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BIFURCATION OF FIXED POINTS FROM A

MANIFOLD OF TRIVIAL FIXED POINTS

Massimo Furi and Maria Patrizia Pera

Abstract. We consider a parametrized fixed point equation (or, more gen-
erally, a coincidence equation) in a finite dimensional manifold and we give
necessary as well as sufficient conditions for bifurcation from a manifold of
trivial fixed points. The abstract results are then applied to forced oscillations
of second order differential equations on manifolds, providing a necessary con-
dition and a sufficient condition for an equilibrium point to be a bifurcation
point of periodic orbits.

1. Introduction

Let Z be a finite dimensional differentiable manifold and consider the
parametrized fixed point equation

f(λ, z) = z, (1.1)

where f : R × Z → Z is a C1 map. In [7], assuming that f(0, z) = z, for
all z ∈ Z, we obtained conditions for bifurcation from the manifold {0} × Z,
actually regarded as the set of trivial solutions to (1.1). In the same paper, we
gave an application of such results to the one parameter family of first order
periodic problems {

ẋ = λF (t, x), λ ∈ R
x(0) = x(T ) ,

(1.2)

with F : R × N → Rs a time dependent T -periodic C1 tangent vector field
on a differentiable manifold N ⊆ Rs. A pair (λ, q) ∈ R × N , where q is the
value at time t = 0 of a T -periodic solution of ẋ = λF (t, x), has been called a
starting point. Clearly, for λ = 0, any pair (0, q), q ∈ N is a starting point of

Received November 9, 2004. Revised may 18, 2005.
2000 Mathematics Subject Classification: 58E07, 34C25, 34C40.
Key words and phrases: Bifurcation of fixed points, manifolds, forced oscillations.



266 M. Furi and M. P. Pera

the constant solution x(t) ≡ q. The abstract bifurcation results of [7] apply
to (1.2) by taking Z = N and f to be the Poincaré T -translation operator
PT : R×N → N associated with (1.2). Since the starting points of the form
(0, q) satisfy PT (0, q) = q, it is natural to regard {0} ×N as the manifold of
trivial solutions. We proved that a sufficient condition for a trivial starting
point (0, q0) to be a bifurcation point is that q0 is a nondegenerate zero of the
autonomous tangent vector field

w(q) =
1
T

∫ T

0

F (t, q) dt,

called in [7] the “average wind”.
The idea of extending a similar result to periodic problems for second order

differential equations on manifolds led us to study the one parameter motion
problem associated with a force λF , where now F : R × TN → Rs is a T -
periodic C2 vector field defined on the tangent bundle TN of N and is assumed
to be tangent to N , that means F (t, q, v) tangent to N at q for all (t, q, v) ∈ R×
TN . Clearly, as for first order equations, any q ∈ N is still a rest point of the
motion problem with λ = 0, the so-called inertial problem. However, as well-
known, in the non flat case the inertial problem may also have nonconstant
T -periodic solutions, as, for instance, in the case of an inertial motion on a
sphere. In fact, closed geodesics may be T -periodic if they have appropriate
speed. Consequently, when dealing with the parametrized fixed point equation
involving the Poincaré T -translation operator PT : R×TN → TN associated
with the T -periodic second order problem, namely PT (λ, q, v) = (q, v), even
if it is natural to suppose the triples (0, q, 0), q ∈ N, to be the trivial solutions
(observe that, now, the constraint is N×{0} ⊆ TN), one should keep in mind
that, for λ = 0, the equation PT (0, q, v) = (q, v) may also have fixed points
(q, v) with v 6= 0.

The situation arising in the constrained periodic motion problem, and al-
ready described, is the main motivation of this paper. In particular, in Section
4 where we are concerned with the equation (1.1), we assume the existence of
a manifold M0 ⊆ Z such that f(0, z) = z for all z ∈ M0. We emphasize the
fact that M0 may be strictly contained in the set of fixed points of f for λ = 0
and we will refer to {0}×M0 as to the set of trivial solutions of (1.1). Our aim
is to get bifurcation from {0} ×M0. We give necessary conditions (Theorem
4.1 and Corollary 4.5) and sufficient conditions (Theorem 4.2 and Corollary
4.7) for a point p ∈ M0 to be a bifurcation point of (1.1). Such results are
deduced from quite general bifurcation theorems obtained in Section 3 for a
coincidence equation of the form f(x) = h(x), with f and h maps between
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two finite dimensional manifolds (extensions to the infinite dimensional con-
text will appear elsewhere). We would like to point out that, as one may
expect, our sufficient conditions for bifurcation are, in some sense, second or-
der conditions. Actually, they are given in terms of the Hessian of a C2 map
between manifolds (see Section 2), since, as well-known and easy to check,
the second derivative is not intrinsically defined for maps acting between two
differentiable manifolds.

As observed just few lines above, in the present context the nontrivial
solutions (λ, z) of (1.1) may have λ = 0. However, an extra condition yielding
that nontrivial pairs sufficiently close to {0}×M0 have λ 6= 0 can be assumed
(see (H) of Section 4). It seems interesting to observe that this condition is
satisfied by the Poincaré operator PT : R × TN → TN associated with the
second order periodic problem we are interested in (see Theorem 5.2 below).
As a consequence, the nontrivial triples (λ, q, v) which are close to (0, q, 0)
and such that PT (λ, q, v) = (q, v) have necessarily λ 6= 0. This corresponds
to the well-known physical fact that in a Riemaniann manifold there are no
nonconstant closed geodesics too close to a given point.

Finally, from the abstract results of Section 4, we are able to deduce for the
constrained T -periodic second order problem, the analogue of the bifurcation
result obtained for the first order problem (1.2). Namely, we prove that a
trivial starting point (0, q0, 0) of the motion equation is a bifurcation point
provided that q0 is a nondegenerate zero of the “average force” vector field

F̄ (q) =
1
T

∫ T

0

F (t, q, 0) dt.

2. Notation and Preliminaries

In this paper all the manifolds are assumed to be real and smooth. Thus, for
simplicity, the term smooth will be omitted. Clearly, most of the statements
make sense even assuming less regularity of the involved manifolds. However,
we are not interested here in this more general situation.

Given two manifolds X and Y and a C1 map f : X → Y , the (first)
derivative of f at x ∈ X will be denoted by Df(x) or, also, by f ′(x). As
well-known, Df(x) is a linear operator sending the tangent space TxX of X
at x into the tangent space Tf(x)Y of Y at f(x).

When X = X1 × X2, the partial derivative with respect to the first (re-
spectively, the second) variable at (x1, x2) will be indicated with ∂1f(x1, x2)
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(respectively, ∂2f(x1, x2)). For any pair of tangent vectors (u1, u2) ∈ Tx1X1×
Tx2X2, one has

Df(x1, x2)(u1, u2) = ∂1f(x1, x2)u1 + ∂2f(x1, x2)u2.

In particular, if X1 = R, the partial derivative ∂1f(x1, x2), which is actually
a linear operator from R to the tangent space Tf(x1,x2)Y , will be identified
with the tangent vector ∂1f(x1, x2)(1) ∈ Tf(x1,x2)Y . With this notation, for
the (total) derivative Df(x1, x2) one has the equality

Df(x1, x2)(u1, u2) = u1∂1f(x1, x2) + ∂2f(x1, x2)u2,

where (u1, u2) ∈ R× Tx2X2.
When X and Y are Euclidean (or, more generally, Banach) spaces, the

second derivative of a C2 map f : X → Y at x ∈ X is a symmetric bilinear
operator from X to Y , i.e. an element of the space L2

s(X,Y ), and will be
denoted by D2f(x). A practical method for its computation is the following:
given u, v ∈ X, consider the function of two real variables σ(r, s) = f(x+ru+
sv); then,

D2f(x)(u, v) =
∂2σ

∂r∂s
(0, 0).

However, when f : X → Y acts between two differentiable manifolds, then
the second derivative of f at x ∈ X is not intrinsically defined, since only
a part of this derivative is independent of coordinates, as can be easily seen
by a simple computation. More precisely, one can define (see e.g. [1]) an
intrinsic symmetric bilinear operator Hf(x), called the Hessian of f at x,
acting from Ker Df(x) to coKer Df(x) = Tf(x)Y/Im Df(x), i.e. an element
of L2

s(Ker Df(x), coKer Df(x)). For example, if f is a real function on X and
x ∈ X is a critical point of f , then Ker Df(x) = TxX and coKer Df(x) = R.
Thus, in this case, Hf(x) is the classical Hessian, which can be regarded either
as a symmetric bilinear form or as a quadratic form on the tangent space TxX.

By taking charts ϕ : U ⊆ X → Rk and ψ : V ⊆ Y → Rl about x and
y = f(x) respectively, one can define Hf(x) as follows

Hf(x)(u, v) = π
(
Dψ−1(ψ(y))D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v)

)
, (2.1)

where u, v ∈ Ker Df(x), f̂ = ψ ◦ f ◦ ϕ−1, and π : TyY → TyY/Im Df(x)
is the canonical projection. We will show below that Hf(x) is a well-defined
element of L2

s(Ker Df(x), coKer Df(x)), i.e. that the above definition does
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not depend on the particular choice of the charts ϕ and ψ. More precisely, if
ϕ1 : U1 ⊆ X → Rk and ϕ2 : U2 ⊆ X → Rk are charts about x, ψ1 : V1 ⊆ Y →
Rl and ψ2 : V2 ⊆ Y → Rl are charts about y = f(x), we will show that

π
(
Dψ−1

1 (ψ1(y))D2f̂1(ϕ1(x))(Dϕ1(x)u,Dϕ1(x)v)
)

= π
(
Dψ−1

2 (ψ2(y))D2f̂2(ϕ2(x))(Dϕ2(x)u,Dϕ2(x)v)
)
,

(2.2)

where f̂i = ψi ◦ f ◦ ϕ−1
i : ϕi(Ui) ⊆ Rk → Rl, i = 1, 2. Clearly, one has

f̂2 = β ◦ f̂1 ◦α−1, where we have set α = ϕ2 ◦ϕ−1
1 and β = ψ2 ◦ψ−1

1 . In other
words, we are reduced to consider the diagram

ϕ1(U1)
f̂1−−−−→ ψ1(V1)

α

y
yβ

ϕ2(U2)
f̂2−−−−→ ψ2(V2)

(2.3)

and to investigate the relationship between the second derivatives D2f̂1 and
D2f̂2. This will be carried out in the following two steps.

Lemma 2.1. Let W1,W2 be open subsets of Rk, f1 : W1 → Rl be a C2 map,
α : W1 → W2 be a C2 diffeomorphism. Then, if f2 : W2 → Rl denotes the
composition f1 ◦ α−1 and x2 = α(x1), we have

(a) Df1(x1)u1 = Df2(x2)u2, where u1, u2 ∈ Rk are such that u2 =
Dα(x1)u1;

(b) w1 − w2 ∈ Im Df1(x1) = Im Df2(x2), where wi = D2fi(xi)(ui, vi)
with ui, vi ∈ Rk (i = 1, 2) such that u2 = Dα(x1)u1, v2 = Dα(x1)v1.

Proof. (a) The assertion follows immediately from the chain rule of the deriv-
ative.

(b) Let us compute the second derivative w1 = D2f1(x1)(u1, v1) and com-
pare it with w2 = D2f2(x2)(u2, v2). As observed above, it is enough to com-
pute the second derivative at the origin of the function of two real variables
σ1(r, s) = f1(x1 + ru1 + sv1) = f2(α(x1 + ru1 + sv1)). One has

∂σ1

∂r
(0, s) = Df2(α(x1 + sv1))Dα(x1 + sv1)u1

and
∂2σ1

∂s∂r
(0, 0) = D2f2(α(x1))(Dα(x1)u1, Dα(x1)v1)

+ Df2(α(x1))(D2α(x1)(u1, v1)).
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Therefore,

D2f1(x1)(u1, v1) = D2f2(x2)(u2, v2) + Df2(x2)(D2α(x1)(u1, v1)).

This means that w1 coincides with w2 up to an element belonging to Im
Df2(x2), as claimed. ¤
Lemma 2.2. Let W be an open subset of Rk, Ω1 and Ω2 open subsets of
Rl, f1 : W → Ω1 a C2 map, β : Ω1 → Ω2 a C2 diffeomorphism. Then, if
f2 : W → Ω2 denotes the composition β ◦ f1 and y1 = f1(x), we have

(a) Df2(x)u = Dβ(y1)(Df1(x)u), for any u ∈ Rk;
(b) Dβ(y1)w1 = w2 , where wi = D2fi(x)(u, v), i = 1, 2 , with u, v ∈

Ker Df1(x).

Proof. (a) The assertion follows immediately from the chain rule of the deriv-
ative.

(b) Given u, v ∈ Rk, let us compute D2f2(x)(u, v). As in Lemma 2.1,
consider the function σ2(r, s) = f2(x+ ru+ sv) = β(f1(x+ ru+ sv)). One has

∂σ2

∂r
(0, s) = Dβ(f1(x + sv))(Df1(x + sv)u)

and

∂2σ2

∂s∂r
(0, 0) = D2β(f1(x))(Df1(x)u,Df1(x)v) + Dβ(f1(x))(D2f1(x)(u, v)).

Now, by taking u, v ∈ Ker Df1(x), the first term in the above sum is zero.
Thus D2f2(x)(u, v) = Dβ(y1)(D2f1(x)(u, v)), and the assertion is proved.
¤

Observe now that the equality (2.2) follows by directly applying Lemmas 2.1
and 2.2, with α = ϕ2 ◦ ϕ−1

1 , β = ψ2 ◦ ψ−1
1 ,W1 = ϕ1(U1),W2 = ϕ2(U2),Ω1 =

ψ1(V1), Ω2 = ψ2(V2), and by recalling that π(w) = 0 if and only if w ∈
Im Df(x).

Remark 2.3. Let us compute in coordinates the derivative and the Hessian
of a smooth map f : X → Y between two manifolds X and Y . Given x ∈ X
and y = f(x) ∈ Y, let {xi}i=1,...,k and {yh}h=1,...,l be coordinate systems
about x and y, respectively. Thus, if u is a vector tangent to X at x, the
derivative Df(x)u in coordinates is given by

∑

h

( ∑

i

αi
∂fh

∂xi
(x)

)( ∂

∂yh

)
y
,
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where u =
∑

i αi

(
∂

∂xi

)
x

and fh = yh ◦ f. Moreover, if u and v are tangent

vectors belonging to Ker Df(x), it is not hard to check that the Hessian
Hf(x)(u, v) can be represented in coordinates, up to elements belonging to
the image of Df(x), as follows

∑

h

( ∑

i,j

αiβj
∂2fh

∂xi∂xj
(x)

)( ∂

∂yh

)
y
,

where v =
∑

j βj

(
∂

∂xj

)
x

.

The following property of Hf(x) will be used in the sequel.

Lemma 2.4. Let f : X → Y be a C2 map between two finite dimensional
manifolds and assume that f is constant on a submanifold M of X. Then,
given x ∈ M and u, v ∈ TxM one has Hf(x)(u, v) = 0.

Proof. Since f is constant in the submanifold M of X, then, according to
definition introduced in (2.1), given x ∈ M , the map f̂ : ϕ(U) → ψ(V )
is constant in ϕ(U ∩M), where we may assume that ϕ : U → W is a chart
about x transforming U∩M in W∩E, where E is a subspace of Rk. Therefore,
given u, v ∈ TxM , the corresponding vectors Dϕ(x)u, Dϕ(x)v belong to E.
Hence, the map σ̂(r, s) = f̂(ϕ(x) + rDϕ(x)u + sDϕ(x)v) is constant, so that

D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v) =
∂2σ̂

∂r∂s
(0, 0) = 0.

This clearly implies

Hf(x)(u, v) = π
(
Dψ−1(ψ(y))D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v)

)
= 0,

which is our assertion. ¤

3. General bifurcation

Let f, h : X → Y be maps between two finite dimensional manifolds and
consider the coincidence equation

f(x) = h(x). (3.1)

Let us denote by S the solution set to the above equation and suppose that
one is interested in regarding a distinguished subset M of S as the set of
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trivial solutions of (3.1). Consequently, S \ M will be the set of nontrivial
solutions. According to this terminology, a trivial solution p ∈ M will be
called a bifurcation point for the equation (3.1) if any neighborhood of p in X
contains elements of S \M . Actually, some structure is required on the trivial
set M; for instance, assume that

• the set M of trivial solutions of the equation (3.1) is an m-dimensional
manifold.

Our purpose now is to prove a necessary condition (Theorem 3.4 below)
and a sufficient condition (Theorem 3.6) for the coincidence equation (3.1) to
possess bifurcation from M . To this end, we will make use of finite dimensional
versions (Lemmas 3.1 and 3.2 below) of two results obtained in [5], by means
of the Implicit Function Theorem, in the more general context of Fredholm
maps between Banach spaces (a forthcoming joint paper with M. Martelli
will deal with coincidence problems for maps between Banach manifolds). In
particular, given a map g : Rk → Rl and a set M ⊆ g−1(0), an element
p ∈ M is a bifurcation point for the equation g(x) = 0 if any neighborhood of
p in Rk contains elements of g−1(0) \M . To understand the meaning of the
following lemma, observe that, if g is C1, the condition M ⊆ g−1(0) implies
TxM ⊆ Ker Dg(x) for all x ∈ M .

Lemma 3.1. Let g : Rk → Rl be a C1 map and let M be an m-dimensional
manifold contained in g−1(0). A necessary condition for p ∈ M to be a
bifurcation point (from M) for the equation g(x) = 0 is that dimKer Dg(p) >
m.

Lemma 3.2. Let g : Rk → Rl, with k − l = 1, be a C2 map and let M be an
m-dimensional manifold contained in g−1(0). Assume that for some p ∈ M
there exists u ∈ Ker Dg(p) \ TpM such that the linear operator

v ∈ TpM 7→ πD2g(p)(u, v) ,

where π : Rl → Rl/Im Dg(p) denotes the canonical projection, is onto. Then
p is a bifurcation point (from M) for the equation g(x) = 0.

Remark 3.3. Since in Lemma 3.2 we have assumed k − l = 1, we have

dimKer Dg(p) = 1 + dim(Rl/Im Dg(p)).

Moreover, the existence of u ∈ Ker Dg(p) \ TpM implies

dimKer Dg(p) > m.
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On the other hand, from the assumption that the map

v ∈ TpM 7→ πD2g(p)(u, v) ∈ Rl/Im Dg(p)

is onto, we get
dim(Rl/Im Dg(p)) ≤ dim TpM = m.

Therefore,
dim Ker Dg(p) = m + 1

and, thus, dim(Rl/Im Dg(p)) = m. Consequently, the map

v ∈ TpM 7→ πD2g(p)(u, v) ∈ Rl/Im Dg(p)

is also one-to-one. This shows that the surjectivity assumption of Lemma 3.2
can be replaced (as in [5]) with the following equivalent condition

{
dimKer Dg(p) = m + 1,

v ∈ TpM and D2g(p)(u, v) ∈ Im Dg(p) =⇒ v = 0 .
(3.2)

Let us now go back to the coincidence equation (3.1). We can prove the
following results.

Theorem 3.4. Let f, h : X → Y and M be as above, and let p ∈ M be a
bifurcation point for the equation (3.1). If f and h are C1 in a neighborhood
of p in X, then

dimKer (Df(p)−Dh(p)) > m.

Proof. Observe first that, as one can easily check, the notion of bifurcation and
the statement of the theorem are invariant under diffeomorphisms. Therefore,
recalling that a manifold is locally diffeomorphic to a whole Euclidean space,
one can think of f and h as maps between Euclidean spaces, say Rk and Rl.
Hence, the assertion follows by a straightforward application of Lemma 3.1 to
the map g = f − h. ¤
Remark 3.5. Observe that, for any x ∈ M , the following inclusion holds

TxM ⊆ Ker (Df(x)−Dh(x)). (3.3)

To see this, it suffices to reduce, as in the proof of Theorem 3.4, to the map
g : Rk → Rl, g = f − h, and to observe that the fact that g is constant on M
implies, as already observed, that TxM ⊆ Ker Dg(x), for all x ∈ M .



274 M. Furi and M. P. Pera

As a consequence of (3.3) and recalling that M is m-dimensional, one has

dimKer (Df(p)−Dh(p)) > m

if and only if TpM is strictly contained in Ker (Df(p) − Dh(p)). In other
words, the necessary condition of Theorem 3.4 is equivalent to the following:

there exists u 6∈ TpM such that Df(p)u = Dh(p)u.

Theorem 3.6. Let f, h : X → Y and M be as above, and suppose dim X −
dim Y = 1. Given p ∈ M , assume that f and h are C2 in a neighborhood of
p in X. If there exists u ∈ Ker (Df(p) −Dh(p)) \ TpM such that the linear
operator

Lu : TpM → Tf(p)Y/Im (Df(p)−Dh(p))

given by
Luv = Hf(p)(u, v)−Hh(p)(u, v)

is onto, then p is a bifurcation point (from M) for the equation (3.1).

Proof. As in the proof of Theorem 3.4, one can reduce to the case of a
map g = f − h acting between Euclidean spaces Rk and Rl and to an
m-dimensional manifold (still denoted by M) contained in g−1(0). In this
context, our assumption is transformed in the existence of p ∈ M and u ∈
Ker Dg(p) \ TpM such that the map v ∈ TpM 7→ Hg(p)(u, v) ∈ Rk/Im Dg(p)
is onto. Now, observe that the map Hg(p)(u, v) is nothing else but the com-
position πD2g(p)(u, v), where D2g(p) is the second derivative of g at p and
π : Rl → Rl/Im Dg(p) denotes the canonical projection. Consequently, the
condition that the map v ∈ TpM 7→ πD2g(p)(u, v) is onto implies, by Lemma
3.2, that p is a bifurcation point for the equation g(x) = 0. Thus, the same is
true also for the coincidence equation f(x) = h(x), as claimed. ¤
Remark 3.7. From the assumption dim X − dim Y = 1 it follows

dimKer (Df(p)−Dh(p)) = 1 + Tf(p)Y/Im (Df(p)−Dh(p)).

Therefore, as in Remark 3.3, it is easy to verify that the following conditions
in Theorem 3.6 are equivalent:

(a) Lu is onto;
(b) Lu is an isomorphism;
(c) dim Ker (Df(p)−Dh(p)) = m + 1 and Lu is one-to-one.
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Theorem 3.8. Let Lu be the linear operator defined in Theorem (3.6). Then,
the property of Lu of being onto does not depend on u ∈ Ker (Df(p)−Dh(p))\
TpM . More precisely, given u1 ∈ Ker (Df(p) − Dh(p)) \ TpM , there exists
α 6= 0 such that Lu1 = αLu.

Proof. Let u1 ∈ Ker (Df(p) −Dh(p)) \ TpM . Since, in view of Remark 3.7,
one has dim Ker (Df(p) − Dh(p)) = 1 + dim TpM , there exists α 6= 0 and
w ∈ TpM such that u1 = αu + w. Hence, recalling that (by Lemma 2.4)
the bilinear operator Hf(p) vanishes for pair of vectors in TpM , given any
v ∈ TpM , we obtain

Hf(p)(u1, v) = Hf(p)(αu + w, v) = αHf(p)(u, v) + Hf(p)(w, v)

= αHf(p)(u, v).

Analogously, Hh(p)(u1, ·) = αHh(p)(u, ·). Thus Lu1 = αLu, as claimed. ¤

4. Bifurcation of fixed points

In this section we are concerned with bifurcation for the parametrized fixed
point equation

f(λ, z) = z, (4.1)

where z belongs to a finite dimensional manifold Z and f is a Z-valued map
defined in R×Z or, more generally, in an open subset U of R×Z containing
{0} × Z. For any λ ∈ R we denote by fλ : Z → Z the partial map fλ(·) =
f(λ, ·). We use the notation Fix fλ to indicate the subset of Z of the fixed
points of fλ. Moreover, we set

S = {(λ, z) ∈ R× Z : f(λ, z) = z}

and we assume that

• there exists an m-dimensional submanifold M0 of Z such that f(0, z) =
z for all z ∈ M0.

In other words, we assume the existence of a distinguished subset M0 of Fix f0

in such a way that we can think of {0} × M0 ⊆ R × Z as the set of trivial
solutions to (4.1). Let us point out that M0 may be strictly contained in
Fix f0 and, in fact, this is precisely the situation we have in mind in view of
the applications to second order differential equations on manifolds that we
are going to present in the next section.
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We will say that an element p ∈ M0 is a bifurcation point of the equation
(4.1) if in any neighborhood of (0, p) there exists a nontrivial solution of (4.1),
i.e. a pair (λ, z) ∈ S \ ({0} ×M0).

Clearly, the equation (4.1) is a particular case of the coincidence equation
(3.1) with X = R×Z, Y = Z, M = {0}×M0 and h = P2, where P2 : R×Z →
Z is the projection onto the second component Z.

By using the terminology introduced in Section 3, we have here that p ∈ M0

is a bifurcation point of (4.1) if and only if (0, p) ∈ {0} ×M0 is a bifurcation
point for the coincidence equation f(λ, z) = P2(λ, z). We emphasize the fact
that, in the present context, a pair of the form (0, z), with z ∈ Fix f0 \M0,
must be considered as a nontrivial solution.

In this section, we are interested in obtaining, for the equation (4.1), nec-
essary conditions and sufficient conditions providing bifurcation from M0.

To this end, let z ∈ M0 and assume that f is C1 in a neighborhood of (0, z)
in R× Z. Denote by Iz the identity map on the tangent space TzZ. Since z
is a fixed point of the partial map f0, the partial derivative ∂2f(0, z) of f at
(0, z), which coincides with the derivative Df0(z) of f0 at z, maps TzZ into
itself. Consequently, the linear operator ∂2f(0, z)− Iz maps TzZ into itself as
well. Also observe that, since the derivative DP2(0, z) : R×TzZ → TzZ of P2

at (0, z) is the projection (µ, w) 7→ w, then the partial derivative ∂2P2(0, z) :
TzZ → TzZ coincides with Iz.

Straightforward consequences of Theorems 3.4 and 3.6 are the following
conditions for bifurcation.

Theorem 4.1. (Necessary condition) Let f : R×Z → Z and M0 be as above
and let p ∈ M0 be a bifurcation point of (4.1). If f is C1 in a neighborhood of
(0, p) in R×Z, then there exists (µ,w) ∈ (R× TpZ) \ ({0}× TpM0) such that

−µ∂1f(0, p) = ∂2f(0, p)w − w .

Proof. The assumption that (0, p) is a bifurcation point for the coincidence
equation f(λ, z) = P2(λ, z) implies, by Theorem 3.4,

dimKer (Df(0, p)−DP2(0, p)) > m .

Therefore, as already observed in Remark 3.5, the tangent space of M =
{0} ×M0 at (0, p) is strictly contained in the kernel of Df(0, p)−DP2(0, p).
Thus, there exists (µ, w) 6∈ T(0,p)M = {0} × TpM0 such that

µ∂1f(0, p) + ∂2f(0, p)w − w = 0,

which is our assertion. ¤
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Theorem 4.2. (Sufficient condition) Let f : R×Z → Z and M0 be as above
and let p ∈ M0. Assume that f is C2 in a neighborhood of (0, p) in R × Z,
and that there exists (µ,w) ∈ (R× TpZ) \ ({0} × TpM0) such that

−µ∂1f(0, p) = ∂2f(0, p)w − w .

If the linear operator

v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) ∈ TpZ/Im (Df(0, p)−DP2(0, p))

is onto, then p is a bifurcation point of (4.1) from M0.

Proof. The assertion follows immediately by applying Theorem 3.6 to the
coincidence equation f(λ, z) = P2(λ, z), noting that the equality µ∂1f(0, p) +
∂2f(0, p)w − w = 0 is equivalent to (µ,w) ∈ Ker (Df(0, p)−DP2(0, p)), and
that, obviously, one has HP2(0, p) = 0. ¤
Remark 4.3. In the case of the bifurcation equation (4.1), one clearly has
dim(R × Z) − dim Z = 1. Therefore, similar arguments to those in Remarks
3.3 and 3.7 prove that the following conditions in Theorem 4.2 are equivalent

(a) the map v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) is onto;
(b) the map v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) is an isomorphism;
(c) dim Ker (Df(0, p) − DP2(0, p)) = m + 1 and the map v ∈ TpM0 7→

Hf((0, p))((µ,w), (0, v)) is one-to-one.

As already pointed out, the manifold M0 may be strictly contained in the
set Fix f0. Thus, the nontrivial pairs (λ, z) involved in equation (4.1) may
have λ = 0. However, as we shall see later, an extra condition yielding that
any nontrivial pair sufficiently close to {0} × M0 has λ 6= 0 turns out to
be satisfied in many applications to differential equations. In the abstract
setting, such a condition can be interpreted by assuming that f is C1 in a
neighborhood of {0} ×M0 and that

TzM0 = Ker (∂2f(0, z)− Iz) for all z ∈ M0 . (H)

Lemma 4.4 below shows that M0 is isolated in the set Fix f0, provided that
(H) is satisfied.

Lemma 4.4. Assume that f is C1 in a neighborhood of a given (0, p) ∈
{0} ×M0 and that condition

TpM0 = Ker (∂2f(0, p)− Ip) (Hp)
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is satisfied. Then, there exists a neighborhood V of (0, p) in R× Z such that
if (λ, z) ∈ V is a nontrivial solution of (4.1), then λ 6= 0. Consequently, if
condition (H) is satisfied, there exists an isolating neighborhood W of M0 in
Z, i.e. M0 = Fix f0 ∩W .

Proof. Assume by contradiction that in any neighborhood of (0, p) in R × Z
there exists a solution (0, z) of (4.1) with z ∈ Fix f0 \ M0. This means
that p is a bifurcation point, relatively to the manifold Z, for the coincidence
equation f(0, z) = z. Therefore, by applying Theorem 3.4 to f0 = f(0, ·), to
the identity of Z and to M0, one gets dim Ker (Df0(p)−Ip) > m = dim TpM0.
This contradicts condition (Hp), and the first assertion is proved. The last
statement is a trivial consequence. ¤

Corollary 4.5 below is a direct consequence of Theorem 4.1 and assumption
(Hp).

Corollary 4.5. Let p ∈ M0 and f : R×Z → Z be as in Theorem 4.1. Assume
that (Hp) is satisfied. Then, a necessary condition for p to be a bifurcation
point of (4.1) is that there exists w ∈ TpZ such that

∂1f(0, p) = ∂2f(0, p)w − w .

Proof. By Theorem 4.1, there exists (µ, ŵ) ∈ (R× TpZ) \ ({0} × TpM0) such
that

−µ∂1f(0, p) = ∂2f(0, p)ŵ − ŵ .

Now, if µ 6= 0, then, by setting w = −ŵ/µ, we obtain ∂1f(0, p) = ∂2f(0, p)w−
w, as claimed. Let us show that µ cannot be equal to zero. In fact, otherwise,
∂2f(0, p)ŵ−ŵ = 0; that is, ŵ ∈ Ker (∂2f(0, p)−Ip). By assumption (Hp), this
implies ŵ ∈ TpM0 and, thus, (0, ŵ) ∈ T(0,p)M = {0}×TpM0, a contradiction.
¤
Remark 4.6. The above necessary condition can be interpreted as the fact
that, if (Hp) is satisfied, then one can find w ∈ TpZ such that the vector
(1,−w), which is tangent to R×Z at (0, p), belongs to the kernel of Df(0, p)−
DP2(0, p).

In this case, an equivalent manner of writing the necessary condition is also

∂1f(0, p) ∈ Im (∂2f(0, p)− Ip) .

The following particular case of Theorem 4.2 will be used in the applications
to differential equations presented in the next section.
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Corollary 4.7. Let p ∈ M0 and f : R×Z → Z be as in Theorem 4.2. Assume
that, there exists w ∈ TpZ such that

∂1f(0, p) = ∂2f(0, p)w − w .

If the linear operator

v ∈ TpM0 7→ Hf((0, p))((1,−w), (0, v)) ∈ TpZ/Im (∂2f(0, p)− Ip)

is onto, then p is a bifurcation point of (4.1) from M0. In addition, any
nontrivial solution (λ, z) of (4.1) close to (0, p) has λ 6= 0.

Proof. Apply Theorem 4.2 with the pair (1,−w) and observe that the as-
sumption ∂1f(0, p) ∈ Im (∂2f(0, p)− Ip) implies

Im (∂2f(0, p)− Ip) = Im (Df(0, p)−DP2(0, p)).

Thus, p is a bifurcation point of (4.1).
In order to prove the last assertion, according to Lemma 4.4 it is enough to

show that the assumptions in the corollary guarantee the validity of condition
(Hp). To this end, observe first that, from Remark 4.3, we get

dimKer (Df(0, p)−DP2(0, p)) = m + 1.

Moreover, the existence of a vector w ∈ TpZ such that

(1,−w) ∈ Ker (Df(0, p)−DP2(0, p))

clearly implies

dim
(
Ker (Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)

)
< m + 1 .

On the other hand, since

Ker (Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)

contains {0} × TpM0, one has

dim
(
Ker (Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)

)
≥ dim({0} × TpM0) = m.

Therefore,

dim
(
Ker (Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)

)
= m

and (Hp) follows noting that

Ker (Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ) = {0} ×Ker (∂2f(0, p)− Ip).

Consequently, by Lemma 4.4, any nontrivial solution (λ, z) of (4.1) close to
(0, p) has λ 6= 0. ¤
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Remark 4.8. In the case when dim M0 = 1, the linear operator

v ∈ TpM0 7→ Hf((0, p))((1,−w), (0, v)) ∈ TpZ/Im (∂2f(0, p)− Ip)

introduced in Corollary 4.7 is a map between 1-dimensional spaces. Thus, our
assumption that such an operator is onto can be interpreted as a Crandall-
Rabinowitz type condition ([3]).

In order to illustrate how the assumptions in Corollary 4.5 and 4.7 above
can be explicitly computed in local coordinates, we give below two examples
of parametrized fixed point equations in the projective space P2.

Example 4.9. Let P2 be the 2-dimensional projective space. We can think of
P2 as the Grassmannian G1(R3); that is, the smooth manifold of all straight
lines in R3 through the origin. Consider the map σ : [−π/2, π/2]×R→ P2 that
associates to any (θ, ϕ) ∈ [−π/2, π/2]×R the straight line of P2 containing the
point (cos θ cos ϕ, cos θ sin ϕ, sin θ). It is easy to check that σ is a quotient map,
i.e. that a set A ⊆ P2 is open if and only if σ−1(A) is open in [−π/2, π/2]×R.
As in the terminology used for the coordinates of the Earth, θ will be called
the latitude and ϕ the longitude. Moreover, the Equator is the image of {0}×R
(under σ) and the North-South Pole (that is, the vertical line), denoted NS,
is the element σ({π/2} × R) or, equivalently, σ({−π/2} × R). Consider the
map

f̂ : R× [−π/2, π/2]× R→ [−π/2, π/2]× R
given by f̂(λ, θ, ϕ) = (−θ + sin λ sin θ, ϕ + sin λ sinϕ). Since f̂ sends fibers of
the quotient map I×σ (here I denotes the identity of R) into fibers of σ, then
it induces a well-defined map f : R× P2 → P2, which is continuous since σ is
a quotient map. One can also check that f is smooth on R× (P2 \NS). By
taking Z = P2 and f as above, we are reduced in R × P2 to a parametrized
fixed point equation as (4.1). For λ = 0, the fixed points of f0 = f(0, ·) are
the elements of the Equator and the North-South Pole. It is quite natural to
think of the Equator, which obviously is a 1-dimensional submanifold of P2,
as the set M0 of trivial fixed points of f0. Let us consider in the Equator
the element p = σ(0, 0); that is, the line through the origin and (1, 0, 0). It
is immediately seen that p is a bifurcation point from the Equator, since any
pair (λ, p) ∈ R× P2 is a solution to our equation (and is nontrivial if λ 6= 0).
Our aim here is to compute in coordinates for such a bifurcation point p and
for the map f defined above the necessary condition as well as the sufficient
condition given in Corollaries 4.5 and 4.7. To this end observe first that the
restriction of σ to the open subset (−π/2, π/2) × (−π/2, π/2) is clearly a
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smooth parametrization of a neighborhood U of p in P2. Thus, its inverse
z ∈ U 7→ (θ(z), ϕ(z)) is a system of coordinates about p sending p in (0, 0).
Let us take the same local coordinates (θ, ϕ) about p ∈ P2 both for p in the
domain of f0 and in its image. By recalling Remark 2.3, it is easy to verify
that, if w is a vector tangent to P2 at p, w = α1

(
∂
∂θ

)
p

+ α2

(
∂

∂ϕ

)
p
, then the

vector (∂2f(0, p)− Ip)w is given by

−α1

( ∂

∂θ

)
p

+ α2

( ∂

∂ϕ

)
p
− α1

( ∂

∂θ

)
p
− α2

( ∂

∂ϕ

)
p

= −2α1

( ∂

∂θ

)
p
.

In other words, the image of the linear map ∂2f(0, p)−Ip consists of the vectors
which are tangent at p to the meridian passing through p and its kernel consists
of the vectors which are tangent to the Equator at p. Therefore, assumption
(Hp) holds and, since the derivative ∂1f(0, p) of f with respect to λ at (0, p) is

represented by
(

∂
∂θ

)
p
, the necessary condition “∂1f(0, p) = ∂2f(0, p)w−w, for

some w ∈ TpP2”, stated in Corollary 4.5, is clearly satisfied with α1 = −1/2.
As regards the sufficient condition of Corollary 4.7, if w is as above and v is
a vector tangent to the Equator at p, say v = β

(
∂

∂ϕ

)
p
, then (again recall Re-

mark 2.3) an easy computation shows that the Hessian Hf(0, p)((1,−w)(0, v))
can be represented as 2β

(
∂

∂ϕ

)
p
, up to elements belonging to the image of

∂2f(0, p) − Ip; that is, up to vectors of the form γ
(

∂
∂θ

)
p
. Thus, since if

β 6= 0 such an element does not belong to Im (∂2f(0, p)− Ip), this proves that
the linear operator v 7→ Hf((0, p))((1,−w), (0, v)) is onto, and the sufficient
condition stated in Corollary 4.7 is verified.

In Example 4.10 below, the dimension of the manifold M0 of trivial fixed
points is strictly greater than 1; that is, grater than the difference between
the dimension of X = R × P2 and that of Y = P2. Consequently, since this
difference is an integer representing the Fredholm index of the map f , our
example cannot be interpreted, as the previous one, in the context of the
Crandall-Rabinowitz bifurcation result.

Example 4.10. Given the quotient map σ as in Example 4.9, let us consider
the map f : R×P2 → P2 induced by f̂(λ, θ, ϕ) = (θ+sin λ sin θ, ϕ+sin λ sin ϕ).
For λ = 0, any element of P2 is clearly a fixed point of f0 and will be assumed
to be a trivial fixed point. Consequently, M0 coincides with the whole space
Z = P2. As previously, let us take the element p = σ(0, 0) of the Equator to
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be the bifurcation point at which computing the conditions of Corollaries 4.5
and 4.7. It is immediately seen that, in this case, ∂2f(0, p) − Ip is the null
operator. Thus,

Ker (∂2f(0, p)− Ip) = TpP2 and Im (∂2f(0, p)− Ip) = {0}.

Moreover, since ∂1f(0, p) = 0, the necessary condition of Corollary 4.5 is
satisfied with any w ∈ TpP2. Let us take, for simplicity, w = 0 and ob-
serve that if v is any vector in TpM0, then Hf((0, p))((1, 0), (0, v)) belongs to
TpM0 as well (recall that here TpZ = TpM0 and Im (∂2f(0, p) − Ip) = {0}).
Hence, if v = β1

(
∂
∂θ

)
p

+ β2

(
∂

∂ϕ

)
p
, by computing Hf((0, p))((1, 0), (0, v)),

one gets again β1

(
∂
∂θ

)
p

+ β2

(
∂

∂ϕ

)
p
. This shows that the linear operator

v 7→ Hf((0, p))((1, 0), (0, v)) is onto, as required by our sufficient condition.

5. Applications to differential equations

In this section we give an application to second order differential equations
on manifolds of the obtained bifurcation results. Similar results have been
obtained in [6] by means of topological tools, as the fixed point index and
its relationship with the degree of a tangent vector field on a differentiable
manifold.

Let N be an m-dimensional manifold in Rs. As previously, given q ∈ N , let
TqN ⊆ Rs and (TqN)⊥ ⊆ Rs denote, respectively, the tangent space and the
normal space of N at q. Given any q ∈ N and any u ∈ Rs, the vector u can
be uniquely decomposed into a parallel component uπ ∈ TqN and a normal
component uν ∈ (TqN)⊥. Obviously, the decomposition of u depends on the
chosen element q. By

TN = {(q, v) ∈ Rs × Rs : q ∈ N , v ∈ TqN}

we indicate the tangent bundle of N . Clearly, TN contains a natural copy of
N via the embedding q 7→ (q, 0).

Let F : R× TN → Rs be a continuous map such that F (t, q, v) ∈ TqN for
all (t, q, v) ∈ R×TN . For brevity, we will say that F is tangent to N although
it is not a tangent vector field on N .

We will consider in N the parametrized motion equation

..
xπ = λF (t, x, ẋ), λ ∈ R . (5.1)
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A solution of (5.1), corresponding to a given λ ∈ R, is a C2 map x : J → N ,
defined on a nontrivial interval J , such that

..
xπ(t) = λF (t, x(t), ẋ(t)) for all

t ∈ J , where
..
xπ(t) is the parallel (or tangential) part of the acceleration

..
x(t) ∈ Rs and is obtained by taking the orthogonal projection of

..
x(t) onto

Tx(t)N .
It is known that there exists a unique smooth map r : TN → Rs, called

the reactive force (or inertial reaction) with the following properties:
(a) r(q, v) ∈ (TqN)⊥ for any (q, v) ∈ TN ;
(b) r is quadratic in the second variable;
(c) any C2 curve x : J → N is a solution of the differential equation

..
xν = r(x, ẋ),

i.e., for any t ∈ J , the normal component
..
xν(t) of the acceleration

..
x(t)

equals r(x(t), ẋ(t)).
The map r is strictly related to the second fundamental form on N and

may be interpreted as the reactive force due to the constraint N . Actually,
given (q, v) ∈ TN , r(q, v) is the unique vector of Rs which makes (v, r(q, v))
tangent to TN at (q, v).

Due to condition (c) above, equation (5.1) can be equivalently written as

..
x = r(x, ẋ) + λF (t, x, ẋ). (5.2)

For λ = 0, it reduces to the so-called inertial equation

..
x = r(x, ẋ) ,

whose solutions are the geodesics of N .
Clearly, (5.2) can be written, in an equivalent way, as a first order order

differential equation on TN as follows:

{
ẋ = y

ẏ = r(x, y) + λF (t, x, y) ,
(5.3)

where, as it is not hard to verify, the map

(λ, t, q, v) ∈ R× R× TN 7→ (v, r(q, v) + λF (t, q, v)) ∈ Rs × Rs

is a tangent vector field on TN .
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For a more extensive treatment on the subject of second-order ODEs on
manifolds from this embedded viewpoint see e.g. [4].

Assume from now on that F is T -periodic with respect to t and (at least)
C1. In what follows, we will be concerned with T -periodic solutions of the
motion equation (5.1). More precisely, a pair (λ, x), with λ ∈ R and x : R→ N
a T -periodic solution of (5.1) corresponding to λ, will be called a T -pair of
(5.1).

Let

D = {(λ, q, v) ∈ R× TN : the maximal solution (x(·), y(·)) of (5.3)

satisfying x(0) = q, y(0) = v is defined in [0, T ]},
and let PT : D → TN be the Poincaré T-translation operator which associates
to any (λ, q, v) ∈ D the value (x(T ), y(T )) at time T of the solution of (5.3)
with initial conditions (q, v). It can be shown that D is an open set (clearly
containing {0} × N × {0}) and that PT is Ck provided that so is F . Since
we will deal with a local problem, for the sake of simplicity we assume D =
R×TN . However, all the statements below remain true also in the case when
D is a proper subset of R×TN , but their proofs require cumbersome notation.

Consider the parametrized fixed point equation

PT (λ, q, v) = (q, v). (5.4)

The equation (5.4) is strictly related to the T -periodic problem associated
with equation (5.1). More precisely, a triple (λ, q, v) is such that PT (λ, q, v) =
(q, v) if and only if (λ, x) with x(·) a solution of (5.1) corresponding to λ and
satisfying x(0) = q, ẋ(0) = v, is a T -pair of (5.1). Such a triple (λ, q, v) is also
called a starting point of the T -pair (λ, x).

When λ = 0, the fixed points (q, v) of PT
0 = PT (0, ·, ·) are initial conditions

of closed (T -periodic) geodesics on N . Among these pairs, those of the form
(q, 0) correspond to the constant solutions x(t) ≡ q. Therefore, as far as we
are concerned with equation (5.4), it turns out to be quite natural to think of
the starting points (0, q, 0), q ∈ N , as the trivial ones. We will be interested
in detecting those elements (q, 0) ∈ N × {0} such that in any neighborhood
of (0, q, 0) in R× TN there exists a nontrivial starting point. More precisely,
we will apply the results of Section 4, with Z = TN, M0 = N × {0} and
f = PT , in order to obtain a necessary condition and a sufficient condition
for a pair (q, 0) ∈ N × {0} to be a bifurcation point for the equation (5.4).
As already pointed out (see Section 4), in the second order ODEs context
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that we are investigating here, the set N × {0} may be strictly contained in
Fix PT

0 . In other words, there may exist triples (0, q, v), with (q, v) belonging
to Fix PT

0 \ (N × {0}) that are (nontrivial) starting points of nonconstant
T -periodic geodesics on N . For example, this occurs for the inertial motion
on a sphere.

In what follows, we will say that a constant solution x(t) ≡ q0 ∈ N is a
bifurcation point of (the second order equation) (5.1) if (q0, 0) ∈ TN is a bifur-
cation point of PT (λ, q, v) = (q, v). Due to the continuous dependence of the
solutions of differential equations on the initial conditions, given a bifurcation
point t 7→ q0 of (5.1), if (λ, x) is a T -pair associated with a nontrivial starting
point (λ, q, v) close in R × TN to the triple (0, q0, 0), then λ is close to 0 in
R and t 7→ x(t) is close to t 7→ q0 in the usual C1 norm. Thus, a bifurcation
point of the motion equation (5.1) has, in some sense, also an infinite dimen-
sional meaning since it can be interpreted as a bifurcation point of T -pairs as
well.

We recall below a well-known result on ODEs that we will use several times
in the sequel (see e.g. [2]).

Theorem 5.1. Consider the following initial value problem
{

ẋ = g(t, x)
x(0) = a ,

(5.5)

where g : [0, +∞) × Rn → Rn is a C1 function and a ∈ Rn. Assume that,
for any a ∈ Rn, the solutions of (5.5) are continuable at least to T . Let
ΦT : Rn → Rn be the translation operator which associates to a ∈ Rn the
value x(T ) of the solution of ẋ = g(t, x) such that x(0) = a. Then, ΦT is C1

and, for any a ∈ Rn and h ∈ Rn, the derivative DΦT (a)h of ΦT at the point
a along the vector h coincides with the value at the time T of the solution ξ(·)
of the linear problem {

ξ̇ = ∂2g(t, x0(t)) ξ

ξ(0) = h ,

where x0(·) is the solution of ẋ = g(t, x) with initial value a.

It is well-known that in a Riemannian manifold there are no nonconstant
closed geodesics too close to a given point. Roughly speaking, this fact, if
interpreted in our context, means that the manifold N × {0} ⊆ TN is iso-
lated in FixPT

0 . As already observed in Section 4 (see Lemma 4.4), this is a
consequence of condition H. Actually, we prove below that the T-translation
operator PT in (5.4) satisfies assumption H. As a by-product, according to
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Lemma 4.4, we will obtain that if (q0, 0), q0 ∈ N, is any bifurcation point of
(5.4), then there exists a neighborhood of (0, q0, 0) in R × TN in which any
nontrivial solution (λ, q, v) of (5.4) has necessarily λ 6= 0.

Theorem 5.2. The T-translation operator PT satisfies assumption (H) of
Section 4 with M0 = N × {0}, i.e., for any q ∈ N , one has

T(q,0)(N × {0}) = Ker (DPT
0 (q, 0)− I(q,0)) (5.6)

(here I(q,0) denotes the identity map on the tangent space T(q,0)TN).

Proof. In order to prove that PT satisfies (5.6), we need first to compute
the derivative of PT

0 at any point (q, 0), q ∈ N . To this end observe that,
since N is an m-dimensional manifold in Rs, there exists a diffeomorphism
of a neighborhood of q in N onto Rm. Clearly, this diffeomorphism can be
extended to a C∞ map ϕ defined on an open neighborhood of q in Rs. Since
we are dealing with local problems, without loss of generality we may therefore
assume that ϕ is a map from an open neighborhood U of N in Rs and that
the restriction of ϕ to N is a diffeomorphism onto Rm. The map ϕ induces
on the fiber bundle TU = U × Rs the tangent map

Tϕ : TU → Rm × Rm, (x, y) 7→ (ϕ(x), Dϕ(x)y).

Since the restriction ϕ|N : N → Rm of ϕ to N is a diffeomorphism, so is the
tangent map T (ϕ|N ) : TN → Rm ×Rm. By means of the change of variables

{
x1 = ϕ(x)
y1 = Dϕ(x)y ,

system (5.3) is transformed, after some calculations, in a first order system in
Rm × Rm of the form

{
ẋ1 = y1

ẏ1 = s(x1, y1) + λG(t, x1, y1) ,
(5.7)

where s is quadratic in y1 for any fixed x1 and G is the vector field which
corresponds to F under Dϕ. More precisely, we have

s(x1, y1) = D2ϕ(ϕ−1(x1))
((

D(ϕ−1(x1))
)−1

y1,
(
D(ϕ−1(x1))

)−1
y1

)

+ Dϕ
(
ϕ−1(x1)

)
r
(
ϕ−1(x1),

(
D(ϕ−1(x1))

)−1
y1

)
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and

G(t, x1, y1) = Dϕ
(
ϕ−1(x1)

)
F

(
t, ϕ−1(x1),

(
D(ϕ−1(x1))

)−1
y1

)
.

Moreover, it is easy to see that the Poincaré T -translation operator QT which
associates to any (λ, q̂, v̂) ∈ R×Rm ×Rm the value (x1(T ), y1(T )) at time T
of the solution of (5.7) with initial condition (q̂, v̂) corresponds to PT under
T (ϕ|N ).

Our aim is to apply Theorem 5.1 to system (5.7) with λ = 0. We need
to linearize (5.7) about the constant solution (x1(t), y1(t)) ≡ (q̂, 0) ∈ Rm ×
{0}. Since s(x1, 0) = 0 for all x1 ∈ Rm, one has ∂1s(q̂, 0) = 0. Moreover,
recalling that s is quadratic in the second variable, one also gets ∂2s(q̂, 0) = 0.
Thus Ds(q̂, o) = 0, and the required linearization is given by the initial value
problem 




ξ̇ = η

η̇ = 0
ξ(0) = h

η(0) = k,

(5.8)

with (h, k) ∈ Rm × Rm. By Theorem 5.1, the derivative DQT
0 (q̂, 0)(h, k) of

QT
0 := QT (0, ·, ·) at (q̂, 0) in (h, k) coincides with the value (ξ(T ), η(T )) of the

solution of (5.8). By computing (ξ(T ), η(T )) one gets
{

ξ(T ) = h + kT

η(T ) = k.

Consequently,
(
DQT

0 (q̂, 0)− I
)
(h, k) = (h + kT − h, k − k) = (kT, 0), (5.9)

where I denotes the identity of Rm × Rm. Thus, the kernel of DQT
0 (q̂, 0)− I

is the subset of Rm × Rm given by

{(h, k) ∈ Rm × Rm : k = 0} = Rm × {0}.

Therefore, going back to the manifold N , we have

Ker
(
DPT

0 (q, 0)− I(q,0)

)
= TqN × {0}

and noting that
T(q,0)(N × {0}) = TqN × {0} ,
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the assertion follows. ¤

Let us now consider the average force F̄ : N → Rs given by

F̄ (q) =
1
T

∫ T

0

F (t, q, 0)dt .

Clearly, F̄ is an autonomous tangent vector field on N . The zeros of the
average force play an important role in obtaining bifurcation conditions for
the second order equation (5.1). Results similar to Theorems 5.3 and 5.4
below can be deduced also from the global bifurcation context discussed in [6]
by means of topological degree methods.

Theorem 5.3. (Necessary condition) Assume that the constant solution t 7→
q0 ∈ N is a bifurcation point of the motion equation (5.1). Then F̄ (q0) = 0.

Proof. By definition, the constant solution x(t) ≡ q0 ∈ N is a bifurcation point
of (5.1) if and only if (q0, 0) ∈ TN is a bifurcation point of PT (λ, q, v) = (q, v).
Our aim is to apply Corollary 4.5 to the Poincaré T -translation operator PT

and to the bifurcation point (q0, 0). To this end, observe first that, as proved in
Theorem 5.2, assumption (H) is satisfied. Therefore, by Corollary 4.5 (see also
Remark 4.6), it follows that a necessary condition for (q0, 0) to be a bifurcation
point of (5.4) is that there exists w = (w1, w2) ∈ T(q0,0)TN = Tq0N × Tq0N
such that

(1,−w1,−w2) ∈ Ker (DPT (0, q0, 0)−DP2(0, q0, 0)), (5.10)

where P2 : R×TN → TN denotes the projection onto the second component
TN .

As in the proof of Theorem 5.2, in order to compute DPT (0, q0, 0) we can
reduce to Rm and apply Theorem 5.1 to the following initial value problem in
R× Rm × Rm 




λ̇ = 0
ẋ1 = y1

ẏ1 = s(x1, y1) + λG(t, x1, y1)
λ(0) = λ

x1(0) = q̂

y1(0) = v̂

(5.11)

with (q̂, v̂) ∈ Rm × Rm.
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By linearizing (5.11) about the constant solution (λ(t), x1(t), y1(t)) ≡
(0, q̂0, 0) ∈ {0} × Rm × {0} (here q̂0 is the point of Rm that corresponds to
q0 ∈ N under the diffeomorphism ϕ), we get




µ̇ = 0

ξ̇ = η

η̇ = µG(t, q̂0, 0)
µ(0) = µ

ξ(0) = h

η(0) = k

whose solution at time T is



µ(T ) = µ

ξ(T ) = h + kT + µ
∫ T

0
(T − t)G(t, q̂0, 0)dt

η(T ) = k + µ
∫ T

0
G(t, q̂0, 0)dt

By Theorem 5.1, the triple (µ(T ), ξ(T ), η(T )) coincides with the value along
the vector (µ, h, k) of the derivative at (0, q̂0, 0) of the translation operator
associated with (5.11). In particular, the derivative of the Poincaré operator
QT at (0, q̂0, 0) along (µ, h, k) is given by the last two components (ξ(T ), η(T )),
i.e.

DQT (0, q̂0, 0)(µ, h, k)

= (h + kT + µ

∫ T

0

(T − t)G(t, q̂0, 0)dt, k + µ

∫ T

0

G(t, q̂0, 0)dt).
(5.12)

Consequently, by again interpreting the above operator in R × TN , we
obtain

DPT (0, q0, 0)(µ, u1, u2)−DP2(0, q0, 0)(µ, u1, u2)

=
(
u2T + µ

∫ T

0

(T − t)F (t, q0, 0)dt, µ

∫ T

0

F (t, q0, 0)dt
)
,

where (u1, u2) ∈ T(q0,0)TN .
Thus, the triple (1,−w1,−w2) of (5.10) must satisfy

(
− w2T +

∫ T

0

(T − t)F (t, q0, 0)dt,

∫ T

0

F (t, q0, 0)dt
)

= (0, 0). (5.13)

This implies

F̄ (q0) =
1
T

∫ T

0

F (t, q0, 0)dt = 0,

which is our assertion. ¤
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Theorem 5.4. (Sufficient condition) Let F be C2 and assume that q0 ∈ N
is a zero of the average force F̄ such that DF̄ (q0) : Tq0N → Rs is one-to-one.
Then, the constant solution t 7→ q0 is a bifurcation point of (5.1).

Proof. According to our definition, q0 ∈ N is a bifurcation point of (5.1) if
(q0, 0) is a bifurcation point of (5.4) from N × {0}. We will apply Corollary
4.7 with Z = TN, M0 = N × {0}, f = PT , p = (q0, 0). Since F̄ (q0) = 0, by
taking w = (0, w2) with

w2 = − 1
T

∫ T

0

tF (t, q0, 0)dt,

from (5.13) one has

(1, 0,−w2) ∈ Ker (DPT (0, q0, 0)−DP2(0, q0, 0))

or, equivalently,

∂1P
T (0, q0, 0) = (DPT

0 (q0, 0)− I(q0,0))w,

as required in Corollary 4.7.
Therefore, in order to prove that (q0, 0) is a bifurcation point, it remains

to show that the linear operator

q̇ ∈ Tq0N 7→ HPT (0, q0, 0)((1, 0,−w2), (0, q̇, 0))

∈ T(q0,0)TN/Im (DPT
0 (q0, 0)− I(q0,0))

is onto or, equivalently, that it is one-to-one (recall Remark 4.3 and observe
that the dimension of Ker (DPT (0, q0, 0) −DP2(0, q0, 0)) is m + 1). To this
end, as in Theorem 5.2, we may reduce to system (5.7) in Rm × Rm and
consider the linear operator L : Rm → Rm × Rm given by

L(h) = D2QT (0, q̂0, 0)
(
(1, 0,−ŵ2), (0, h, 0)

)
,

where q̂0 and ŵ2 are the elements in Rm that correspond to q0 and w2 respec-
tively, and, as previously, QT is the Poincaré T -translation operator that cor-
responds to PT under T (ϕ|N ). Since our statements are invariant under diffeo-
morphisms, it is enough to prove that if L(h) belongs to Im

(
DQT

0 (q̂0, 0)− I
)
,

then h = 0.
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As well-known, L(h) can be calculated by introducing the map

γ : Rm → Rm × Rm, x1 7→ DQT
(
(0, x1, 0)

)
(1, 0,−ŵ2),

and by taking the derivative Dγ(q̂0)(h). Thus, recalling (5.12), a standard
computation gives

L(h) =
( ∫ T

0

(T − t)∂2G(t, q̂0, 0)h dt,

∫ T

0

∂2G(t, q̂0, 0)h dt
)

.

On the other hand, from (5.9), we get immediately

Im
(
DQT

0 (q̂0, 0)− I
)

=Ker
(
DQT

0 (q̂0, 0)− I
)

=Rm × {0}.

Consequently, if L(h) belongs to Im
(
DQT

0 (q̂0, 0)− I
)
, then

∫ T

0

∂2G(t, q̂0, 0)h dt = 0. (5.14)

To achieve the proof, we will show that (5.14) implies h = 0. To see this,
observe that the term

∫ T

0
∂2G(t, q̂0, 0)h dt coincides with the derivative of the

map q̂ 7→ ∫ T

0
G(t, q̂, 0) dt at q̂0 along h. Therefore, our claim will follow from

the injectivity of the above derivative. Clearly, up to diffeomorphisms, this
operator coincides with the derivative of the average force F̄ at q0. Thus, it
turns out to be one-to-one, since we have assumed that so is DF̄ (q0). ¤

References

1. A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Encyclo-
pedia of Math. Sciences 87, Control Theory and Optimization, 2004.

2. H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis,
de Gruyter Studies in Math. 13, Walter de Gruyter and Co., Berlin, 1990.

3. M. G. Crandall and P. H. Rabinowitz, Bifurcation from Simple Eigenvalues, J. Funct.
Anal. 8 (1971), 321–340.

4. M. Furi, Second order differential equations on manifolds and forced oscillations, Topo-
logical Methods in Differential Equations and Inclusions, A. Granas and M. Frigon Eds.,
Kluwer Acad. Publ. series C, vol. 472, 1995.

5. M. Furi, M. Martelli and M. P. Pera, General Bifurcation Theory: Some Local Results
and Applications, Differential Equations and Applications to Biology and to Indus-
try, Cooke K., Cumberbatch E., Martelli M., Tang B. and Thieme H. Editors, World
Scientific, 1996, pp. 101–115.



292 M. Furi and M. P. Pera

6. M. Furi and M. P. Pera, A Continuation Principle for Periodic Solutions of Forced
Motion Equations on Manifolds and Applications to Bifurcation Theory, Pacific J.
Math. 160 (1993), 219–244.

7. M. Furi and M. P. Pera, Global Bifurcation of Fixed Points and the Poincaré Transla-
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