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Abstract. In this paper we prove the generalized Hyers-Ulam stability of the quadratic
functional equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ G,

where σ is an involution of the normed space G.

1. Introduction

In [16] Ulam proposed the following stability problem: Under what con-
ditions does there exist an additive mapping near an approximately additive
mapping?

The first partial solution to Ulam’s problem was given by Hyers in [4]: If
f : E1 −→ E2 is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ δ,
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for all x, y ∈ E1, where E1 and E2 are Banach spaces and δ is a given positive
number, then there exists a unique additive mapping T : E1 −→ E2 such that

‖f(x)− T (x)‖ ≤ δ,

for all x ∈ E1. The proof of this result follows the same spirit if E1 is an
abelian semigroup.
In 1978, a generalization of Hyers’ Theorem was formulated and proved by
Rassias [9] in the setting when E1 is a normed space, E2 is a Banach space
and the Cauchy difference is allowed to be unbounded.

Theorem 1.1. Let f : E1 −→ E2 be a mapping such that f(tx) is continuous
in t for each fixed x. Assume that there exist θ ≥ 0 and p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ E1 (for all x, y ∈ E1 \ {0} if p < 0). Then there exists a unique
linear mapping T : E1 −→ E2 such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ E1 (for all x ∈ E1 \ {0} if p < 0).

Rassias during the 27th International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for p ≥ 1.
Gajda [3] following the same approach as in Rassias [9], gave an affirmative
solution to Rassias’question for p > 1. It was showed by Gajda [3] as well as
by Rassias and Semrl [12] that a similar Theorem in the spirit of Theorem 1.1
for the case p = 1 cannot be proved.

Stability problems of various functional equations have been extensively
investigated by a number of authors. The terminology Hyers-Ulam-Rassias
stability originates from these historical backgrounds. For more detailed def-
initions and further developments of stability concepts one is referred to [2],
[6], [8], [11], [13], [14].

In this paper we prove the stability of the quadratic functional equation

f(x + y) + f(x + σ(y)) = 2f(x) + 2f(y), x, y ∈ G, (1.1)

where σ: G −→ G is an involution of G, i.e., σ(x + y) = σ(x) + σ(y) and
σ(σ(x)) = x for all x, y ∈ G.

The functional equation

f(x + y) = f(x) + f(y), x, y ∈ G, (1.2)

corresponds to σ = I, and the functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ G, (1.3)
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corresponds to σ = −I. Reflection in a subspace of Rn provides a third
example. Some other examples are the transpose involution and the symmetric
involution in the additive group of 2× 2 matrices.

The quadratic equation (1.1) has been solved by Stetkær [15].
The stability problem for the quadratic equation (1.3) was proved firstly by

Skof in [14]. In [1] Cholewa extended the Skof’s result in the following way,
where G is an abelian group and E is a Banach space.

Theorem 1.2. Let η > 0 be a real number and f : G −→ E satisfies the
inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ η for all x, y ∈ G. (1.4)

Then for every x ∈ G the limit q(x) = limn−→+∞
f(2nx)

22n exists and q : G −→ E
is the unique solution of (1.3) satisfying

‖f(x)− q(x)‖ ≤ η

2
, x ∈ G. (1.5)

In [2] Czerwik obtained a generalization of the Skof-Cholewa’s result.

Theorem 1.3. Let p 6= 2, θ > 0, δ > 0 be real numbers. Suppose that the
function f : E1 −→ E2 satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ + θ(‖x‖p + ‖y‖p) for all x, y ∈ E1.

Then there exists exactly one quadratic function q : E1 −→ E2 such that

‖f(x)− q(x)‖ ≤ c + kθ‖x‖p

for all x ∈ E1 if p ≥ 0 and for all x ∈ E1 \ {0} if p ≤ 0, where
c = ‖f(0)‖

3 , k = 2
4−2p and q(x) = limn−→+∞

f(2nx)
4n , for p < 2 as well as,

c = 0, k = 2
2p−4 and q(x) = limn−→+∞ 4nf(2−nx), for p > 2.

In dealing with a general involution σ of G one provides first of all a unified
study for the stability of equations (1.2) and (1.3) and secondly a generalization
of both of these equations. In particular, one wants to see how the involution
σ enter into the approximative solutions formulas.

2. Hyers-Ulam stability of equation(1.1)

In this section we investigate the Hyers-Ulam stability for the equation (1.1).
This generalizes the result obtained for σ = I and σ = −I.

Theorem 2.1. Let G be an abelian group, E a Banach space and f : G −→ E
a mapping which satisfies the inequality

‖ f(x + y) + f(x + σ(y))− 2f(x)− 2f(y) ‖≤ δ for all x, y ∈ G (2.1)
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for some δ > 0. Then there exists a unique mapping q: G −→ E such that

q(x) = lim
n−→+∞

1
22n

{f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))}

is a solution of the quadratic functional equation (1.1) satisfying

‖f(x)− q(x)‖ ≤ δ

2
for all x ∈ G. (2.2)

Proof. By letting x = y = u, respectively x = y = u + σ(u) in (2.1) we obtain

‖f(2u) + f(u + σ(u))− 4f(u)‖ ≤ δ (2.3)

and

‖2f(2u + 2σ(u))− 4f(u + σ(u))‖ ≤ δ. (2.4)

Setting x = y in (2.1) yields

‖f(x)− 1
4
{f(2x) + f(x + σ(x))}‖ ≤ δ

4
for all x ∈ G. (2.5)

Applying the inductive assumption we obtain

‖f(x)− 1
22n

{f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))}‖ ≤ δ

2
(1− 1

2n
} (2.6)

for some positive integer n.
From (2.5) it follows that (2.6) is true for n = 1. The inductive step must now
be demonstrated to hold true for the integer n + 1, that is

‖f(x)− 1
22(n+1)

{f(2n+1x) + (2n+1 − 1)f(2nx + 2nσ(x))}‖

≤ 1
22(n+1)

‖f(2n+1x) + f(2nx + 2nσ(x))− 4f(2nx)‖

+
1

22(n+1)
‖2(2n − 1)f(2nx + 2nσ(x))− 4(2n − 1)f(2n−1x + 2n−1σ(x))‖

+
1

22(n+1)
‖4f(2nx) + 4(2n − 1)f(2n−1x + 2n−1σ(x))− 22(n+1)f(x)‖

≤ δ

22(n+1)
+

(2n − 1)δ
22(n+1)

+
δ

2
(1− 1

2n
) =

δ

2
(1− 1

2n+1
).

This proves the validity of the inequality (2.6).
Let us define

qn(x) =
1

22n
{f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))} (2.7)
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for any positive integer n and x ∈ G. Then {qn(x)} is a Cauchy sequence for
every x ∈ G. In fact by using (2.6), (2.7), (2.4) and (2.3), we get

‖qn+1(x)− qn(x)‖
≤ 1

22(n+1)
‖f(2n+1x) + f(2nx + 2nσ(x))− 4f(2nx)‖

+
1

22(n+1)
‖2(2n − 1)f(2nx + 2nσ(x))− 4(2n − 1)f(2n−1x + 2n−1σ(x))‖

≤ δ

22(n+1)
+

(2n − 1)δ
22(n+1)

=
δ

4
(
1
2
)n.

It easily follows that {qn(x)} is a Cauchy sequence for all x ∈ G. Since E is
complete, we can define q(x) = limn−→+∞ qn(x) for any x ∈ G and one can
verify that q is a solution of (1.1). For all x, y ∈ G we have

‖qn(x + y) + qn(x + σ(y))− 2qn(x)− 2qn(y)‖
=

1
22n

‖f(2nx + 2ny) + (2n − 1)f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

+ f(2nx + 2nσ(y)) + (2n − 1)f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

− 2[f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))]

− 2[f(2ny) + (2n − 1)f(2n−1y + 2n−1σ(y))]‖
≤ 1

22n
‖f(2nx + 2ny) + f(2nx + 2nσ(y))− 2f(2nx)− 2f(2ny)‖

+
(2n − 1)

22n
‖f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

+ f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))− 2f(2n−1x + 2n−1σ(x))

− 2f(2n−1y + 2n−1σ(y))‖

≤ δ

22n
+

(2n − 1)δ
22n

=
δ

2n
.

By letting n −→ +∞, we get the desired result.
To prove that (2.2) holds true, we take the limit as n −→ +∞ in (2.6) and,
similarly as above, we derive the result.
Assume now that there exist two functions qi : G −→ E (i = 1, 2) that are
solutions of (1.1) with ‖f(x)− qi(x)‖ ≤ δ

2 for all x ∈ G.
First, we will prove by mathematical induction that

qi(2nx) + (2n − 1)qi(2n−1x + 2n−1σ(x)) = 22nqi(x). (2.8)
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Setting y = x in relation (1.1), we obtain (2.8) for n = 1. Suppose (2.8) is
true for n and we will prove it for n + 1. Hence, we have

qi(2n+1x) + (2n+1 − 1)qi(2nx + 2nσ(x))

= qi(2n+1x) + qi(2nx + 2nσ(x))− 4qi(2nx)

+ 2(2n − 1)qi(2nx + 2nσ(x))− 4(2n − 1)qi(2n−1x + 2n−1σ(x))

+ 4qi(2nx) + 4(2n − 1)qi(2n−1x + 2n−1σ(x))

= qi(2nx + 2nx) + qi(2nx + 2nσ(x))− 4qi(2nx)

+ (2n − 1)[qi(2n−1x + 2n−1σ(x) + 2n−1x + 2n−1σ(x))

+ qi(2n−1x + 2n−1σ(x) + 2n−1x + 2n−1σ(x))

− 4qi(2n−1x + 2n−1σ(x))]

+ 4[qi(2nx) + (2n − 1)qi(2n−1x + 2n−1σ(x))]

= 0 + 0 + 22(n+1)qi(x)

= 22(n+1)qi(x).

Therefore, relation (2.8) is true for any natural number n. We will prove the
uniqueness of the mapping q. For all x ∈ G and all n ∈ N, we have

‖q1(x)− q2(x)‖
=

1
22n

‖q1(2nx) + (2n − 1)q1(2n−1x + 2n−1σ(x))− q2(2nx)

− (2n − 1)q2(2n−1x + 2n−1σ(x))‖
≤ 1

22n
[‖q1(2nx)− f(2nx)‖+ (2n − 1)‖q1(2n−1x + 2n−1σ(x))

− f(2n−1x + 2n−1σ(x))‖]
+

1
22n

[‖q2(2nx)− f(2nx)‖+ (2n − 1)‖q2(2n−1x + 2n−1σ(x))

− f(2n−1x + 2n−1σ(x))‖]

≤ 1
22n

[
δ

2
+

δ

2
+

δ(2n − 1)
2

+
δ(2n − 1)

2
]

=
δ

2n
.

If we let n −→ +∞, we get q1(x) = q2(x) for all x ∈ G. This completes the
proof of the theorem. ¤
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3. Stability of equation (1.1) with (p < 1)

In the present section, we give a generalization of Skof’s, Czerwik’s and
Rassias’s results for the functional equation (1.1).

Theorem 3.1. Let G be a normed space and E a Banach space. If a function
f : G −→ E satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (3.1)

for some θ ≥ 0, p < 1 and for all x, y ∈ G, then there exists a unique mapping
q : G −→ E, defined by

q(x) = lim
n−→+∞

f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))
22n

that is a solution of the quadratic functional equation (1.1) and

‖f(x)− q(x)‖ ≤ θ

2− 2p
{‖x‖p +

1
2
‖x + σ(x)‖p}, x ∈ G. (3.2)

Proof. Letting x = y in (3.1) yields

‖f(2x) + f(x + σ(x))− 4f(x)‖ ≤ 2θ‖x‖p. (3.3)

Replacing now x and y by 2x, respectively by x + σ(x) in (3.1), we get

‖f(4x) + f(2x + 2σ(x))− 4f(2x)‖ ≤ 2p+1θ‖x‖p, (3.4)

respectively

‖2f(2x + 2σ(x))− 4f(x + σ(x))‖ ≤ 2θ‖x + σ(x)‖p. (3.5)

Now, by applying the inductive argument, we obtain

‖f(x)− 1
22n

{f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))}‖ (3.6)

≤ θ

2
‖x‖p[1 + 2p−2 + 22(p−2) + .... + 2(n−1)(p−2)]

+
θ

2p+1
‖x + σ(x)‖p[2p−2 + (3)22(p−2) + (7)23(p−2) + ....

+ (2n−1 − 1)2(n−1)(p−2)].

The property for n = 1 follows from that inequality (3.3). For n = 2, we get
from (3.3), (3.4) and (3.5) that
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‖f(x)− 1
16
{f(4x) + 3f(2x + 2σ(x))}‖

≤ 1
16
‖f(4x) + f(2x + 2σ(x))− 4f(2x)‖+

1
16
‖2f(2x + 2σ(x))− 4f(x + σ(x))‖

+
1
16
‖4f(2x) + 4f(x + σ(x))− 16f(x)‖

≤ 2p+1θ

16
‖ x ‖p +

2θ

16
‖ x + σ(x) ‖p +

4(2θ)
16

‖ x ‖p

=
θ

2
‖x‖p(1 + 2p−2) +

θ

2p+1
‖x + σ(x)‖p2p−2.

Assume now that (3.6) holds for n and we shall prove it for the case n + 1.
We have

‖f(x)− 1
22(n+1)

{f(2n+1x) + (2n+1 − 1)f(2nx + 2nσ(x))}‖

≤ 1
22(n+1)

‖f(2n+1x) + f(2nx + 2nσ(x))− 4f(2nx)‖

+
1

22(n+1)
‖4f(2nx) + 4(2n − 1)f(2n−1x + 2n−1σ(x))− 22(n+1)f(x)‖

+
1

22(n+1)
‖2(2n − 1)f(2nx + 2nσ(x))− 4(2n − 1)f(2n−1x + 2n−1σ(x))‖

≤ 1
22(n+1)

2θ‖2nx‖p

+
θ

2
‖x‖p(1 + 2p−2 + 22(p−2) + .... + 2(n−1)(p−2))

+
θ

2p+1
‖x + σ(x)‖p(2p−2 + (3)22(p−2) + (7)23(p−2) + ....

+ (2n−1 − 1)2(n−1)(p−2)) +
2n − 1
22(n+1)

2θ‖2n−1x + 2n−1σ(x)‖p

=
θ

2
‖x‖p(1 + 2p−2 + 22(p−2) + .... + 2(n)(p−2))

+
θ

2p+1
‖x + σ(x)‖p(2p−2 + (3)22(p−2) + (7)23(p−2) + .... + (2n − 1)2(n)(p−2)),

which proves the validity of inequality (3.6).
Let us define

qn(x) =
f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))

22n
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for any positive integer n and x ∈ G. Then {qn(x)} is a Cauchy sequence for
every x ∈ G. In fact, by using (3.3), (3.4), (3.5) and (3.6) one has

‖qn+1(x)− qn(x)‖
≤ 1

22(n+1)
‖f(2n+1x) + f(2nx + 2nσ(x))− 4f(2nx)‖

+
1

22(n+1)
‖2(2n − 1)f(2nx + 2nσ(x))− 4(2n − 1)f(2n−1x + 2n−1σ(x))‖

≤ 1
22(n+1)

2θ‖2nx‖p +
2n − 1
22(n+1)

2θ‖2n−1x + 2n−1σ(x)‖p

=
θ

2
2n(p−2)(‖x‖p +

1
2p

(2n − 1)‖x + σ(x)‖p)

=
θ

2
2n(p−1)(

1
2n
‖x‖p +

1
2p

(2n − 1)
2n

‖x + σ(x)‖p)

≤ θ

2
2n(p−1)(‖x‖p +

1
2p
‖x + σ(x)‖p).

Since 2p−1 < 1, it follows that {qn(x)} is a Cauchy sequence for every x ∈ G.
However, E is a complete normed space, thus there exists the limit function

q(x) = lim
n−→+∞ qn(x)

for any x ∈ G.
Let x, y be any two points of G. From (3.1) it follows that

‖qn(x + y) + qn(x + σ(y))− 2qn(x)− 2qn(y)‖
=

1
22n

‖f(2nx + 2ny) + (2n − 1)f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

+ f(2nx + 2nσ(y)) + (2n − 1)f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

− 2[f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))]

− 2[f(2ny) + (2n − 1)f(2n−1y + 2n−1σ(y))]‖
≤ 1

22n
‖f(2nx + 2ny) + f(2nx + 2nσ(y))− 2f(2nx)− 2f(2ny)‖

+
(2n − 1)

22n
‖f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))

+ f(2n−1x + 2n−1y + 2n−1σ(x) + 2n−1σ(y))− 2f(2n−1x + 2n−1σ(x))

− 2f(2n−1y + 2n−1σ(y))‖
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≤ 1
22n

θ(‖2nx‖p + ‖2ny‖p)

+
(2n − 1)

22n
θ(‖2n−1x + 2n−1σ(x)‖p + ‖2n−1y + 2n−1σ(y)‖p)

= 2n(p−1)θ{ 1
2n

(‖x‖p + ‖y‖p) +
2n − 1
2p2n

(‖x + σ(x)‖p + ‖y + σ(y)‖p)}

≤ 2n(p−1)θ{‖x‖p + ‖y‖p +
1
2p

(‖x + σ(x)‖p + ‖y + σ(y)‖p)}.

By letting n −→ +∞ we get the equality

q(x + y) + q(x + σ(y)) = 2q(x) + 2q(y) for all x, y ∈ G.

It remains to show that q and f satisfy the inequality (3.2). By using (3.6),
we obtain

‖f(x)− 1
4n
{f(2nx) + (2n − 1)f(2n−1x + 2n−1σ(x))}‖

≤ θ

2
‖x‖p(1 + 2p−2 + 22(p−2) + .... + 2(n−1)(p−2))

+
θ

2p+1
‖x + σ(x)‖p(2p−2 + (3)22(p−2) + (7)23(p−2) + ....

+ (2n−1 − 1)2(n−1)(p−2))

=
θ

2
‖x‖p(1 +

1
2
2p−1 +

1
22

22(p−1) + .... +
1

2n−1
2(n−1)(p−1))

+
θ

2p+1
‖x + σ(x)‖p((

1
2
)2p−1 + (

3
4
)22(p−1) + (

7
8
)23(p−1) + ....

+ (
2n−1 − 1

2n−1
)2(n−1)(p−1))

≤ θ

2
‖x‖p(1 + 2p−1 + 22(p−1) + .... + 2(n−1)(p−1))

+
θ

2p+1
‖x + σ(x)‖p(2p−1 + 22(p−1) + 23(p−1) + .... + 2(n−1)(p−1))

≤ θ

2− 2p
{‖x‖p +

1
2
‖x + σ(x)‖p}.

Consequently, we obtain inequality (3.2). The uniqueness of the mapping q
can be proved by using a similar argument as in the precedent paragraph.
This completes the proof of the theorem. ¤

If we replace in Theorem 3.1 the mapping σ by I, (resp. by −I), we obtain
immediately the following corollaries.
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Corollary 3.2. Let G be a normed space and E a Banach space. If a function
f : G −→ E satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (3.7)

for some θ ≥ 0, p < 1 and for all x, y ∈ G, then there exists a unique mapping
q : G −→ E, given by

q(x) = lim
n−→+∞

f(2nx)
2n

,

that is a solution of the additive functional equation (1.2) satisfying the in-
equality

‖f(x)− q(x)‖ ≤ θ‖x‖p(2 + 2p)
2− 2p

, x ∈ G. (3.8)

Corollary 3.3. Let G be a normed space and E a Banach space. If a function
f : G −→ E satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (3.9)

for some θ ≥ 0, 0 < p < 1 and for all x, y ∈ G, then there exists a unique
mapping q : G −→ E, given by

q(x) = lim
n−→+∞

f(2nx)
22n

,

that is a solution of the quadratic functional equation (1.3) satisfying the in-
equality

‖f(x)− q(x)‖ ≤ θ‖x‖p

2− 2p
, (3.10)

for all x ∈ G.

4. Stability of equation (1.1) with (p > 2)

In this section, we prove the generalized Hyers-Ulam stability of the func-
tional equation (1.1) with p > 2.

Theorem 4.1. Let G be a normed space and E a Banach space. Assume that
f : G −→ E satisfies the inequality

‖f(x + y) + f(x + σ(y))− 2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (4.1)

for some θ ≥ 0, p > 2 and for all x, y ∈ G. Then there exists a unique mapping
q : G −→ E, given by

q(x) = lim
n−→+∞ 22n{f(

x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)},
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that is a solution of the quadratic functional equation (1.1) such that

‖f(x)− q(x)‖ ≤ 2θ

2p − 4
{‖x‖p +

1
2p
‖x + σ(x)‖p}, x ∈ G. (4.2)

Proof. Suppose that f satisfies inequality (4.1). Replacing x, y by x
2n+1 , (resp.

by x
2n+2 + σ(x)

2n+2 ), we easily obtain

‖ f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 4f(
x

2n+1
) ‖≤ 2θ

2(n+1)p
‖ x ‖p, (4.3)

‖ 2f(
x

2n+1
+

σ(x)
2n+1

)− 4f(
x

2n+2
+

σ(x)
2n+2

) ‖≤ 2θ

2(n+2)p
‖ x + σ(x) ‖p, (4.4)

for all n ∈ N0.
Now, we will show by induction that

‖ f(x)− 22n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)} ‖

≤ 2θ

2p
‖ x ‖p [1 + 22−p + 22(2−p) + ... + 2(n−1)(2−p)]

+
2θ

22p
‖ x + σ(x) ‖p [(1− 1

2
) + (1− 1

22
)22−p + (1− 1

23
)22(2−p) (4.5)

+ ... + (1− 1
2n

)2(n−1)(2−p)].

For n = 1, we have

‖ f(x)− 4[f(
x

2
) + (

1
2
− 1)f(

x

4
+

σ(x)
4

)] ‖

≤‖ f(x) + f(
x

2
+

σ(x)
2

)− 4f(
x

2
) ‖

+ ‖ 2f(
x

4
+

σ(x)
4

)− f(
x

2
+

σ(x)
2

) ‖

≤ 2θ

2p
‖ x ‖p +

θ

22p
‖ x + σ(x) ‖p

=
2θ

2p
‖ x ‖p +(1− 1

2
)
2θ

22p
‖ x + σ(x) ‖p
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which proves (4.5) for n = 1. Assume that (4.5) holds for n and x ∈ G, and
we will prove it for n + 1. We obtain

‖ f(x)− 22(n+1){f(
x

2n+1
) + (

1
2n+1

− 1)f(
x

2n+2
+

σ(x)
2n+2

)} ‖

≤‖ f(x)− 22n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)} ‖

+ 22n ‖ f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)

− 4[f(
x

2n+1
) + (

1
2n+1

− 1)f(
x

2n+2
+

σ(x)
2n+2

)] ‖

≤‖ f(x)− 22n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)} ‖

+ 22n ‖ f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 4f(
x

2n+1
) ‖

+ 22n ‖ (
1

2n+1
− 1)2f(

x

2n+1
+

σ(x)
2n+1

)− 4(
1

2n+1
− 1)f(

x

2n+2
+

σ(x)
2n+2

) ‖

≤ 2θ

2p
‖ x ‖p [1 + 22−p + 22(2−p) + ... + 2(n−1)(2−p)]

+
2θ

22p
‖ x + σ(x) ‖p [(1− 1

2
) + (1− 1

22
)22−p + (1− 1

23
)22(2−p) + ...

+ (1− 1
2n

)2(n−1)(2−p)]

+ 22n 2θ

2(n+1)p
‖ x ‖p +22n(1− 1

2n+1
)

2θ

2(n+2)p
[‖ x + σ(x) ‖p]

=
2θ

2p
‖ x ‖p [1 + 22−p + 22(2−p) + ... + 2n(2−p)]

+
2θ

22p
‖ x + σ(x) ‖p [(1− 1

2
) + (1− 1

22
)22−p + (1− 1

23
)22(2−p) + ...

+ (1− 1
2n+1

)2n(2−p)],

which proves the validity of the inequality (4.5).
Let us denote by qn(x) the sequence of functions defined by

qn(x) = 22n{f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)}, (4.6)

for x ∈ G and n ∈ N. We will show that {qn(x)} is a Cauchy sequence for
every x ∈ G.
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For n ∈ N, we obtain by (4.3) and (4.4) that

‖ qn+1(x)− qn(x) ‖

= 22n ‖ 4[f(
x

2n+1
) + (

1
2n+1

− 1)f(
x

2n+2
+

σ(x)
2n+2

)]

− [f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)] ‖

≤ 22n ‖ f(
x

2n
) + f(

x

2n+1
+

σ(x)
2n+1

)− 4f(
x

2n+1
) ‖

+ 22n ‖ (
1

2n+1
− 1)2f(

x

2n+1
+

σ(x)
2n+1

)− 4(
1

2n+1
− 1)f(

x

2n+2
+

σ(x)
2n+2

) ‖

≤ 2n(2−p) 2θ

2p
‖ x ‖p +(1− 1

2n+1
)2n(2−p) 2θ

22p
‖ x + σ(x) ‖p

≤ 2n(2−p) 2θ

2p
[‖ x ‖p +

1
2p
‖ x + σ(x) ‖p].

Since 2(2−p) < 1, the desired conclusion follows. However, E is a Banach
space, thus we can define

q(x) = lim
n−→+∞ qn(x) (4.7)

for any x ∈ G. We will show that q is a solution of equation (1.1). Let us
consider x, y ∈ G. Then

‖ qn(x + y) + qn(x + σ(y))− 2qn(x)− 2qn(y) ‖

= 22n ‖ f(
x

2n
+

y

2n
) + (

1
2n
− 1)f(

x

2n+1
+

y

2n+1
+

σ(x)
2n+1

+
σ(y)
2n+1

)

+ f(
x

2n
+

σ(y)
2n

) + (
1
2n
− 1)f(

x

2n+1
+

y

2n+1
+

σ(x)
2n+1

+
σ(y)
2n+1

)

− 2[f(
x

2n
) + (

1
2n
− 1)f(

x

2n+1
+

σ(x)
2n+1

)]

− 2[f(
y

2n
) + (

1
2n
− 1)f(

y

2n+1
+

σ(y)
2n+1

)] ‖

≤ 22n ‖ f(
x

2n
+

y

2n
) + f(

x

2n
+

σ(y)
2n

)− 2f(
x

2n
)− 2f(

y

2n
) ‖

+ 22n(1− 1
2n

) ‖ f(
x

2n+1
+

y

2n+1
+

σ(x)
2n+1

+
σ(y)
2n+1

)

+ f(
x

2n+1
+

y

2n+1
+

σ(x)
2n+1

+
σ(y)
2n+1

)−2f(
x

2n+1
+

σ(x)
2n+1

)−2f(
y

2n+1
+

σ(y)
2n+1

) ‖

≤ θ2n(2−p)[‖ x ‖p + ‖ y ‖p +
1
2p
‖ x + σ(x) ‖p +

1
2p
‖ y + σ(y) ‖p].
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This implies that q is a solution of equation (1.1). The uniqueness of q can
be derived by using some computations similar to the ones of the proof of
Theorem 2.1. Some computations used in page 9 and inequality (4.5) imply
(4.2). This ends the proof of Theorem 4.1. ¤

Corollary 4.2. Let G be a normed space and E a Banach space. Assume
that f : G −→ E satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (4.8)

for some θ ≥ 0, p > 2 and for all x, y ∈ G. Then there exists a unique mapping
q : G −→ E, given by

q(x) = lim
n−→+∞ 2n{f(

x

2n
)}

that is a solution of the additive functional equation (1.2), such that

‖f(x)− q(x)‖ ≤ 8θ

2p − 4
‖x‖p, x ∈ G. (4.9)

Corollary 4.3. Let G be a normed space and E a Banach space. Assume
that f : G −→ E satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (4.10)

for some θ ≥ 0, p > 2 and for all x, y ∈ G. Then there exists a unique mapping
q : G −→ E, given by

q(x) = lim
n−→+∞ 22nf(

x

2n
)

that is a solution of the quadratic functional equation (1.3) with

‖f(x)− q(x)‖ ≤ 2θ

2p − 4
‖x‖p, x ∈ G. (4.11)

It is a natural and interesting problem to study the stability of equation
(1.1), when p ∈]1, 2[.

References

[1] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math.,
27(1984), 76-86.

[2] S. Czerwik (ed.), Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Inc., Palm Harbor, Florida, 2003.

[3] Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci., 14(1991), 431-434.
[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.

U.S.A., 27(1941), 222-224.
[5] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math.

44(1992), 125-153.
[6] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several

Variables, Birkhauser, Basel, 1998.



262 B. Bouikhalene, E. Elqorachi and Th. M. Rassias

[7] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ.
Hamburg. 70(2000), 175-190.

[8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical
Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2003.

[9] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer.
Math. Soc., 72(1978), 297-300.

[10] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings,
J. Math. Anal. Appl., 246(2000), 352-378.

[11] Th. M. Rassias, On the stability of the functional equations and a problem of Ulam,
Acta Applicandae Mathematicae. 62(2000), 23-130.

[12] Th. M. Rassias and P. Semrl, On the behavior of mappings which does not satisfy Hyers-
Ulam stability, Proc. Amer. Math. Soc., 114(1992), 989-993.

[13] Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic
Press, Inc., Palm Harbor, Florida 1994.

[14] F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Mi-
lano., 53(1983), 113-129.

[15] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math.
54(1997) 144-172.

[16] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1961,
Problems in Modern Mathematics, Wiley, New York 1964.


