3)

in the case of Theorem 1.2. Clearly, the function ψλ is lower semicontinuous
for all λ > 0.

We show that there is Λ0 > 0 such that the following property holds:
(P1) For each ε > 0 there exists δ ∈ (0, ε) such that for each λ ≥ Λ0 and

each x ∈ X which satisfies ψλ(x) ≤ inf(ψλ) + δ there is y ∈ A for which
||y − x|| ≤ ε and ψλ(y) ≤ inf(ψλ) + ε.

It is not difficult to see that Theorems 1.1 and 1.2 follow from (P1).
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Let us assume that there is no Λ0 for which (P1) holds. Then for each
natural number k there exist

εk ∈ (0, 1), λk ≥ k, xk ∈ X (2.4)

such that
ψλk

(xk) ≤ inf(ψλk
) + (8k2)−1ε2k, (2.5)

{z ∈ A ∩B(xk, εk) : ψλk
(z) ≤ inf(ψλk

) + εk} = ∅. (2.6)
Let k be a natural number. Consider the function

φλk
(z) = ψλk

(z) + (4k2)−1||z − xk||2, z ∈ X. (2.7)

Clearly, the function φλk
is lower semicontinuous and bounded from below.

By the variational principle of Deville-Godefroy-Zizler [7] there exist hk ∈
C2(X; R1) and yk ∈ X such that

sup{||hk(z)||+ ||h′k(z)||+ ||h′′k(z)|| : z ∈ X} ≤ 32−1k−2ε2k, (2.8)

(φλk
+ hk)(z) > (φλk

+ hk)(yk) for all z ∈ X \ {yk}. (2.9)
We show that ||xk − yk|| < εk. Let us assume the contrary. Then

||yk − xk|| ≥ εk. (2.10)

By (2.7) and (2.5),

φλk
(xk) = ψλk

(xk) ≤ inf(ψλk
) + (8k2)−1ε2k. (2.11)

In view of (2.7), (2.10) and (2.5),

φλk
(yk) = ψλk

(yk) + (4k2)−1||yk − xk||2 ≥ ψλk
(yk) + (4k2)−1ε2k

≥ inf(ψλk
) + (4k2)−1ε2k ≥ φλk

(xk) + (8k2)−1ε2k.

Combined with (2.8) this inequality implies that

(φλk
+hk)(yk)−(φλk

+hk)(xk) ≥ φλk
(yk)−φλk

(xk)−(16k2)−1ε2k ≥ (16k2)−1ε2k.

This inequality contradicts (2.9). The contradiction we have reached proves
that

||yk − xk|| < εk. (2.12)
It follows from (2.2), (2.3), (2.7), (2.8) and (2.9) that

f(yk) ≤ ψλk
(yk) ≤ φλk

(yk) ≤ (φλk
+ hk)(yk) + 32−1k−2ε2k

≤ φλk
(xk) + hk(xk) + (32k2)−1ε2k

≤ φλk
(xk) + (16k2)−1ε2k

= ψλk
(xk) + (16k2)−1ε2k

≤ inf(ψλk
) + (4k2)−1ε2k.

(2.13)

By (2.12) and (2.6),
yk 6∈ A. (2.14)
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In view of (2.13), (2.2) and (2.3),

f(yk) ≤ 1 + inf(ψλk
; A) = inf(f ; A) + 1. (2.15)

This inequality and (1.1) imply that the sequence {yk}∞k=1 is bounded

sup{||yk|| : k = 1, 2, . . . } < ∞. (2.16)

By (2.14) in the case of Theorem 1.2 we obtain that

g(yk) > c for all natural numbers k. (2.17)

By (2.14) in the case of Theorem 1.1 we obtain that for each natural number
k either g(yk) > c or g(yk) < c. In the case of Theorem 1.1 extracting a
subsequence and re-indexing we may assume that either g(yk) > c for all
natural numbers k or

g(yk) < c for all natural numbers k. (2.18)

Define a function g̃ and a real number c̃ as follows. In the case of Theorem
1.2 put g̃ = g, c̃ = c. In the case of Theorem 1.1, if (2.17) holds then set g̃ = g
and c̃ = c, and if (2.18) is valid then put g̃ = −g and c̃ = −c. Note that in all
these cases we have

g̃(yk) > c̃ for all natural numbers k. (2.19)

Let k be a natural number. It follows from (2.2), (2.3), the definition of g̃ and
c̃, (2.19) and (2.13) that

f(yk) + λk(g̃(yk)− c̃) = ψλk
(yk) ≤ inf(ψλk

) + 1

≤ inf(ψλk
; A) + 1

≤ inf(f ; A) + 1.
(2.20)

Together with (2.19) and (2.4) this relation implies that

0 < g̃(yk)− c̃ ≤ λ−1
k [inf(f ; A) + 1− (f(yk)]

≤ k−1[inf(f ; A) + 1− inf(f)] → 0 as k →∞,
(2.21)

lim
k→∞

g̃(yk) = c̃. (2.22)

In view of (2.22) and the definition of g̃ and c̃

c− γ ≤ g(yk) ≤ c + γ for all sufficiently large natural numbers k. (2.23)

By (2.23), (2.16) and (A1) extracting a subsequence and re-indexing we may
assume without loss of generality that there exists

y∗ = lim
k→∞

yk in the norm topology. (2.24)

In view of (2.22) and (2.24)

g(y∗) = c and y∗ ∈ A. (2.25)
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It follows from the lower semicontinuity of the function f , (2.24), (2.13), (2.2)
and (2.3) that

f(y∗) = lim inf
k→∞

f(yk) ≤ lim sup
k→∞

[inf(ψλk
) + (4k2)−1ε2k]

= lim sup
k→∞

inf(ψλk
)

≤ lim sup
k→∞

inf(ψλk
; A) = inf(f ;A).

Together with (2.25) this relation implies that

f(y∗) = inf(f ; A). (2.26)

By (2.25), (2.26), (A2) and (A3) there exists ∆̄ > 0 such that the following
property holds:

(i) the restriction of g to Bo(y∗, ∆̄) belongs to C2(Bo(y∗, ∆̄);R1);
(ii) the restriction of f to Bo(y∗, ∆̄) belongs to C2(Bo(y∗, ∆̄);R1) and it is

Lipschitz;
(iii) the mapping f ′ : Bo(y∗, ∆̄) → X is Lipschitz.
(iv) in the case of Theorem 1.1 y∗ 6∈ Cr(g̃+) ∪ Cr(g̃−) and in the case of

Theorem 1.2 y∗ 6∈ Cr(g̃+).
Relation (2.24) implies that there is a natural number k0 such that

||yk − y∗|| ≤ ∆̄/4 for all integers k ≥ k0. (2.27)

Let k ≥ k0 be a natural number. By (2.19) there is an open neighborhood W
of yk in X with the norm topology such that

W ⊂ Bo(yk, ∆̄/4) and g̃(z) > c̃ for all z ∈ W. (2.28)

By (2.7), (2.18), (2.2) and (2.3) for each z ∈ W

(φλk
+ hk)(z) = ψλk

(z) + (4k2)−1||z − xk||2 + hk(z)

= f(z) + λk(g̃(z)− c̃) + (4k2)−1||z − xk||2 + hk(z).
(2.29)

It follows from (2.27)-(2.29) and the properties (i) and (ii) that the function
φλk

+ hk is Frechet differentiable on the set W . In view of (2.9) and (2.29)

0 = (φλk
+ hk)′(yk) = f ′(yk) + λkg̃

′(yk) + (4k2)−12(yk − xk) + h′k(yk). (2.30)

Together with (2.4), (2.12) and (2.8) this equality implies that

||g̃′(yk)|| = λ−1
k ||f ′(yk) + (4k2)−12(yk − xk) + h′k(yk)||

≤ k−1(||f ′(yk)||+ εk + ||h′k(yk)||)
≤ k−1(||f ′(yk)||+ 2).

(2.31)

Combined with (2.24) and the property (i) this relation implies that

||g′(y∗)|| = lim
k→∞

||g′(yk)|| = lim
k→∞

||g̃′(yk)|| = 0 and g′(y∗) = 0. (2.32)
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By the property (iii) there exist L̄ > 0 such that

||f ′(z1)− f ′(z2)|| ≤ L̄||z1 − z2|| for each z1, z2 ∈ Bo(y∗, ∆̄). (2.33)

Let k ≥ k0 be an integer. Since hk ∈ C2(X; R1) and the restriction of g to
Bo(y∗, ∆̄) belongs to C2(Bo(y∗, ∆̄);R1) it follows from (2.19) and (2.27) that
there exists a positive number

rk < min{εk/2, ∆̄/8} (2.34)

such that
g̃(z) > c̃ for each z ∈ B(yk, rk), (2.35)

||h′′k(yk)− h′′k(yk + v)|| ≤ k−2 for each v ∈ B(0, rk), (2.36)

||g′′(yk + v)− g′′(yk)|| ≤ k−2λ−1
k for each v ∈ B(0, rk). (2.37)

By (2.7), (2.2), (2.3) and (2.35) for each z ∈ B(yk, rk)

(φλk
+ hk)(z) = f(z) + λk(g̃(z)− c̃) + (4k2)−1||z − xk||2 + hk(z). (2.38)

It follows from (2.23), (2.27) and (2.24) that for each v ∈ B(0, rk)

||f ′(yk + v)− f ′(yk)|| ≤ L̄||v||. (2.39)

By (2.12) and (2.16) that there exists M > 0 such that

||yk||, ||xk|| ≤ M for all integers k ≥ 1. (2.40)

Let
u ∈ B(0, rk) \ {0}. (2.41)

The inclusion hk ∈ C2(X; R1) and Taylor theorem imply that there exists
t1 ∈ [0, 1] such that

hk(yk + u) = hk(yk)+ < h′k(yk), u) > + < h′′k(yk + t1u)u, u > /2. (2.42)

Since the restriction of g to Bo(y∗, ∆̄) belongs to C2(Bo(y∗, ∆̄);R1) it follows
from the Taylor theorem that there exists t2 ∈ [0, 1] such that

g(yk + u) = g(yk)+ < g′(yk), u > + < g′′(yk + t2u)u, u > /2. (2.43)

Since the restriction of f to Bo(y∗, ∆̄) belongs to C1(Bo(y∗, ∆̄);R1) there exists
t3 ∈ [0, 1] such that

f(yk + u) = f(yk)+ < f ′(yk + t3u), u > . (2.44)

Relations (2.42), (2.36) and (2.41) imply that

|hk(yk + u)− hk(yk)− < h′k(yk), u > −2−1 < h′′k(yk)u, u > |
= 2−1| < (h′′k(yk + t1u)− h′′k(yk))u, u > | ≤ k−2||u||2. (2.45)
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In view of (2.43), (2.37) and (2.41)

|g(yk + u)− g(yk)+ < g′(yk), u > − < g′′(yk)u, u > /2|
= 2−1| < (g′′(yk + t2u)− g′′(yk))u, u > |
≤ ||u||2k−2λ−1

k .

(2.46)

It follows from (2.44), (2.39) and (2.41) that

|f(yk + u)− f(yk)− < f ′(yk), u > |
= | < f ′(yk + t3u)− f ′(yk), u > |
≤ ||f ′(yk + t3u)− f ′(yk)||||u|| ≤ L̄t3||u||2.

(2.47)

By (2.9), (2.41), (2.38), (2.47), (2.46), (2.45) and (2.4),

0 < (φλk
+ hk)(yk + u)− (φλk

+ hk)(yk)

= f(yk + u)− f(yk) + λk(g̃(yk + u)− g̃(yk))

+ (4k2)−1[||yk + u− xk||2 − ||yk − xk||2] + hk(yk + u)− hk(yk)

≤ < f ′(yk), u > +L̄||u||2 + λk[< g̃′(yk), u > + < g̃′′(yk)u, u > 2−1]

+ ||u||2k−2 + (4k2)−1[||u||2 + 2 < yk − xk, u >]+ < h′k(yk), u >

+ 2−1 < h′′k(yk)u, u > +k−2||u||2.

(2.48)

Set

F (u) =< f ′(yk), u > +L̄||u||2 + λk[< g̃′(yk), u >

+ < g̃′′(yk)u, u > 2−1] + 2||u||2k−2

+ (4k2)−1[||u||2 + 2 < yk − xk, u >]

+ < h′k(yk), u > +2−1 < h′′k(yk)u, u >, u ∈ X.

(2.49)

Clearly F ∈ C2(X;R1). It follows from (2.49) and (2.48) that

F (u) > F (0) for all u ∈ B(0, rk) \ {0}.

The inequality above implies that

F ′(0) = 0 and < F ′′(0)v, v >≥ 0 for all v ∈ X. (2.50)

Denote by I the identity operator I : X → X such that Ix = x for all x ∈ X.
By (2.49), (2.4) and (2.8)

F ′′(0) = 2L̄I + λkg̃
′′(yk) + (9/2)k−2I + h′′k(yk). (2.51)
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Relations (2.50) and (2.51) imply that for each v ∈ X

0 ≤ < λ−1
k F ′′(0)v, v >

= 2L̄λ−1
k ||v||2+ < g̃′′(yk)v, v > +(9/2)k−2λ−1

k ||v||2 + λ−1
k < h′′k(yk)v, v >

≤ < g̃′′(yk)v, v > +2L̄k−1||v||2 + (9/2)k−3||v||2 + k−1| < h′′k(yk)v, v > |
≤ < g̃′′(yk)v, v > +2L̄k−1||v||2 + (9/2)k−3||v||2 + k−3||v||2
→ < g̃′′(y∗)v, v >

as k →∞. Thus

< g̃′′(y∗)v, v >≥ 0 for all v ∈ X. (2.52)

Combining (2.25), (2.26) and (2.32) we obtain

g(y∗) = c, g′(y∗) = 0, f(y∗) = inf(f ;A). (2.53)

In the case of Theorem 1.1 relations (2.52) and (2.53) contradict (A2). In the
case of Theorem 1.2 (2.52) and (2.53) contradict (A3). The contradiction we
have reached proves that there exists Λ0 > 0 such that property (P1) holds.
This completes the proof of Theorems 1.1 and 1.2. ¤

References

[1] D. Boukari and A. V. Fiacco, Survey of penalty, exact-penalty and multiplier methods
from 1968 to 1993, Optimization, 32 (1995), 301–334.

[2] J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J.
Control Optim., 29 (1991), 968–998.

[3] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983.
[4] F. H. Clarke, Optimization and Nonsmooth Analysis, Willey Interscience, 1983.
[5] V. F. Demyanov, Constrained problems of calculus of variations via penalization tech-

nique, Equilibrium problems and variational models (Erice, 2000), Nonconvex Optim.
Appl., Kluwer Acad. Publ., Norwel, MA 68, 2003, 79–108.

[6] V. F. Demyanov, Exact penalty functions and problems of the calculus of variations,
Avtomat. i Telemekh. (2004), 136–147.

[7] R. Deville, R. Godefroy and V. Zizler, Smoothness and Renorming in Banach Spaces,
Longman, 1993.

[8] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM
J. Control Optim., 27 (1989), 1333–1360.

[9] I. I. Eremin, The penalty method in convex programming, Soviet Math. Dokl., 8 (1966),
459–462.

[10] J.-B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algo-
rithms, Springer, Berlin, 1993.

[11] Z. Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Con-
straints, Cambridge University Press, 1996.

[12] O. L. Mangasarian and J.-S. Pang, Exact penalty functions for mathematical programs
with linear complementary constraints, Optimization, 42 (1997), 1–8.



514 Alexander J. Zaslavski

[13] B. S. Mordukhovich, Penalty functions and necessary conditions for the extremum
in nonsmooth and nonconvex optimization problems, Uspekhi Math. Nauk, 36 (1981),
215–216.

[14] R. Palais, Lusternik-Schnirelman theory of Banach manifolds, Topology, 5 (1966), 115–
132.

[15] R. T. Rockafellar, Penalty methods and augmented Lagrangians in nonlinear program-
ming, Fifth Conference on Optimization Techniques (Rome, 1973), Part I. Lecture Notes
in Comput. Sci., Springer, Berlin, 3, 1973, 418–425.

[16] A. M. Rubinov, B. M. Glover and X. Q. Yang, Decreasing functions with applications
to penalization, SIAM J. Optim., 10 (1999), 289–313.

[17] A. M. Rubinov, X. Q. Yang and A. M. Bagirov, Penalty functions with a small penalty
parameter, Optim. Methods Softw., 17 (2002), 931–964.

[18] W. I. Zangwill, Nonlinear programming via penalty functions, Management Sci., 13
(1967), 344–358.

[19] A. J. Zaslavski, A sufficient condition for exact penalty in constrained optimization,
SIAM Journal on Optimization, 16 (2005), 250–262.

[20] A. J. Zaslavski, Existence of exact penalty for constrained optimization problems in
Hilbert spaces, Nonlinear Analysis, accepted.


