ON THE GENERALIZED HYERS-ULAM STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION WITH A GENERAL INVOLUTION

Bouikhalene Belaid ${ }^{1}$, Elqorachi Elhoucien ${ }^{2}$ and Themistocles M. Rassias ${ }^{3}$
${ }^{1}$ Department of Mathematics, University Ibn Tofail, Faculty of Sciences, Kenitra, Morocco e-mail: bbouikhalene@yahoo.fr
${ }^{2}$ Department of Mathematics and Informatics, University Ibn Zohr, Faculty of Sciences, Laboratory LAMA, Agadir, Morocco e-mail: elqorachi@hotmail.com
${ }^{3}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece e-mail: trassias@math.ntua.gr

Abstract. In this paper we prove the generalized Hyers-Ulam stability of the quadratic functional equation

$$
f(x+y)+f(x+\sigma(y))=2 f(x)+2 f(y), \quad x, y \in G,
$$

where σ is an involution of the normed space G.

1. Introduction

In [16] Ulam proposed the following stability problem: Under what conditions does there exist an additive mapping near an approximately additive mapping?

The first partial solution to Ulam's problem was given by Hyers in [4]: If $f: E_{1} \longrightarrow E_{2}$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta,
$$

[^0]for all $x, y \in E_{1}$, where E_{1} and E_{2} are Banach spaces and δ is a given positive number, then there exists a unique additive mapping $T: E_{1} \longrightarrow E_{2}$ such that
$$
\|f(x)-T(x)\| \leq \delta
$$
for all $x \in E_{1}$. The proof of this result follows the same spirit if E_{1} is an abelian semigroup.
In 1978, a generalization of Hyers' Theorem was formulated and proved by Rassias [9] in the setting when E_{1} is a normed space, E_{2} is a Banach space and the Cauchy difference is allowed to be unbounded.

Theorem 1.1. Let $f: E_{1} \longrightarrow E_{2}$ be a mapping such that $f(t x)$ is continuous in t for each fixed x. Assume that there exist $\theta \geq 0$ and $p<1$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$ (for all $x, y \in E_{1} \backslash\{0\}$ if $p<0$). Then there exists a unique linear mapping $T: E_{1} \longrightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}\left(\right.$ for all $x \in E_{1} \backslash\{0\}$ if $\left.p<0\right)$.
Rassias during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. Gajda [3] following the same approach as in Rassias [9], gave an affirmative solution to Rassias'question for $p>1$. It was showed by Gajda [3] as well as by Rassias and Semrl [12] that a similar Theorem in the spirit of Theorem 1.1 for the case $p=1$ cannot be proved.

Stability problems of various functional equations have been extensively investigated by a number of authors. The terminology Hyers-Ulam-Rassias stability originates from these historical backgrounds. For more detailed definitions and further developments of stability concepts one is referred to [2], [6], [8], [11], [13], [14].

In this paper we prove the stability of the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x)+2 f(y), x, y \in G \tag{1.1}
\end{equation*}
$$

where $\sigma: G \longrightarrow G$ is an involution of G, i.e., $\sigma(x+y)=\sigma(x)+\sigma(y)$ and $\sigma(\sigma(x))=x$ for all $x, y \in G$.

The functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y), x, y \in G \tag{1.2}
\end{equation*}
$$

corresponds to $\sigma=I$, and the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), x, y \in G \tag{1.3}
\end{equation*}
$$

corresponds to $\sigma=-I$. Reflection in a subspace of \mathbb{R}^{n} provides a third example. Some other examples are the transpose involution and the symmetric involution in the additive group of 2×2 matrices.

The quadratic equation (1.1) has been solved by Stetkær [15].
The stability problem for the quadratic equation (1.3) was proved firstly by Skof in [14]. In [1] Cholewa extended the Skof's result in the following way, where G is an abelian group and E is a Banach space.

Theorem 1.2. Let $\eta>0$ be a real number and $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \eta \text { for all } x, y \in G \tag{1.4}
\end{equation*}
$$

Then for every $x \in G$ the limit $q(x)=\lim _{n \longrightarrow+\infty} \frac{f\left(2^{n} x\right)}{2^{2 n}}$ exists and $q: G \longrightarrow E$ is the unique solution of (1.3) satisfying

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{\eta}{2}, x \in G . \tag{1.5}
\end{equation*}
$$

In [2] Czerwik obtained a generalization of the Skof-Cholewa's result.
Theorem 1.3. Let $p \neq 2, \theta>0, \delta>0$ be real numbers. Suppose that the function $f: E_{1} \longrightarrow E_{2}$ satisfies the inequality
$\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in E_{1}$.
Then there exists exactly one quadratic function $q: E_{1} \longrightarrow E_{2}$ such that

$$
\|f(x)-q(x)\| \leq c+k \theta\|x\|^{p}
$$

for all $x \in E_{1}$ if $p \geq 0$ and for all $x \in E_{1} \backslash\{0\}$ if $p \leq 0$, where $c=\frac{\|f(0)\|}{3}, k=\frac{2}{4-2^{p}}$ and $q(x)=\lim _{n} \longrightarrow+\infty \frac{f\left(2^{n} x\right)}{4^{n}}$, for $p<2$ as well as, $c=0, k=\frac{2}{2^{p-4}}$ and $q(x)=\lim _{n \longrightarrow+\infty} 4^{n} f\left(2^{-n} x\right)$, for $p>2$.

In dealing with a general involution σ of G one provides first of all a unified study for the stability of equations (1.2) and (1.3) and secondly a generalization of both of these equations. In particular, one wants to see how the involution σ enter into the approximative solutions formulas.

2. Hyers-Ulam stability of equation(1.1)

In this section we investigate the Hyers-Ulam stability for the equation (1.1). This generalizes the result obtained for $\sigma=I$ and $\sigma=-I$.

Theorem 2.1. Let G be an abelian group, E a Banach space and $f: G \longrightarrow E$ a mapping which satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x+\sigma(y))-2 f(x)-2 f(y)\| \leq \delta \text { for all } \quad x, y \in G \tag{2.1}
\end{equation*}
$$

for some $\delta>0$. Then there exists a unique mapping $q: G \longrightarrow E$ such that

$$
q(x)=\lim _{n \longrightarrow+\infty} \frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\}
$$

is a solution of the quadratic functional equation (1.1) satisfying

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{\delta}{2} \text { for all } x \in G \tag{2.2}
\end{equation*}
$$

Proof. By letting $x=y=u$, respectively $x=y=u+\sigma(u)$ in (2.1) we obtain

$$
\begin{equation*}
\|f(2 u)+f(u+\sigma(u))-4 f(u)\| \leq \delta \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|2 f(2 u+2 \sigma(u))-4 f(u+\sigma(u))\| \leq \delta \tag{2.4}
\end{equation*}
$$

Setting $x=y$ in (2.1) yields

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4}\{f(2 x)+f(x+\sigma(x))\}\right\| \leq \frac{\delta}{4} \text { for all } x \in G \tag{2.5}
\end{equation*}
$$

Applying the inductive assumption we obtain

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\}\right\| \leq \frac{\delta}{2}\left(1-\frac{1}{2^{n}}\right\} \tag{2.6}
\end{equation*}
$$

for some positive integer n.
From (2.5) it follows that (2.6) is true for $n=1$. The inductive step must now be demonstrated to hold true for the integer $n+1$, that is

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{2^{2(n+1)}}\left\{f\left(2^{n+1} x\right)+\left(2^{n+1}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)\right\}\right\| \\
\leq & \frac{1}{2^{2(n+1)}}\left\|f\left(2^{n+1} x\right)+f\left(2^{n} x+2^{n} \sigma(x)\right)-4 f\left(2^{n} x\right)\right\| \\
+ & \frac{1}{2^{2(n+1)}}\left\|2\left(2^{n}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)-4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\| \\
+ & \frac{1}{2^{2(n+1)}}\left\|4 f\left(2^{n} x\right)+4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)-2^{2(n+1)} f(x)\right\| \\
\leq & \frac{\delta}{2^{2(n+1)}}+\frac{\left(2^{n}-1\right) \delta}{2^{2(n+1)}}+\frac{\delta}{2}\left(1-\frac{1}{2^{n}}\right)=\frac{\delta}{2}\left(1-\frac{1}{2^{n+1}}\right) .
\end{aligned}
$$

This proves the validity of the inequality (2.6).
Let us define

$$
\begin{equation*}
q_{n}(x)=\frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\} \tag{2.7}
\end{equation*}
$$

for any positive integer n and $x \in G$. Then $\left\{q_{n}(x)\right\}$ is a Cauchy sequence for every $x \in G$. In fact by using (2.6), (2.7), (2.4) and (2.3), we get

$$
\begin{aligned}
& \left\|q_{n+1}(x)-q_{n}(x)\right\| \\
& \leq \frac{1}{2^{2(n+1)}}\left\|f\left(2^{n+1} x\right)+f\left(2^{n} x+2^{n} \sigma(x)\right)-4 f\left(2^{n} x\right)\right\| \\
& \quad+\frac{1}{2^{2(n+1)}}\left\|2\left(2^{n}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)-4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\| \\
& \leq \frac{\delta}{2^{2(n+1)}}+\frac{\left(2^{n}-1\right) \delta}{2^{2(n+1)}}=\frac{\delta}{4}\left(\frac{1}{2}\right)^{n} .
\end{aligned}
$$

It easily follows that $\left\{q_{n}(x)\right\}$ is a Cauchy sequence for all $x \in G$. Since E is complete, we can define $q(x)=\lim _{n \rightarrow+\infty} q_{n}(x)$ for any $x \in G$ and one can verify that q is a solution of (1.1). For all $x, y \in G$ we have

$$
\begin{aligned}
&\left\|q_{n}(x+y)+q_{n}(x+\sigma(y))-2 q_{n}(x)-2 q_{n}(y)\right\| \\
&= \frac{1}{2^{2 n}} \| f\left(2^{n} x+2^{n} y\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
&+f\left(2^{n} x+2^{n} \sigma(y)\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
&-2\left[f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right] \\
&-2\left[f\left(2^{n} y\right)+\left(2^{n}-1\right) f\left(2^{n-1} y+2^{n-1} \sigma(y)\right)\right] \| \\
& \leq \frac{1}{2^{2 n}}\left\|f\left(2^{n} x+2^{n} y\right)+f\left(2^{n} x+2^{n} \sigma(y)\right)-2 f\left(2^{n} x\right)-2 f\left(2^{n} y\right)\right\| \\
&+\frac{\left(2^{n}-1\right)}{2^{2 n}} \| f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
&+f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right)-2 f\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \\
&-2 f\left(2^{n-1} y+2^{n-1} \sigma(y)\right) \| \\
& \leq \frac{\delta}{2^{2 n}}+\frac{\left(2^{n}-1\right) \delta}{2^{2 n}} \\
&= \frac{\delta}{2^{n}} .
\end{aligned}
$$

By letting $n \longrightarrow+\infty$, we get the desired result.
To prove that (2.2) holds true, we take the limit as $n \longrightarrow+\infty$ in (2.6) and, similarly as above, we derive the result.
Assume now that there exist two functions $q_{i}: G \longrightarrow E(i=1,2)$ that are solutions of (1.1) with $\left\|f(x)-q_{i}(x)\right\| \leq \frac{\delta}{2}$ for all $x \in G$.
First, we will prove by mathematical induction that

$$
\begin{equation*}
q_{i}\left(2^{n} x\right)+\left(2^{n}-1\right) q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)=2^{2 n} q_{i}(x) . \tag{2.8}
\end{equation*}
$$

Setting $y=x$ in relation (1.1), we obtain (2.8) for $n=1$. Suppose (2.8) is true for n and we will prove it for $n+1$. Hence, we have

$$
\begin{aligned}
& q_{i}\left(2^{n+1} x\right)+\left(2^{n+1}-1\right) q_{i}\left(2^{n} x+2^{n} \sigma(x)\right) \\
&= q_{i}\left(2^{n+1} x\right)+q_{i}\left(2^{n} x+2^{n} \sigma(x)\right)-4 q_{i}\left(2^{n} x\right) \\
& \quad+2\left(2^{n}-1\right) q_{i}\left(2^{n} x+2^{n} \sigma(x)\right)-4\left(2^{n}-1\right) q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \\
& \quad+4 q_{i}\left(2^{n} x\right)+4\left(2^{n}-1\right) q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \\
&= q_{i}\left(2^{n} x+2^{n} x\right)+q_{i}\left(2^{n} x+2^{n} \sigma(x)\right)-4 q_{i}\left(2^{n} x\right) \\
& \quad+\left(2^{n}-1\right)\left[q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)+2^{n-1} x+2^{n-1} \sigma(x)\right)\right. \\
& \quad+q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)+2^{n-1} x+2^{n-1} \sigma(x)\right) \\
&\left.\quad-4 q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right] \\
& \quad+4\left[q_{i}\left(2^{n} x\right)+\left(2^{n}-1\right) q_{i}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right] \\
&=0+0+2^{2(n+1)} q_{i}(x) \\
&= 2^{2(n+1)} q_{i}(x) .
\end{aligned}
$$

Therefore, relation (2.8) is true for any natural number n. We will prove the uniqueness of the mapping q. For all $x \in G$ and all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\|q_{1}(x)-q_{2}(x)\right\| \\
& \begin{aligned}
&= \frac{1}{2^{2 n}} \| q_{1}\left(2^{n} x\right)+\left(2^{n}-1\right) q_{1}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)-q_{2}\left(2^{n} x\right) \\
& \quad \quad\left(2^{n}-1\right) q_{2}\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \| \\
& \leq \frac{1}{2^{2 n}}\left[\left\|q_{1}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left(2^{n}-1\right) \| q_{1}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right. \\
&\left.\quad \quad-f\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \|\right] \\
&+\frac{1}{2^{2 n}}\left[\left\|q_{2}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left(2^{n}-1\right) \| q_{2}\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right. \\
&\left.\quad \quad-f\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \|\right] \\
& \leq \frac{1}{2^{2 n}}\left[\frac{\delta}{2}+\frac{\delta}{2}+\frac{\delta\left(2^{n}-1\right)}{2}+\frac{\delta\left(2^{n}-1\right)}{2}\right] \\
&= \frac{\delta}{2^{n}} .
\end{aligned}
\end{aligned}
$$

If we let $n \longrightarrow+\infty$, we get $q_{1}(x)=q_{2}(x)$ for all $x \in G$. This completes the proof of the theorem.

3. Stability of equation (1.1) with ($p<1$)

In the present section, we give a generalization of Skof's, Czerwik's and Rassias's results for the functional equation (1.1).

Theorem 3.1. Let G be a normed space and E a Banach space. If a function $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x+\sigma(y))-2 f(x)-2 f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.1}
\end{equation*}
$$

for some $\theta \geq 0, p<1$ and for all $x, y \in G$, then there exists a unique mapping $q: G \longrightarrow E$, defined by

$$
q(x)=\lim _{n \longrightarrow+\infty} \frac{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)}{2^{2 n}}
$$

that is a solution of the quadratic functional equation (1.1) and

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{\theta}{2-2^{p}}\left\{\|x\|^{p}+\frac{1}{2}\|x+\sigma(x)\|^{p}\right\}, x \in G . \tag{3.2}
\end{equation*}
$$

Proof. Letting $x=y$ in (3.1) yields

$$
\begin{equation*}
\|f(2 x)+f(x+\sigma(x))-4 f(x)\| \leq 2 \theta\|x\|^{p} . \tag{3.3}
\end{equation*}
$$

Replacing now x and y by $2 x$, respectively by $x+\sigma(x)$ in (3.1), we get

$$
\begin{equation*}
\|f(4 x)+f(2 x+2 \sigma(x))-4 f(2 x)\| \leq 2^{p+1} \theta\|x\|^{p} \tag{3.4}
\end{equation*}
$$

respectively

$$
\begin{equation*}
\|2 f(2 x+2 \sigma(x))-4 f(x+\sigma(x))\| \leq 2 \theta\|x+\sigma(x)\|^{p} . \tag{3.5}
\end{equation*}
$$

Now, by applying the inductive argument, we obtain

$$
\begin{align*}
&\left\|f(x)-\frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\}\right\| \tag{3.6}\\
& \leq \frac{\theta}{2}\|x\|^{p}\left[1+2^{p-2}+2^{2(p-2)}+\ldots+2^{(n-1)(p-2)}\right] \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left[2^{p-2}+(3) 2^{2(p-2)}+(7) 2^{3(p-2)}+\ldots\right. \\
&\left.+\left(2^{n-1}-1\right) 2^{(n-1)(p-2)}\right]
\end{align*}
$$

The property for $n=1$ follows from that inequality (3.3). For $n=2$, we get from (3.3), (3.4) and (3.5) that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{16}\{f(4 x)+3 f(2 x+2 \sigma(x))\}\right\| \\
& \leq \frac{1}{16}\|f(4 x)+f(2 x+2 \sigma(x))-4 f(2 x)\|+\frac{1}{16}\|2 f(2 x+2 \sigma(x))-4 f(x+\sigma(x))\| \\
& \quad+\frac{1}{16}\|4 f(2 x)+4 f(x+\sigma(x))-16 f(x)\| \\
& \leq \frac{2^{p+1} \theta}{16}\|x\|^{p}+\frac{2 \theta}{16}\|x+\sigma(x)\|^{p}+\frac{4(2 \theta)}{16}\|x\|^{p} \\
& =\frac{\theta}{2}\|x\|^{p}\left(1+2^{p-2}\right)+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p} 2^{p-2} .
\end{aligned}
$$

Assume now that (3.6) holds for n and we shall prove it for the case $n+1$. We have

$$
\begin{aligned}
&\left\|f(x)-\frac{1}{2^{2(n+1)}}\left\{f\left(2^{n+1} x\right)+\left(2^{n+1}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)\right\}\right\| \\
& \leq \frac{1}{2^{2(n+1)}}\left\|f\left(2^{n+1} x\right)+f\left(2^{n} x+2^{n} \sigma(x)\right)-4 f\left(2^{n} x\right)\right\| \\
&+\frac{1}{2^{2(n+1)}}\left\|4 f\left(2^{n} x\right)+4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)-2^{2(n+1)} f(x)\right\| \\
&+\frac{1}{2^{2(n+1)}}\left\|2\left(2^{n}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)-4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\| \\
& \leq \frac{1}{2^{2(n+1)}} 2 \theta\left\|2^{n} x\right\|^{p} \\
&+\frac{\theta}{2}\|x\|^{p}\left(1+2^{p-2}+2^{2(p-2)}+\ldots .+2^{(n-1)(p-2)}\right) \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left(2^{p-2}+(3) 2^{2(p-2)}+(7) 2^{3(p-2)}+\ldots .\right. \\
&\left.+\left(2^{n-1}-1\right) 2^{(n-1)(p-2)}\right)+\frac{2^{n}-1}{2^{2(n+1)}} 2 \theta\left\|2^{n-1} x+2^{n-1} \sigma(x)\right\|^{p} \\
&= \frac{\theta}{2}\|x\|^{p}\left(1+2^{p-2}+2^{2(p-2)}+\ldots .+2^{(n)(p-2)}\right) \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left(2^{p-2}+(3) 2^{2(p-2)}+(7) 2^{3(p-2)}+\ldots .+\left(2^{n}-1\right) 2^{(n)(p-2)}\right)
\end{aligned}
$$

which proves the validity of inequality (3.6).
Let us define

$$
q_{n}(x)=\frac{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)}{2^{2 n}}
$$

for any positive integer n and $x \in G$. Then $\left\{q_{n}(x)\right\}$ is a Cauchy sequence for every $x \in G$. In fact, by using (3.3), (3.4), (3.5) and (3.6) one has

$$
\begin{aligned}
& \left\|q_{n+1}(x)-q_{n}(x)\right\| \\
& \leq \frac{1}{2^{2(n+1)}}\left\|f\left(2^{n+1} x\right)+f\left(2^{n} x+2^{n} \sigma(x)\right)-4 f\left(2^{n} x\right)\right\| \\
& \quad+\frac{1}{2^{2(n+1)}}\left\|2\left(2^{n}-1\right) f\left(2^{n} x+2^{n} \sigma(x)\right)-4\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\| \\
& \leq \frac{1}{2^{2(n+1)}} 2 \theta\left\|2^{n} x\right\|^{p}+\frac{2^{n}-1}{2^{2(n+1)}} 2 \theta\left\|2^{n-1} x+2^{n-1} \sigma(x)\right\|^{p} \\
& =\frac{\theta}{2} 2^{n(p-2)}\left(\|x\|^{p}+\frac{1}{2^{p}}\left(2^{n}-1\right)\|x+\sigma(x)\|^{p}\right) \\
& =\frac{\theta}{2} 2^{n(p-1)}\left(\frac{1}{2^{n}}\|x\|^{p}+\frac{1}{2^{p}} \frac{\left(2^{n}-1\right)}{2^{n}}\|x+\sigma(x)\|^{p}\right) \\
& \leq \frac{\theta}{2} 2^{n(p-1)}\left(\|x\|^{p}+\frac{1}{2^{p}}\|x+\sigma(x)\|^{p}\right)
\end{aligned}
$$

Since $2^{p-1}<1$, it follows that $\left\{q_{n}(x)\right\}$ is a Cauchy sequence for every $x \in G$. However, E is a complete normed space, thus there exists the limit function

$$
q(x)=\lim _{n \longrightarrow+\infty} q_{n}(x)
$$

for any $x \in G$.
Let x, y be any two points of G. From (3.1) it follows that

$$
\begin{aligned}
& \left\|q_{n}(x+y)+q_{n}(x+\sigma(y))-2 q_{n}(x)-2 q_{n}(y)\right\| \\
& = \\
& \quad \frac{1}{2^{2 n}} \| f\left(2^{n} x+2^{n} y\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
& \quad+f\left(2^{n} x+2^{n} \sigma(y)\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
& \quad-2\left[f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right] \\
& \quad-2\left[f\left(2^{n} y\right)+\left(2^{n}-1\right) f\left(2^{n-1} y+2^{n-1} \sigma(y)\right)\right] \| \\
& \leq \\
& \quad \frac{1}{2^{2 n}}\left\|f\left(2^{n} x+2^{n} y\right)+f\left(2^{n} x+2^{n} \sigma(y)\right)-2 f\left(2^{n} x\right)-2 f\left(2^{n} y\right)\right\| \\
& \quad+\frac{\left(2^{n}-1\right)}{2^{2 n}} \| f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right) \\
& \quad+f\left(2^{n-1} x+2^{n-1} y+2^{n-1} \sigma(x)+2^{n-1} \sigma(y)\right)-2 f\left(2^{n-1} x+2^{n-1} \sigma(x)\right) \\
& \quad-2 f\left(2^{n-1} y+2^{n-1} \sigma(y)\right) \|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{2^{2 n}} \theta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{p}\right) \\
& +\frac{\left(2^{n}-1\right)}{2^{2 n}} \theta\left(\left\|2^{n-1} x+2^{n-1} \sigma(x)\right\|^{p}+\left\|2^{n-1} y+2^{n-1} \sigma(y)\right\|^{p}\right) \\
= & 2^{n(p-1)} \theta\left\{\frac{1}{2^{n}}\left(\|x\|^{p}+\|y\|^{p}\right)+\frac{2^{n}-1}{2^{p} 2^{n}}\left(\|x+\sigma(x)\|^{p}+\|y+\sigma(y)\|^{p}\right)\right\} \\
\leq & 2^{n(p-1)} \theta\left\{\|x\|^{p}+\|y\|^{p}+\frac{1}{2^{p}}\left(\|x+\sigma(x)\|^{p}+\|y+\sigma(y)\|^{p}\right)\right\}
\end{aligned}
$$

By letting $n \longrightarrow+\infty$ we get the equality

$$
q(x+y)+q(x+\sigma(y))=2 q(x)+2 q(y) \text { for all } x, y \in G
$$

It remains to show that q and f satisfy the inequality (3.2). By using (3.6), we obtain

$$
\begin{aligned}
&\left\|f(x)-\frac{1}{4^{n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1} x+2^{n-1} \sigma(x)\right)\right\}\right\| \\
& \leq \frac{\theta}{2}\|x\|^{p}\left(1+2^{p-2}+2^{2(p-2)}+\ldots .+2^{(n-1)(p-2)}\right) \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left(2^{p-2}+(3) 2^{2(p-2)}+(7) 2^{3(p-2)}+\ldots .\right. \\
&\left.+\left(2^{n-1}-1\right) 2^{(n-1)(p-2)}\right) \\
&= \frac{\theta}{2}\|x\|^{p}\left(1+\frac{1}{2} 2^{p-1}+\frac{1}{2^{2}} 2^{2(p-1)}+\ldots .+\frac{1}{2^{n-1}} 2^{(n-1)(p-1)}\right) \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left(\left(\frac{1}{2}\right) 2^{p-1}+\left(\frac{3}{4}\right) 2^{2(p-1)}+\left(\frac{7}{8}\right) 2^{3(p-1)}+\ldots .\right. \\
&\left.+\left(\frac{2^{n-1}-1}{2^{n-1}}\right) 2^{(n-1)(p-1)}\right) \\
& \leq \frac{\theta}{2}\|x\|^{p}\left(1+2^{p-1}+2^{2(p-1)}+\ldots .+2^{(n-1)(p-1)}\right) \\
&+\frac{\theta}{2^{p+1}}\|x+\sigma(x)\|^{p}\left(2^{p-1}+2^{2(p-1)}+2^{3(p-1)}+\ldots .+2^{(n-1)(p-1)}\right) \\
& \leq \frac{\theta}{2-2^{p}}\left\{\|x\|^{p}+\frac{1}{2}\|x+\sigma(x)\|^{p}\right\} .
\end{aligned}
$$

Consequently, we obtain inequality (3.2). The uniqueness of the mapping q can be proved by using a similar argument as in the precedent paragraph. This completes the proof of the theorem.

If we replace in Theorem 3.1 the mapping σ by I, (resp. by $-I$), we obtain immediately the following corollaries.

Corollary 3.2. Let G be a normed space and E a Banach space. If a function $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.7}
\end{equation*}
$$

for some $\theta \geq 0, p<1$ and for all $x, y \in G$, then there exists a unique mapping $q: G \longrightarrow E$, given by

$$
q(x)=\lim _{n \longrightarrow+\infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

that is a solution of the additive functional equation (1.2) satisfying the inequality

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{\theta\|x\|^{p}\left(2+2^{p}\right)}{2-2^{p}}, x \in G \tag{3.8}
\end{equation*}
$$

Corollary 3.3. Let G be a normed space and E a Banach space. If a function $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.9}
\end{equation*}
$$

for some $\theta \geq 0,0<p<1$ and for all $x, y \in G$, then there exists a unique mapping $q: G \longrightarrow E$, given by

$$
q(x)=\lim _{n \longrightarrow+\infty} \frac{f\left(2^{n} x\right)}{2^{2 n}}
$$

that is a solution of the quadratic functional equation (1.3) satisfying the inequality

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{\theta\|x\|^{p}}{2-2^{p}} \tag{3.10}
\end{equation*}
$$

for all $x \in G$.

4. Stability of equation (1.1) with $(p>2)$

In this section, we prove the generalized Hyers-Ulam stability of the functional equation (1.1) with $p>2$.

Theorem 4.1. Let G be a normed space and E a Banach space. Assume that $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x+\sigma(y))-2 f(x)-2 f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{4.1}
\end{equation*}
$$

for some $\theta \geq 0, p>2$ and for all $x, y \in G$. Then there exists a unique mapping $q: G \longrightarrow E$, given by

$$
q(x)=\lim _{n \longrightarrow+\infty} 2^{2 n}\left\{f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right\}
$$

that is a solution of the quadratic functional equation (1.1) such that

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{2 \theta}{2^{p}-4}\left\{\|x\|^{p}+\frac{1}{2^{p}}\|x+\sigma(x)\|^{p}\right\}, x \in G . \tag{4.2}
\end{equation*}
$$

Proof. Suppose that f satisfies inequality (4.1). Replacing x, y by $\frac{x}{2^{n+1}}$, (resp. by $\left.\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)$, we easily obtain

$$
\begin{array}{r}
\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4 f\left(\frac{x}{2^{n+1}}\right)\right\| \leq \frac{2 \theta}{2^{(n+1) p}}\|x\|^{p}, \\
\left\|2 f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4 f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right\| \leq \frac{2 \theta}{2^{(n+2) p}}\|x+\sigma(x)\|^{p}, \tag{4.4}
\end{array}
$$

for all $n \in \mathbb{N}_{0}$.
Now, we will show by induction that

$$
\begin{align*}
& \left\|f(x)-2^{2 n}\left\{f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right\}\right\| \\
& \leq \frac{2 \theta}{2^{p}}\|x\|^{p}\left[1+2^{2-p}+2^{2(2-p)}+\ldots+2^{(n-1)(2-p)}\right] \\
& \quad+\frac{2 \theta}{2^{2 p}}\|x+\sigma(x)\|^{p}\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^{2}}\right) 2^{2-p}+\left(1-\frac{1}{2^{3}}\right) 2^{2(2-p)}\right. \tag{4.5}\\
& \left.\quad+\ldots+\left(1-\frac{1}{2^{n}}\right) 2^{(n-1)(2-p)}\right] .
\end{align*}
$$

For $n=1$, we have

$$
\begin{aligned}
\| f(x) & -4\left[f\left(\frac{x}{2}\right)+\left(\frac{1}{2}-1\right) f\left(\frac{x}{4}+\frac{\sigma(x)}{4}\right)\right] \| \\
& \leq\left\|f(x)+f\left(\frac{x}{2}+\frac{\sigma(x)}{2}\right)-4 f\left(\frac{x}{2}\right)\right\| \\
& +\left\|2 f\left(\frac{x}{4}+\frac{\sigma(x)}{4}\right)-f\left(\frac{x}{2}+\frac{\sigma(x)}{2}\right)\right\| \\
& \leq \frac{2 \theta}{2^{p}}\|x\|^{p}+\frac{\theta}{2^{2 p}}\|x+\sigma(x)\|^{p} \\
& =\frac{2 \theta}{2^{p}}\|x\|^{p}+\left(1-\frac{1}{2}\right) \frac{2 \theta}{2^{2 p}}\|x+\sigma(x)\|^{p}
\end{aligned}
$$

which proves (4.5) for $n=1$. Assume that (4.5) holds for n and $x \in G$, and we will prove it for $n+1$. We obtain

$$
\begin{aligned}
&\left\|f(x)-2^{2(n+1)}\left\{f\left(\frac{x}{2^{n+1}}\right)+\left(\frac{1}{2^{n+1}}-1\right) f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right\}\right\| \\
& \leq\left\|f(x)-2^{2 n}\left\{f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right\}\right\| \\
&+2^{2 n} \| f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right) \\
&-4\left[f\left(\frac{x}{2^{n+1}}\right)+\left(\frac{1}{2^{n+1}}-1\right) f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right] \| \\
& \leq\left\|f(x)-2^{2 n}\left\{f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right\}\right\| \\
&+2^{2 n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4 f\left(\frac{x}{2^{n+1}}\right)\right\| \\
&+2^{2 n}\left\|\left(\frac{1}{2^{n+1}}-1\right) 2 f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4\left(\frac{1}{2^{n+1}}-1\right) f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right\| \\
& \leq \frac{2 \theta}{2^{p}}\|x\|^{p}\left[1+2^{2-p}+2^{2(2-p)}+\ldots+2^{(n-1)(2-p)}\right] \\
&+\frac{2 \theta}{2^{2 p}}\|x+\sigma(x)\|^{p}\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^{2}}\right) 2^{2-p}+\left(1-\frac{1}{2^{3}}\right) 2^{2(2-p)}+\ldots\right. \\
&\left.+\left(1-\frac{1}{2^{n}}\right) 2^{(n-1)(2-p)}\right] \\
&+2^{2 n} \frac{2 \theta}{2^{(n+1) p}\|x\|^{p}+2^{2 n}\left(1-\frac{1}{2^{n+1}}\right) \frac{2 \theta}{2^{(n+2) p}}\left[\|x+\sigma(x)\|^{p}\right]} \\
&= \frac{2 \theta}{2^{p}}\|x\|^{p}\left[1+2^{2-p}+2^{2(2-p)}+\ldots+2^{n(2-p)}\right] \\
&+\frac{2 \theta}{2^{2 p}}\|x+\sigma(x)\|^{p}\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^{2}}\right) 2^{2-p}+\left(1-\frac{1}{2^{3}}\right) 2^{2(2-p)}+\ldots\right. \\
&\left.+\left(1-\frac{1}{2^{n+1}}\right) 2^{n(2-p)}\right],
\end{aligned}
$$

which proves the validity of the inequality (4.5).
Let us denote by $q_{n}(x)$ the sequence of functions defined by

$$
\begin{equation*}
q_{n}(x)=2^{2 n}\left\{f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right\} \tag{4.6}
\end{equation*}
$$

for $x \in G$ and $n \in \mathbb{N}$. We will show that $\left\{q_{n}(x)\right\}$ is a Cauchy sequence for every $x \in G$.

For $n \in \mathbb{N}$, we obtain by (4.3) and (4.4) that

$$
\begin{aligned}
\| & q_{n+1}(x)-q_{n}(x) \| \\
= & 2^{2 n} \| 4\left[f\left(\frac{x}{2^{n+1}}\right)+\left(\frac{1}{2^{n+1}}-1\right) f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right] \\
& -\left[f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right] \| \\
\leq & 2^{2 n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4 f\left(\frac{x}{2^{n+1}}\right)\right\| \\
& +2^{2 n}\left\|\left(\frac{1}{2^{n+1}}-1\right) 2 f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-4\left(\frac{1}{2^{n+1}}-1\right) f\left(\frac{x}{2^{n+2}}+\frac{\sigma(x)}{2^{n+2}}\right)\right\| \\
\leq & 2^{n(2-p)} \frac{2 \theta}{2^{p}}\|x\|^{p}+\left(1-\frac{1}{2^{n+1}}\right) 2^{n(2-p)} \frac{2 \theta}{2^{2 p}}\|x+\sigma(x)\|^{p} \\
\leq & 2^{n(2-p)} \frac{2 \theta}{2^{p}}\left[\|x\|^{p}+\frac{1}{2^{p}}\|x+\sigma(x)\|^{p}\right] .
\end{aligned}
$$

Since $2^{(2-p)}<1$, the desired conclusion follows. However, E is a Banach space, thus we can define

$$
\begin{equation*}
q(x)=\lim _{n \longrightarrow+\infty} q_{n}(x) \tag{4.7}
\end{equation*}
$$

for any $x \in G$. We will show that q is a solution of equation (1.1). Let us consider $x, y \in G$. Then

$$
\begin{aligned}
\| & q_{n}(x+y)+q_{n}(x+\sigma(y))-2 q_{n}(x)-2 q_{n}(y) \| \\
= & 2^{2 n} \| f\left(\frac{x}{2^{n}}+\frac{y}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{y}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right) \\
& +f\left(\frac{x}{2^{n}}+\frac{\sigma(y)}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{y}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right) \\
& -2\left[f\left(\frac{x}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)\right] \\
& -2\left[f\left(\frac{y}{2^{n}}\right)+\left(\frac{1}{2^{n}}-1\right) f\left(\frac{y}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right)\right] \| \\
\leq & 2^{2 n}\left\|f\left(\frac{x}{2^{n}}+\frac{y}{2^{n}}\right)+f\left(\frac{x}{2^{n}}+\frac{\sigma(y)}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{y}{2^{n}}\right)\right\| \\
& +2^{2 n}\left(1-\frac{1}{2^{n}}\right) \| f\left(\frac{x}{2^{n+1}}+\frac{y}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right) \\
& +f\left(\frac{x}{2^{n+1}}+\frac{y}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right)-2 f\left(\frac{x}{2^{n+1}}+\frac{\sigma(x)}{2^{n+1}}\right)-2 f\left(\frac{y}{2^{n+1}}+\frac{\sigma(y)}{2^{n+1}}\right) \| \\
\leq & \theta 2^{n(2-p)}\left[\|x\|^{p}+\|y\|^{p}+\frac{1}{2^{p}}\|x+\sigma(x)\|^{p}+\frac{1}{2^{p}}\|y+\sigma(y)\|^{p}\right] .
\end{aligned}
$$

This implies that q is a solution of equation (1.1). The uniqueness of q can be derived by using some computations similar to the ones of the proof of Theorem 2.1. Some computations used in page 9 and inequality (4.5) imply (4.2). This ends the proof of Theorem 4.1.

Corollary 4.2. Let G be a normed space and E a Banach space. Assume that $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{4.8}
\end{equation*}
$$

for some $\theta \geq 0, p>2$ and for all $x, y \in G$. Then there exists a unique mapping $q: G \longrightarrow E$, given by

$$
q(x)=\lim _{n \longrightarrow+\infty} 2^{n}\left\{f\left(\frac{x}{2^{n}}\right)\right\}
$$

that is a solution of the additive functional equation (1.2), such that

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{8 \theta}{2^{p}-4}\|x\|^{p}, x \in G \tag{4.9}
\end{equation*}
$$

Corollary 4.3. Let G be a normed space and E a Banach space. Assume that $f: G \longrightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{4.10}
\end{equation*}
$$

for some $\theta \geq 0, p>2$ and for all $x, y \in G$. Then there exists a unique mapping $q: G \longrightarrow E$, given by

$$
q(x)=\lim _{n \longrightarrow+\infty} 2^{2 n} f\left(\frac{x}{2^{n}}\right)
$$

that is a solution of the quadratic functional equation (1.3) with

$$
\begin{equation*}
\|f(x)-q(x)\| \leq \frac{2 \theta}{2^{p}-4}\|x\|^{p}, x \in G \tag{4.11}
\end{equation*}
$$

It is a natural and interesting problem to study the stability of equation (1.1), when $p \in] 1,2[$.

References

[1] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984), 76-86.
[2] S. Czerwik (ed.), Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2003.
[3] Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci., 14(1991), 431-434.
[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
[5] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44(1992), 125-153.
[6] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[7] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg. 70(2000), 175-190.
[8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2003.
[9] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[10] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
[11] Th. M. Rassias, On the stability of the functional equations and a problem of Ulam, Acta Applicandae Mathematicae. 62(2000), 23-130.
[12] Th. M. Rassias and P. Semrl, On the behavior of mappings which does not satisfy HyersUlam stability, Proc. Amer. Math. Soc., 114(1992), 989-993.
[13] Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic Press, Inc., Palm Harbor, Florida 1994.
[14] F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano., 53(1983), 113-129.
[15] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54(1997) 144-172.
[16] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1961, Problems in Modern Mathematics, Wiley, New York 1964.

[^0]: ${ }^{0}$ Received August 7, 2006. Revised September 29, 2006.
 ${ }^{0} 2000$ Mathematics Subject Classification: 39B82, 39B52.
 ${ }^{0}$ Keywords: quadratic equation, Hyers-Ulam stability.

