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Abstract. In this paper we establish a set of sufficient conditions for the existence of random
solutions and their asymptotic behaviour of stochastic integral equations. We use the notion

of measure of noncompactness in a Banach space and fixed point theorem of Darbo type.

1. INTRODUCTION

The importance of random differential and integral equations are charac-
terized in many social, physical, biological and engineering problems. Theory
of stochastic differential and integral equations may be found in several pa-
pers and monographs [3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 16]. One of the most
important problem examined up to now is that concerning the existence of
solutions of considered equations. The basic tools used in solving this prob-
lem are mostly the method of successive approximations or the Banach fixed
point principle [8, 9, 10, 11, 14, 15]. The idea used in this papers are based
on the notion of the measure of noncompactness in a Banach space and the
fixed point theorem of Darbo type[l, 2, 5]. We construct first the real Banach
space of tempered functions and next define the measure of noncompactness
on that space where we are searching for solutions of considered equations.
This approach allows us to find weaker conditions than that of the papers
[6, 9, 10, 11, 12, 13, 14, 15, 16]. We replace the Lipschitz type conditions by
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those involving sublinear functions. The aim of this paper is to discuss the
problem of existence and stability of solutions of a class of general stochastic
integral equation.

2. PRELIMINARIES

Throughout this paper H will denote an infinite dimensional real Banach
space with norm ||-|| and the zero element 0. K (x,r) stands for the closed ball
centered at x of radius r. Denote by My the family of all nonempty bounded
subsets of H and by ANy the family of all relatively compact and nonempty
subset, of H.

The following axioms defining a measure of noncompactness are taken from
Banas and Goebel [2].

Definition 2.1. A nonempty family P C N is said to be kernel (of measure
of noncompactness), provided it satisfies the following conditions:

(a) Ue P=U € P,

) UeP,VCUV#¢p=VeP,

) UV eP=XU+(1-ANVePXec|0,]1],
d) UeP= ConlU € P,

) P¢ (the subfamily of P consisting of all closed sets) is closed in N7
with respect to the topology generated by Hausdorff metric.

Definition 2.2. The function pu : My — [0,+00) is said to be a measure
of noncompactness on (H, My )with kernel P(kerpy = P) if it satisfies the
following condition:

(bl) w(U)=0<U € P;

(b2) wU) = uU);

(b3) p(Convl) = pu(U);

(bd) UCV = uU) < puV);

(b5) p(AU+ (1 =2)V) < u(U) + (1 = N)p(V), A [ ]
(b6) if U, € My, U, = U, and Uny1 CUpn=1,2, , and if

lim (Uy) =0, then U = Ol Up # 6.
If a measure of noncompactness u satisfies in addition the following two con-
ditions:
(b7) wU+V)<uU)+pnV), U+V ={z:z2=x+y, zcUyecV}
(b8) (AU = A (U, A € B
it will be sublinear.
Let M C H be a nonempty set and let ; be a measure of noncompactness

on (H, My).
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Definition 2.3. We say that a continuous mapping 7' : M — H is a con-
traction with respect to p(p-contraction) if for any set U € My its image
TU € My, and there exists a constant k € [0,1) such that u(TU) < ku(U).

We shall use the following modified version of the fixed point theorem of
Darbo type .

Theorem 2.4. Let C' be a nonempty, closed, convex and bounded subset of
H and let T': C' — C be an arbitrary p contraction on (H, M4y). Then T has
at least one fixed point in C' and the set Fix T' = {z € C': Tz = z} of all fixed
points of T" belongs to ker p.
Let p( - ) € L1([0,+00)) = L1([0,+00)A, v) be a positive function.

By LY(Ry,La2(Q2, A, P),p) (or shortly L¥) we mean a space of all integrable
with respect to the Lebesgue measure functions x := x(¢; -) on R, with values
X (t) being random variables in Ls(€2, A, P) and with the topology defined by
the norm

lll, = /O p(t) — ess sup x(s)]ly, dv(t) < oo.

s€[0,¢]

where v — ess supycjoy [|2(5)]|y, is taken with respect to the Lebesgue mea-
sure v.
The space Lj with norm | ||, is a real Banach space [3].

Now let z € LY(Ry,L2(Q A, P),p), x € ./\/lef. Define the measure of
noncompactness y' on (L}, M r») as follows

W) = lim sup /Om||p<t+e>x<t+e>—p<t>X<t>||L2du<t>

e—~0 zey

+ lim sup [T p(0) [ X0, dele) +supfp(t) m(x(®): 1> 0},
—00 zex JA

where m is a measure of noncompactness on (L2($, A, P), M1,(q.4,p));

x(t) = {l’ €xC K(0,r) : p—ess 81[10p] X, < lxll, /p(t)} and t > 0.
se|0,t

The function p’ define S sublinear measure of noncompactness on LY. It is
also known that kernel P’ (ker i/ = P’) being a family of all sets U € M ?
such that functions belonging to U are uniformly integrable, i.e.

li X =
Jim EEB/A p) X (@), dv(t) = 0,
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and

lim sup /000 Ip(t +€)X(t+¢€) —pt)X ()|, dv(t) = 0.

=0 reU

3. EXISTENCE THEOREM

Consider the general stochastic integral equation of the form
noopt
X(tw) = bt X(w)+ Y [ s X(sw)w)ds
i=1 "0
mo et
+Z/ gi(t,s, X (s;w);w)dB(s;w), t> 0, (3.1)
j=1"0

where

(i) w € Q, the supporting set of the complete probability measure space
(Q, A, P) with A being the o-algebra and P probability measure,

(ii) X (t;w) is the unknown random process,

(iii) A(t,X) is a map from Ry x R into R,

(iv) fi(t,s, X5w), i = 1,2,...,n, g;(t,s,X;w), j = 1,2,...,m, are maps
from Ry x Ry X R into R,

(v) t € Ry and B(t;w) is a martingale process.

The first integral in the equation (3.1) is an ordinary Lebesgue integral with
probabilistic characterization, while the second part is an Ito-Doob stochastic
integral.

With respect to the random process G(t; w) we shall assume that for each
t € Ry, a minimal o -algebra A;, A; C A, is such that §(¢;w) is measurable
with respect to A;. In addition, we shall assume that the minimal o -algebra
A; is an increasing family such that

(i) the random process {8(t;w), A; : t € Ry} is a real martingale and
(ii) there is a real continuous non-decreasing function, F'(¢), such that for
s,t€ Ry and s <t
we have E{|B8(t; w) — B(s;w)|*} = E{|B(t;w) — B(s; w)[*| A} = F(t) - F(s) P-
a.s. where F denotes the expected value of the random process.

Definition 3.1. A process X (¢;w) such that |[z(t)| 1, € L1([0, 00))and satis-
fying (3.1) a.s. said to be a random solution of that equation.
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Definition 3.2. A random solution X (¢;w) is said to be asymptotically stable
in mean square sense if

[e.9]
li X(t dv(t) = 0.
A | IX @, dv(?)
One can find conditions [3] under which there exists a unique strong solu-
tion of equation (3.1). Our method is based on the technique of measure of
noncompactness and a fixed point theorem of Darbo type.

Theorem 3.3. Suppose that the functions f; and g; in equation (3.1) are
sublinear,i.e.
(1) 1filt, s, X(s;w);w)| < awilt, s;w) |o(s;w)| + bui(t, s;w) P — as.,
and
195t 5, X (53 0); w)]| < azy(t, 53 [a(siw)| + bay (t, 53 0) P — as.,
where nonnegative functions ai;, agj, b1, bzj,i=1,2,...,n,j =1,2,...,m are
continous for t € R, defined for ¢, s € R, and belonging to Lo (2, A, P) with

l|la1i(t, s)||| = P — ess sup |aii(t, s;w)], i =1,2,...,n
we
flaas 6,301 = P = ess sup 0,5 0)] 5 = 1,2.cm,
w

(i) |h(t, X (t;w))—h(t, Y (t;w))| < k| X (t;w)—-Y (t; w)| P-a.s., for k € [0, 1)
Let the M7 and Ny be defined as follows

My = k+ sup Z/ llaxi(t. )]1ds

t€[0,00) ;
/2

+V3 sup Z{/ mamsmdﬂ)} ,

t€[0,00)

N, = / p(t)v —ess sup |h(s,0)|dv(t)
0 s€[0,t]

+/0 p(t)v — ess sup Z[/ 161 (s 51)H|d31] dv(t)

s€[0,t]
o s 1/2
+\/§/ p(t)v — ess Sl[lp]Z{/ |||b2j(8751)H|2dF(81)} dv(t),
0 se[0,t 0

satisfy the inequalities
(iii) 0< M < 1, Ny < o0,



224 K. Balachandran, K. Sumathy and J. K. Kim

(iv) the mapping X (;w) — fi(, s, X (;;w);w) and X (w) — g;(-, 8, X (;w); w)
from LY(Ry, La(Q, A, P), p) into LY (R4, La(Q2, A, P), p) are continuous
in the topology generated by the norm || - ||,

(v) [1h(t, X (#)||z, € La1([0, +00)),

(vi) there exist Lq;, @ = 1,2,...,n, Lgj, j = 1,2,...,m, and L3 satisfying
such that

n m
0§2L1i+ZL2j+L3<17

i=1 j=1
t
m(/o fi(tvsa U(S)vw)d5> < Lllm(U(t))’ 1= 1’27 s T

m(/ot 0i(t.5.U(s): w)ds) < Logm(U (1), =1.2,...m,

m(h(tU)) < Lam(U (1),

U(t)={X(s) € Ly(N,A,P), s>0, z€U C K(0,7) : v — ess
supseio. 1 X (8)llL. < |Ullp/p(t)}, t >0 and 7= N1 /(1 — My).

Then there exists at least one solution z € LY of equation (3.1) such that

lim p(t)v —ess sup ||X(s)|r,dv(t) =0.
T—oo Jp s€f0,t]

Proof. For a process X € LY define the process GX by
nooet
GX)(w) = bt X(Ew) + D [ Alts X(sw)wds
i=170

mo
+JZ;/0 gj(t, s, X (s;w); w)dB(s;w). (3.2)

The assumption concerning 3(t;w) and X € LY allow us to give the following
estimate

. 1/2
< {/ H\azj(t8)|!|2||X(8)H%2dF(8)} - (33)
0

|/ az;(t, s) X (s)dp(s)
0 Ly
Put

()= 3 [ g5t X (55 0)s B 5 ).
1 ;/0 g
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Now by (i)and (3.3) we obtain

/ p(t) — ess sup || L1(s)l|L,dv(?)
0 s€[0,¢]

= [ rtow—es s |3 [ s Xsisw) wdssis)

s€[0,t] J=1

< /Ooop(t)u—ess sup Z/Os {agj(s,sl;w)|X(sl;w)|

s€[0,t] i=1

dv(t)
Lo

dv(t)
Lo

+b2j(3751§w)}d/8(31;w)

< ﬂ/wp(t)v
. 1/2
mamXﬂ/M%@&WWX@Wﬂﬂm}cww
s€[0,t] 0
- . 1/2
—i—\fQ/ p(t)v — ess sup Z{/ H\bgj(s,sl)HQdF(sl)} dv(t)
0 s€[0,¢] 0
1/2
< VI EEI{]/|Ha% (1, ) |[PdF(s >}

wapmu—%swpuX@mhww>

s€[0,t]

() s 1/2
+\/§/0 p(t)v — ess sup Z{/o |||b2j(s,sl)]|2dF(31)} dv(t)(3.4)

s€[0,t] "

Put Lo(t) = h(t, X (t;w)). By (ii), we obtain

| pte = ess sup Lo ad(t)
0 s€0,t]

< kéwpmu—%swpnanhmw>

s€0,t]

+/ p(t)v —ess sup |h(s,0)|dv(t). (3.5)
0 s€[0,t]
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Putting

nooat
:;/0 fi(tys, X(s;w); w)ds,

and using (i)and (ii) we arrive at the following estimate

L/’ p(t) — ess sup [|La(s)| Ladi(2)
0 s€[0,t]

SAPMF%&mZ/W%smMMmM@ﬁM)
sel0,t
+/)p@V—e%Sm>§:/1ths&HWﬂdW)
0 s€[0,¢
< m>2/wmww/pw~wwwmwmm
s€[0,00) ;7 s€[0,¢]
—i—/ p(t)v — ess sup Z/ 1b1i (s, 51)||ds1 dv(t). (3.6)
0 s€[0,¢] i=1

Now combining (3.2),(3.4),(3.5) and (3.6) we conclude that
1GXl, < Mi[| X[, + N

where M; and N are the quantities given above. Thus G is a mapping of L}
into LY, and moreover we see that G maps the ball K (0, r) into K (0, ), where
r=Ni/(1— M).

We prove that the map G is continous on the ball K(0,r).
Let z,y € K(0,r). By (ii) for any given €; > 0 there exists ¢ > 0 such that

/Oop(t)u—ess sup Hh 5, X(s)) — h(s,Y(s))‘ Cdv(t) <a (3.7)
0 2

s€[0,]

whenever ||z —y| < §.

Furthermore, we can assume without loss of generality that there exists
T > 0 such that |||a1;(¢,s1)||| > 1, |||ag;(t, s1)||| > 1 whenever s; < T,
i=1,2,...,n,5 =1,2,...,m. Hence using (3.7), we have the following estimate

/ " () — ess sup H (GX)(s) — (GY)(S)‘ _dv(t)
0 2

s€0,t]
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< g +/Oop(t)yess sup gJ s,51, X (s1);w)
0 s€[0,t]
—gj(s,s1,Y(31);w)}dﬁ(31;w) dv(t)
Lo
—1—/0 p(t)v — ess 521[10[7)15} ;/ﬂ {fi(s,31,X(31);w)
—fi(s,sl,Y(sl);w)}dsl dv(t).
Lo
Writing
moo
LA(t) = Z/o {gj(t,s,X(s);w) - gj(t,s,Y(s);w)}dB(s).
j=1

Using the inequality (3.3) we see that

/ p(t)y — ess sup [|LA(s)]|Ladv(t)
0 s€[0,t]

< / p(t)v
0
m 1/2
s 2
—ess sup Z[/ g5 (8,81, X (s1)) _gj(saslay(sl))‘ dF(s1)| dv(t)
1/2
< su ag;(t, s dF'(s
< o> Z / Il (¢, s)|PdE(s1)]
T
></ p(t)v — ess sup Hg] (t,s,X(s)) —gj(t,s,Y(s))’ dv(t)
0 s€(0,t] Lo

V3 sup Z [ astesiparsn]

te(T, oo)

x / p(t)y — ess sup [ X(s)]Ladr(2)
T s€[0,t]

V3 sup Z [ Maste,solPar o]

te(T, oo)
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< [ bt~ ess sup [V (5)Lad(t)
T s€[0,t]

—|—2\/§/ p(t)v — ess sup Z / 1162, (s, 51)|[|2d F ( 81) dv(t).
T

s€0,t]

For the second term of the right hand side of the above inequality we have

o0
/ p(t)v — ess sup
0

s€[0,t]

T
< / p(t)v — ess sup Z/ lla1i(s, s1)]l]
0

s€[0,t]

/ fi(s,s1,X(s1)) — fi(s,81,Y(s1))|| ds1 dv(t)

Lo

fi(s, 81, X (s1))

_fi(sv 51, Y(Sl))

00 n s
+/ p(t)v — ess sup /
T s€[0,t] lz:: 0

1
n

—i—/ p(t)v — ess sup /
T () se[Ot};o

sup Z / lla1i(t, s1)]/|ds1 / p(t)v

tel0,1] 4

L2d51 dv(t)

fi(s,sl,X(sl))‘ . ds1 dv(t)

filss1 Y (s0)|

dsy dv(t)

IN

dv(t)

—ess sup
s€[0,t]

+ sup Z / llavi(t, s1)]||ds1 / p(t)v —ess sup || X ()| L,dv(t)

te[0,T] s€[0,t]

filt 5. X(9) = filt s, Y ()]

sup Z / llaxi(t, s1)lllds1 / p(t)v —ess sup [|Y(s)| L, dv(t)

teOT] i—1 s€[0,t]

+2/ p(t)v — ess sup Z / b1 (s, s1)||| ds1 dv(t).
T

s€(0,t] ;=

Thus we have by (ii) and (iv),
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/ p(t)v — ess sup H (GX)(s) - (GY)(S)‘ dv(t)
0 s€[0,4] Lo
< M / p(t)v — ess sup / fi(t, s, X(s)) —fi(t,s,Y(s))‘ dv(t)
0 sefo,] Jo Lo
+/ p(t)y — ess sup Hg] t,s,X(s)) —gj(t,s,Y(s))‘ dv(t)
0 5€[0,t] L2
+Mies +2Mies + 2ey, (38)
where
/ p(t)v — ess sup HX ‘ dv(t) < e,
T s€[0,t]
/ p(t)v — ess sup HY(S)‘ dv(t) < es,
T s€[0,t] L
and

\@/Toop v —ess sup Z / (162 (s, 1)l dF(sl)} 1/2 dv(t)

sEOt]

+/ p(t)v — ess sup Z/ 1161i(s, s1)|||ds1 dv(t) < eq,
T

s€[0,t] 5=
whenever T is sufficiently large. By (3.8), for any given € > 0,
|GX — Y, <«

whenever |z — y| < 0, which prove the continuity of the operator.
We now prove that

lim sup /0 OOHp(t—l—e)(GX)(t—i—e)— p(t)(GX)(t)’ dv(t) = 0 (3.9)

e—=0 ey

Lo

where U € ML11>. Note that for any given € > 0, z € U C K(0,7), we have
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/OooHp(t + ) (GX)(t +e€) — p(t)(GX)(t)HLQd”(t)

:/0“

+3 / TRt + es, X(s);0) ds} —p<t>{h<ux<t>>

m t+e
p(t + e){h(t +e,X(t+¢€) + Z/o gi(t +¢€,5,X(s);w)dp(s)
i=1

+Z/g]tsX w) dB(s +Z/ft5X }L2d’/(t)
g/oolpt+e (1)l nce, x (¢ H dv(t)

0

+/ D[t + e X0+ ) — hit, X (0) H 20

/ Ip(t + €) \ZH/ gi(t,s, X(s dﬁ(s)HL dv(t)

<[ p(t)ZH/H{gme,s,X() w) = g;(t. 5 X ()i w)}d3(o)] dvle

/ Ip(t +€) — \ZH/ftsX dsH du(t

o[ p(t)Z;H/t (e 6, X)) = filt 5, X(s)w) s

(3.10)

Moreover, we see that

/oo\pt+6— |HhtX H dv(t
/ p(t + ©) |ZH/ 0505, X (s);w) a5 (s)| | avt)
/ Ip(t +€) |ZH/ gj(t,s, X(s dB(S)HLQdV(t) <2r

and
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t
(b5, X(s):w)dB(s)|

H/g]tsX

1=1,2,. , 3=12,

231

€ Li([0, +0)),

(3.11)

Using now (3.10),(3.11) and (iv) and the above statment, we have (3.9).

Fix now U C K(0,7), where r = Ny /(1 — Mj).
Then We prove that

fim sup [ p(0) (GO0, dult) = o

A=0 zeU JA

By (3.2), (3.3), (i) and (ii) we get the following estimate

/A T pONGX) D)1, du()
<k /A play — ess sup [1X(5) (1)
—i—/A p(t)u—esssitﬁ)t]]h(3,0)|dy(t)
+\/§/Oop(t)v

—ess sup Z /0 [ Mazs (s, sn) 12 1 (s0) 0P )] vt

sGOt]

(3.12)

V2 [ pto —ess sup Z [ s tssollP apten)] ™ vt

sGOt

o [ bt —ess s 3 / laxiCs, su) I 1 (s0) st ()
A

s€[0,t] ;=
o0
+ [ (e s sup 2/ llbas(s, )] dsi duo).
A s€[0,t] ;

Now we see that

(3.13)
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k/mp@u—%sg%uxwwhdww
+\f/

wmwszwmwwmwwﬁ%m

s€[0,t]

+ /AOO p(t)v

—ess sup Z/ laxi(s, sO)I[[1X ()l Lo dsrdv(t) < Myr.— (3.14)

s€[0,t] ;=1

Therefore by (3.13), (3.14), (iii) and (iv) we get (3.12). Hence by (3.9),(3.12)
and the assumptions (ii),(iv) we obtain
W(GU) < Cu'(U),

where C' = >"" | Li; + Z;n:l Ly; + L3 which proves that G is 1/~ contraction.
Therefore by Theorem 2.4, we complete the proof of Theorem 3.3. O

Remark 3.4. Let h(t, X(t;w)) € D([0,4+00)). Then by theorem(3.3), the
solution X (¢;w) of equation (3.1) are such that X (t;w) € D([0,400)) and
lim p(t)v —ess sup || X(s)|L, dv(t) = 0.
T—o0 JT s€[0,]

Now we consider the stochastic functional integral equation of the form

l t
X(tw) = h(t,X(t;w))—l—Z/ ai(t, m;w) fi(1, X (7;w))dr
=170

—1—2/0 bi(t, T3w)g; (1, X (1;w))dB(T; w), (3.15)
j=1

where we assume the following hypothesis:

(i) w € Q, the supporting set of the complete probability measure space
(Q, A, P) with A being the o-algebra and P probability measure,
(ii) X (t;w) is the unknown random process,
(iii) A(t,X) is a map from Ry x R into R,
(iv) ai(t,7;w), b;j(t, 7;w) are stochastic kernels which are random valued
functions deﬁned for0 <7 <t<ocand w € Q,i =1,2,...,1, j =
1,2,...,m
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(v) filt,X), i=1,2,...,n, g;(t,X), j=1,2,...,m, are maps from R} X
R, x R into R,
(vi) t € Ry and B(t;w) is a stochastic process.

The first part of the integral equation (3.15) is to be understood as an or-
dinary Lebesgue integral with probabilistic characterization, while the second
part is an Ito-Doob stochastic integral.

Let t € Ry be fixed. We suppose that the stochastic kernels a;, i =
1,2,...,n,b5,7 = 1,2,...,m, 0 < 7 < t and p-essentially bounded, continu-
ous for t € R4 and integrable in Lebesgue sense for 7 € [0, ¢] map the set

A= {(t,7): 0<7<t<oo}into Loo(2, A, P).
For 0 <7 <t < 00, define

|H(12(t,7')||| =P —ess Sup |ai(ta T, UJ)|,’L = 1727 w1
wesd

and

1356, )l = P —ess sup [by(t, 73)], 5 = 1,2, ...
weN

Following the proof of theorem 3.3 one can get the following result.

Theorem 3.5. Let functions f;, i = 1,2,...,n, gj, ¢ = 1,2,...,m in the
stochastic functional integral equation (3.15) be sublinear, that is,

() [fi(t,z(t;w))] < uri(t)|z(t;w)] + v1:(t) P — a.s.,
lgj(t, z(t;w))| < ugi(t)|z(t; w)| + vej(t)P — a.s., where non negative
functions u1;, vii,1=1,2,...,n and ug;, vo;, j = 1,2,...,m are defined
for t € Ry and

(ii) |h(t, X (t;w))=h(t, Y (t;w))| < k| X (t; w)=Y (t; w)| P-a.s., for k € [0,1).
Let the quantities M7 and N7 be defined as follows

M= ke s Z / e (t, $)| [usa(s)ds

1/2
+V2 sup Z [/ 165 (t, )| (u2j ())2dF (s)|

te[0,00
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N :/ p(t)v —ess sup |h(s,0)| dv(t)
0 s€0,t]

+/ p(t)v — ess sup Z/ llai(s, s1)|| v1i(s1)dsy dv(t)

s€[0,1]

1/2
V2 / Jv — ess sup Zl/ 11;(s, sl (vay(s1))*dF(s1) | dw(d),

s€[0,t]

(iii) 0< M <1, Nj < o0,
(iv) If the mappings X (;w) — fi(-,z(;w)), i =1,2,...,n and X(-;w) —

g]( ( w))7
] - 1 2 y M Lll)(RJF? LQ(QvAvp)ap) into L;ll)(RﬂLa LQ(QaAv P)7p) are
contlnuous in the topology generated by || - ||,

(v) [IA(t, X (#)l|L, € L1([0,00)), and

(vi) there exist Ly;, ¢ = 1,2,...,n, Lgj, j =1,2,...,m, and L3 satisfying
such that

m

n
OSZL1i+ZL2j+L3 < 1,
=1

j=1
m(/ot ailt miw) fi(r, U(r))dr) < Lym(U(D), i =12, ..n

([ 3705 U)aB(750)) < Lagn(U(0).5 = 1,2

m(h(tU) < Lam(U (1),
U(t) ={X(s) € L2(Q,A,P),s >0, € U C K(0,7):
v~ esssupacpg 1X()ze < U] p()},¢ > 0,and 7 = Ny /(1 - My),
then there exists at least one solution z € LY of equation (3.15) such that

lim p(t)v —ess sup || X(s)||L, dv(t) = 0.
T—oo JT s€[0,t]

Remark 3.6. If p(t) = 0 for t € Ry random solution X (¢;w) equations (3.1)
and (3.15) are asymptotically stable in the sense of definition.
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