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Abstract. In this paper we prove the generalized Hyers-Ulam stability of the quadratic
functional equation

flx+y) + flz+oy) =2f(x) +2f(y), zy€Gq,

where o is an involution of the normed space G.

1. INTRODUCTION

In [16] Ulam proposed the following stability problem: Under what con-
ditions does there exist an additive mapping near an approximately additive
mapping?

The first partial solution to Ulam’s problem was given by Hyers in [4]: If
f+ By — E» is a mapping satisfying

1f(z+y) = fz) - f)l <0,
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for all z,y € E1, where Ey and Ey are Banach spaces and 9 is a given positive
number, then there exists a unique additive mapping 1" : £ — FEj5 such that

1f(z) = T(2)]| <4,

for all x € Ey. The proof of this result follows the same spirit if E; is an
abelian semigroup.

In 1978, a generalization of Hyers’” Theorem was formulated and proved by
Rassias [9] in the setting when FE; is a normed space, E» is a Banach space
and the Cauchy difference is allowed to be unbounded.

Theorem 1.1. Let f : Ey — E5 be a mapping such that f(tx) is continuous
i t for each fized x. Assume that there exist 0 > 0 and p < 1 such that

1z +y) = F(=) = f)ll < ([l ]” + [ly]*)

for all x,y € Ey (for all x,y € E1\ {0} if p <0). Then there exists a unique
linear mapping T : By — Es such that
20

I1£() - T@) < 5~

for all x € Ey (for all z € By \ {0} ifp <O0).

l2[?

Rassias during the 27th International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for p > 1.
Gajda [3] following the same approach as in Rassias [9], gave an affirmative
solution to Rassias’question for p > 1. It was showed by Gajda [3] as well as
by Rassias and Semrl [12] that a similar Theorem in the spirit of Theorem 1.1
for the case p = 1 cannot be proved.

Stability problems of various functional equations have been extensively
investigated by a number of authors. The terminology Hyers-Ulam-Rassias
stability originates from these historical backgrounds. For more detailed def-
initions and further developments of stability concepts one is referred to [2],
6], [8], [11], [13], [14].

In this paper we prove the stability of the quadratic functional equation

flz+y) + flx+o(y) =2f(x) +2f(y), z,y €G, (1.1)

where 0: G — @ is an involution of G, i.e., o(x +y) = o(x) + o(y) and
o(o(z)) =z for all z,y € G.
The functional equation

corresponds to o = I, and the functional equation

fle+y)+ fle—y) =2f() +2f(y), 2,y € G, (1.3)
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corresponds to o = —I. Reflection in a subspace of R™ provides a third
example. Some other examples are the transpose involution and the symmetric
involution in the additive group of 2 x 2 matrices.

The quadratic equation (1.1) has been solved by Stetkeer [15].

The stability problem for the quadratic equation (1.3) was proved firstly by
Skof in [14]. In [1] Cholewa extended the Skof’s result in the following way,
where G is an abelian group and F is a Banach space.

Theorem 1.2. Let n > 0 be a real number and f : G — E satisfies the
iequality

1f(z+y)+ flz—y) = 2f(z) = 2f(W)l| < n for all z,y €G. (1.4)
Then for every x € G the limit q(x) = limy,— 4 % eristsandq: G — E
is the unique solution of (1.3) satisfying

1f () —q(@)]| <

In [2] Czerwik obtained a generalization of the Skof-Cholewa’s result.

, x €. (1.5)

N3

Theorem 1.3. Let p # 2, 0 > 0, 6 > 0 be real numbers. Suppose that the
function f : By — FEs satisfies the inequality

1f(z+y) + [z —y) = 2f(z) = 2f @) < 5+ 0|2 + llyl”) for all 2,y € E.

Then there exists exactly one quadratic function q : B4 — FEo such that
1f(z) — q(@)|| < ¢+ kOf|]”
for all x € Ey if p > 0 and for all x € E1 \ {0} if p <0, where

= ||f(30)|| k= 4_22,, and q(x) = lim,— 4 %, for p < 2 as well as,
c=0, k=525 and q(z) = lim, .4 4" f(27"x), for p > 2.

In dealing with a general involution ¢ of G one provides first of all a unified
study for the stability of equations (1.2) and (1.3) and secondly a generalization
of both of these equations. In particular, one wants to see how the involution
o enter into the approximative solutions formulas.

2. HYERS-ULAM STABILITY OF EQUATION(1.1)

In this section we investigate the Hyers-Ulam stability for the equation (1.1).
This generalizes the result obtained for 0 = I and o = —1I.
Theorem 2.1. Let G be an abelian group, E a Banach space and f: G — E

a mapping which satisfies the inequality

[ fx+y)+fz+o(y) —2f(x) =2f(y) [< b forall z,yecG (21
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for some 6 > 0. Then there exists a unique mapping q: G — E such that

q(z) = lim 2%{f@"ﬂﬂ) +(2" = Df2 e+ 2" o (2))}

n——+00

is a solution of the quadratic functional equation (1.1) satisfying

| f(x) —q(z)]| < gfor allz € G. (2.2)
Proof. By letting z = y = u, respectively =y = u+ o(u) in (2.1) we obtain
1f(2u) + f(u+o(u) —4f(u)] <0 (2.3)

and
12f (2u + 20 (u)) — 4f (u + o (u))| < 0. (2.4)
Setting = y in (2.1) yields

|f(z) — i{f(Qx) + flz+o(x)} < g for all =z € G. (2.5)

Applying the inductive assumption we obtain

15) — 5 (F@"0) + (2"~ DF@ e+ 2o < 50— i} (26)

for some positive integer n.
From (2.5) it follows that (2.6) is true for n = 1. The inductive step must now
be demonstrated to hold true for the integer n + 1, that is

1

1 (#) = 5ty S @M ) + 27 = 1) f(2" + 20 () }|
S o iﬂ Hf(2"+1 )+ [(2% +2%0(z)) — 4f (2"2)|
1 n n n n— n—
+ S Hz( — 1) f(2" +2"0(2)) — 42" — D) f(2" lx + 2" o ()|
R i—&-l [4f(2"2) + 42" — D) F 2" 'w + 2" o (a)) — 220 f(a)|
_ 8 2" -1 6, 1. 4 1

92(n+1) + 92(n+1) + 5( 27) = 5(1 - 2n+1)'

This proves the validity of the inequality (2.6).
Let us define

(@) = g F@ ) + @ - DFE e o)) (27)
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for any positive integer n and € G. Then {¢,(x)} is a Cauchy sequence for
every z € G. In fact by using (2.6), (2.7), (2.4) and (2.3), we get

g1 (2) = gn(2)]]

= o iﬂ If2" ) + f(2"2 + 2" (x)) — 4f(2"2)]

1
+ WHQ(?" — 1) f(2"x + 2" (x)) — 42" — 1) f(2" 1z + 2" o (a))|

5 2" —1)5 5,1
< 22(n+1) (n+1) 4(2) :

It easily follows that {g,(x)} is a Cauchy sequence for all z € G. Since E is
complete, we can define ¢(z) = lim,,—, o ¢,(z) for any z € G and one can
verify that ¢ is a solution of (1.1). For all z,y € G we have

HQR x+y) +Qn(x+g(y) _QQTL( ) 2Qn(y)||
= S @ 2+ (2 = DA 2y 2 o () + 2 ()
+f(2" + 2% (y) + (2" = 1) (2" e+ 2"y + 2o (a) + 2" o (y))
= 2[f(2"x) + (2" = 1) f(2" 'z + 2" o ()]
- 2[f(2" )+ (2" = 1) 2"y + 2" o (y))]]
< Jom S IF(@2 4 27) + £(27 4 20 (y)) — 2(2) — 2£(2")|
( n

1
+ 22n> If2" e+ 2"y + 27 () + 27 o (y))

+ (2 e+ 2"y + 27 o () + 27 o (y) — 2£ (2" e 4+ 27 o (a)
—2f(2" 'y +2""o(y))|l
5 (2" —1)8
— 22n 22n
0
= 27

+
+

By letting n — 400, we get the desired result.

To prove that (2.2) holds true, we take the limit as n — +o0 in (2.6) and,
similarly as above, we derive the result.

Assume now that there exist two functions ¢; : G — FE (i = 1,2) that are
solutions of (1.1) with || f(x) — ¢;(x)|| < % for all x € G.

First, we will prove by mathematical induction that

a(2"x) + (2" — Dg; (2" 'z + 2" Lo (2)) = 2% ¢ (). (2.8)
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Setting y = x in relation (1.1), we obtain (2.8) for n = 1. Suppose (2.8)
true for n and we will prove it for n + 1. Hence, we have

qi(2" ) + (2" — 1)gi(2"x + 270 (2))

= ¢i(2""'2) + ¢;(2"x + 270 (2)) — 4¢:i(2")
+2(2" — 1)q; (2" + 2" () — 4(2" — 1) (2" Lz + 2" Lo (z))
+4q;(2"x) + 42" — 1) qi(2" tr + 2" o (1))

=q(2"x 4+ 2"x) + ¢;(2"x + 2"0(x)) — 4¢;(2"x)
+ (2" = D]g (2" ' + 2" o (2) + 2" e 4+ 2" Lo ()
+ (2" e+ 2" o () + 2" e+ 2" o (a)
— 4qi(2"71$ + 2”710(@)]
+4[gi(2"x) + (2" — Dgi(2" a + 2" o())]

=040+ 22 g, ()

= 220 g (2).

is

Therefore, relation (2.8) is true for any natural number n. We will prove the

uniqueness of the mapping ¢. For all x € G and all n € N, we have

a1 (@) - ax(a)]
= (2% + 27 - D@+ 27 o(@) - @(2")
— (2" = D)2tz + 2" o (2))||
< grlla@e) — FED)] + (@~ D@ + 2o (x)
F@ e+ 2 (@)
+oellle@) — £+ (27— Dllgp(2 e + 270 (a)
—F@ e+ 2 (@)

If we let n — 400, we get ¢1(x) = g2(z) for all z € G. This completes the

proof of the theorem.

O
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3. STABILITY OF EQUATION (1.1) wWITH (p < 1)

In the present section, we give a generalization of Skof’s, Czerwik’s and
Rassias’s results for the functional equation (1.1).

Theorem 3.1. Let G be a normed space and E a Banach space. If a function
f G — E satisfies the inequality

If(z+y) + [z +0o(y) = 2f(x) = 2f ()| < 0" + ly[”) (3.1)

for some 8 >0, p <1 and for all x,y € G, then there exists a unique mapping
q:G — E, defined by

f@2rz)+ (2" = 1) f2" 'z + 2" o(x))
22n

q(z) = lim

n—-—+00
that is a solution of the quadratic functional equation (1.1) and

0

1£(2) - @) < 5

{ll=l” + %Hﬂc +o(@)|’}, zed. (3.2)
Proof. Letting x =y in (3.1) yields
1£22) + f(o + o)) ~ 47 (@)] < 20]a]” (33
Replacing now = and y by 2z, respectively by = + o(z) in (3.1), we get
£ (42) + f(22 + 20(2)) — 4f (22)]| < 2°716)|||P, (3.4)
respectively
12f (22 + 20 (x)) — 4f (z + o (2))|| < 20[|x + o (2)]]". (3.5)
Now, by applying the inductive argument, we obtain
1/ () — 2%{f(?"ﬂf) +(2" =) f2 e+ 2" o(2)) | (3.6)
< ngHp[l +2p72 4 92(0=2) 44 o(n=D(r=2))

+ @+ o(z)||P[2P~2 4 (3)220P=2) 4 (7)28(=2)

9p+1
+ (2" — 1)20 D=2,

The property for n = 1 follows from that inequality (3.3). For n = 2, we get
from (3.3), (3.4) and (3.5) that
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IF@) ~ 2 LF(42) + 352z + 20 ()}

< Ellf(‘lfﬂ) + f(22 + 20(x)) — 4 (2)|| + %6||2f(21‘ +20(z)) —4f(z +o(z))]

i E"zlf(zr) + 4f(x + o(x)) — 16f ()]

2rtlg 4(26
< Tl a4 2 Hx+ o) [P+ 22 ) e

- 16
4 p p—2
= SllelP(+27%) +

lz + o () [[727~2.

2P+ 1

Assume now that (3.6) holds for n and we shall prove it for the case n + 1.
We have

1/ () = iﬂ {f@2" ) + (2" = 1) f(2" + 2" (2))}|

1

< Wllf@"“x) + f(2"z + 20 (z)) — Af (2"2)|

+ ﬁ\\‘lf(?”w) +4(2" = 1) f(2" e+ 27 o (2)) — 22D £ ()|
+ 3 iﬂ 122" — 1) f(2" + 2"a(2)) — 4(2" — 1) f(2" 'z + 2" Lo (@)
1 n
< 22( s 2012 P

+ §||$Hp(1 42P72 4 92(0=2) 4 o(n=D(p2))
0
+ ol +o(@)I(272 + (3)22(’”‘2) + (1) 230D 4
27’L

b (2n1 - 1) D-2)) 4 s 29||2” Lo+ 2" o ()P

= ngHp(l +2p72 4 92(0=2) o 4 9()(P=2))

+ sprrllz + o(x)|[P(2P72 + (3)22(P=2) 4 (7)23=2) 4 (2" — 1)2(M (P2,

which proves the validity of inequality (3.6).
Let us define

N n __ n—lm n—lo. T
qn(x):f@ )+ (2 1);(3 +2" o(2))
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for any positive integer n and € G. Then {¢,(x)} is a Cauchy sequence for
every z € G. In fact, by using (3.3), (3.4), (3.5) and (3.6) one has

g1 (2) = gn(2)]l

< a2 + 12"+ 20(2) — 4f(2)]
+ WHQ(Q" — 1) f(2" +2"0(z)) — 42" — D) f(2" tz + 2" o (2))||
< a2l + S 202 e+ 2 o () P
= 3D ol 4 o2~ 1)l + o))
= Iy L+ L E e o)
< S0 fal 4 o+ o))

Since 2P~! < 1, it follows that {g,(z)} is a Cauchy sequence for every z € G.
However, F is a complete normed space, thus there exists the limit function

q(x) = lim gu(x)

n—-s-—4o00

for any = € G.
Let z,y be any two points of G. From (3.1) it follows that

||qn(x +y) + an(z + 0(y)) = 2¢n(z) — 2gn(y)|
2% I f(2"z + 2"y) 4+ (2" — 1) f(2" ta + 2" Ly + 2" Lo () + 2" Lo (y))
+ f2"x + 2% (y)) + (2" — 1) f(2" Lz + 27ty + 2 Lo (2) + 2" Lo (y))
—2[f(2"z) + (2" — 1) f(2" tx + 2" o (a))]
- 2[f(2"y) +@2" =1 f(2" y+2" ()]l

< 22 [f(2"2 + 2"y) + f(2"z + 2"0(y)) — 2f (2"x) — 2f(2"y)|]

+ B e 4 21y 2o () 1 200 ()
A4 2y 2o () + 2o (y) 22 e 2o ()

—2f(2" 'y +2" o (y))|



256 B. Bouikhalene, E. Elqorachi and Th. M. Rassias

1
< oan 012" + [12"y]1")

— 922n
(277, — 1)0 2n—1 2n—1 P 2n—1 2n—1 p
+ g 012" 2 + 2" o ()| + |27y + 27 o ()]7)
oy 1 o —
=2" 1)9{27(H913H:"+ 19117) + <pan Uz + o @) + lly + o () [)}

_ 1
< 2" Do{|[z ]| + [lylIP + op Iz + @) +lly + o (y)lP)}-
By letting n — +o0 we get the equality

q(z +vy) +qlx +o(y)) = 2q(x) + 2q(y) for all z,y € G.

It remains to show that ¢ and f satisfy the inequality (3.2). By using (3.6),
we obtain

1 - .
IF (@) = @ {f@"2) + (2" = 1) f(2" e +2" o (z))}|
9
< glllP(+ P2 4 92=2) 4 4 on=D(p=2)y
0
+ o llz + o(z)|[P(2P2 + (3)2200~2) 4 (7)23—2) 4

+ (2n—1 _ 1)2(n—1)(p—2))

1 1 1
= ngHp(l + 207ty ?22(”_1) Foo 2= D=1

2 gn-1
0 1 3 7
p((Zyop—1 o (2)92(p—1) 4 (Ly93(p—1) .
+ grrlle + @2 + (12207 4 ()220 4
2n—1 -1 . _
+ (W)Q( DP=1)y

< QHpr(l 4op—1l 4 9200-1) 4 2(n—1)(p_1))
-2
0 B - B .
+ ﬁ”x +o(z)|P(2P ! + 92(p=1) 4 93(p—1) 4 4 o(n—1)(» 1))
0
<
- 2-2p

Uzl + Sl + o) 7).

Consequently, we obtain inequality (3.2). The uniqueness of the mapping ¢
can be proved by using a similar argument as in the precedent paragraph.
This completes the proof of the theorem. O

If we replace in Theorem 3.1 the mapping o by I, (resp. by —I), we obtain
immediately the following corollaries.
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Corollary 3.2. Let G be a normed space and E a Banach space. If a function
f: G — E satisfies the inequality

1z +y) = f(2) = FI < Ozl” + [ly[[") (3.7)

for some 8 >0, p <1 and for all x,y € G, then there exists a unique mapping
q:G— E, given by

qg(z) = lim f(2"x)

n—+too 2 ]

that is a solution of the additive functional equation (1.2) satisfying the in-
equality
0|][P(2 + 27)
_ < A= T2
IF () = (@)l = —F——,—
Corollary 3.3. Let G be a normed space and E a Banach space. If a function
f G — E satisfies the inequality

1f (& +y)+ fz—y) = 2f(x) = 2f ()] < O=[” + [[y]I*) (3.9)

for some 8 > 0, 0 < p < 1 and for all x,y € G, then there exists a unique
mapping q : G — E, given by

e q. (3.8)

g(x) = lim f(2"z)

n—+4oo 220

that is a solution of the quadratic functional equation (1.3) satisfying the in-
equality

0|
2 —2v’

[ f(z) — q(2)]| < (3.10)

forall x € G.

4. STABILITY OF EQUATION (1.1) WITH (p > 2)

In this section, we prove the generalized Hyers-Ulam stability of the func-
tional equation (1.1) with p > 2.

Theorem 4.1. Let G be a normed space and E a Banach space. Assume that
[+ G — E satisfies the inequality

[f(x+y) + f(z+aly) = 2f(x) = 2F W)l < 0z + [ly[|”) (4.1)

for some @ >0, p > 2 and for all x,y € G. Then there exists a unique mapping
q: G — E, given by

d@) = lm PACE) + (- DG + D)),

n—s 400 n
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that is a solution of the quadratic functional equation (1.1) such that

1f(z) = g(@)[| <

% 7 UlzllP + \W+0@Wﬂ,w60

(4.2)

Proof. Suppose that f satisfies inequality (4.1). Replacing z,y by 751, (resp.

by 5z + g,f—ﬁ), we easily obtain

20
)+ F s + P af (520 = g 2 17

o(x) o(x) 20

x
H 2f(2n+1 + 2n+1) o 4f(2n+2 + 2n+2) HS 2(n+2)p H T+ O‘(i’) Hp’

for all n € Ny.
Now, we will show by induction that

I @) =~ 2 () + (g~ DGy + 2 |

SgﬁHxHpUf%f‘p+2“}m)+n.+2m‘”Qﬂﬂ
20 1 1

1

b o) 1P [~ 5)+ (1= )27 4 (1= )27
b (1 2]
For n =1, we have
I @) -+ G - nr + 2Dy
2 2 4 4
<l Sy + 1+ 7Dy gy
Fl2rE 4 7)oy 79y
< S la P+ o) P
2w 120 )
= e I+~ D ftola) |

(4.3)

(4.4)

(4.5)
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which proves (4.5) for n = 1. Assume that (4.5) holds for n and = € G, and
we will prove it for n + 1. We obtain

I (@) = 200 1 (g~ D (g + D) |
< 1) = 2T () + (g~ D Gy + 2} |
n T 1 x o(x

P2 F(E) 4 (g~ DGy + D)

A + (g~ D (g + 2] |
<I )~ 2 () + (g~ D Gy + 2} |

P2 F(2) + ey + ) af () |

T o(x) 1 x o(z)

2
+27 | (2n+1 -1 f(2n+1 + 2n+1) - (2n+1 - )f(W+W) |

2
< 27? | ||P[1+2%P+ 22(2-p) L 4 2(n—1)(2—p)]

b2 ato@) P (- 5+ (1= )27 4 (1= )22 4

+(1— 2in)g(n—l)@—p)]

pn B P 42— )2l o) )
o e S P L)

22 ot 0 -y am e Lypen o

+(1- ﬁ)z’%@—p)],

which proves the validity of the inequality (4.5).
Let us denote by ¢, (z) the sequence of functions defined by

1 x o(z)

an(@) = 22 f(5) + (55 = Vf Grpr + i) (4.6)

for x € G and n € N. We will show that {¢,(x)} is a Cauchy sequence for
every x € G.
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For n € N, we obtain by (4.3) and (4.4) that

| gnt1(2) = gn(z) |

=2 [ 4lf () + (e — D s + 52
x 1 x o(x)

~ G + o = D G + et |

<2 | () 4 gy + 2 —ap() |

o 1 o
et~ D2 (ot + ) ~ Al ~ D (s + ) |

+27 | (

(o 20 1y 20
<PEP o P (1 - 2P ot oa) |7

< on(2-p)20

1
<2CPZY 5 |P 4o |+ (@) P,

Since 227P) < 1, the desired conclusion follows. However, E is a Banach
space, thus we can define

g(z) = lim gn(x) (4.7)

n—--—+00

for any x € G. We will show that ¢ is a solution of equation (1.1). Let us
consider z,y € G. Then

H Qn(x'+'y)'+'Qn(x'+'U(y))'_ QQn(x)'_'QQn<y)|

=2 | (4 L) (- DA+ g+ 204 7))

on/ T hgn gn+l T gndl T gn+l T ondl
1+ ) 4 (=~ D + i + e + 3
S2f(E) 4 (g~ DGy + D)
2L+ (o~ DG + 2|
<2 | (4 Ly (a4 T ap(Ey —ap(L) |

1 T y o(z) | o(y)
2
+2°"(1 — 27) | f(2n+1 T ot T ongt T 2n+1)

x y o) o)
+ f(2n+1 + on+1 + on+1 + 2n+1)_2f(

T ap( L+ 2 |

+ on+1 on+1 + on+1

x
2n+1

<O 2|+ |y 7 455 | 2+ 0(@) P +55 v+ o) IP)
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This implies that ¢ is a solution of equation (1.1). The uniqueness of ¢ can
be derived by using some computations similar to the ones of the proof of
Theorem 2.1. Some computations used in page 9 and inequality (4.5) imply
(4.2). This ends the proof of Theorem 4.1. O

Corollary 4.2. Let G be a normed space and E a Banach space. Assume
that f : G — F satisfies the inequality

1z +y) = f(2) = FI < O=l” + [ly[[") (4.8)

for some @ >0, p > 2 and for all z,y € G. Then there exists a unique mapping
q: G — E, given by

ale) = lm 2{f()}

that is a solution of the additive functional equation (1.2), such that

1£(2) - (@) < 57—

Corollary 4.3. Let G be a normed space and E a Banach space. Assume
that f : G — FE satisfies the inequality

1f(x+y)+ fz —y) = 2f(x) = 2f ()] < O=[” + lly]I*) (4.10)

for some @ >0, p > 2 and for all x,y € G. Then there exists a unique mapping
q: G — E, given by

|z|?, = € G. (4.9)

ql@) = lim 2% ()

n—-+0o0
that is a solution of the quadratic functional equation (1.3) with
20
- <
17() — (@)l < 5oy

It is a natural and interesting problem to study the stability of equation
(1.1), when p €]1,2].

|z|?, = € G. (4.11)
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