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MAPPINGS BETWEEN BANACH SPACES

Ji Gao

Abstract. Let X be a Banach space and let X̃ be a class of spaces isomorphic
to X with a pseudo metric4(Y, Z) = inf{ln ‖T‖·‖T−1‖ : Y, Z ∈ X̃, T : Y → Z
is an isomorphism }. We make use of linear functionals in dual space X∗ to
obtain bounds for 4(X, H), where H denotes a Hilbert space, so that X is
a uniformly nonsquare space or X is a space with uniform normal structure
respectively.

1. Introduction

Let X be a normed linear space and let S(X) = {x ∈ X : ||x|| = 1} and
B(X) = {x ∈ X : ||x|| ≤ 1} be the unit sphere and unit ball of X, respectively.

In a series of papers, Schäffer made use of concept of geodesic to study the
unit spheres S(X). He introduced the following two notations:

m(X) = inf{d(x,−x) : x ∈ S(X)}
and

M(X) = sup{d(x,−x) : x ∈ S(X)},
where d(x,−x) is the shortest length of the arcs joining antipodal points x,−x
in S(X). He called 2m(X) the girth, and 2M(X) the perimeter of X. These
parameters were used to study some classic Banach spaces, reflexivity, and
isomorphism of Banach spaces [6].

Gao and Lau considered a simplification of such a concept. They defined
the distance of antipodal points x and −x on S(X) as

Received January 26, 2001.
2000 Mathematics Subject Classification: Primary: 46B20.
Key words and phrases: Isomorphism, pseudo metric, uniformly nonsquare space, uni-

form normal structure.

Typeset by AMS-TEX



302 J. Gao

a(x) = inf{max{‖x + y‖, ‖x− y‖} : y ∈ S(X)},

g(X) = inf{a(x) : x ∈ S(X)},
and

G(X) = sup{a(x) : x ∈ S(X)}.
They also defined another distance function of x and −x on S(X) as

b(x) = sup{min{‖x + y‖, ‖x− y‖} : y ∈ S(X)},

j(X) = inf{b(x) : x ∈ S(X)},
and

J(X) = sup{b(x) : x ∈ S(X)}.
These parameters were used to study some classic Banach spaces, reflexiv-

ity, uniform nonsquare, normal structure and isomorphism of Banach spaces
[3]. Recently Gao introduced a new parameter W (ε) and showed the relation-
ship between W (ε) and uniform nonsquare and normal structure [2].

In this paper, by using parameter W (ε) and mappings between isomorphic
Banach spaces, we further study uniformly nonsquare spaces, and the spaces
with uniform normal structure. Some results in [3] and [4] are improved.

2. Preliminary

Let X and Y be normed linear spaces and T : X → Y be an isomor-
phism. Following the notation of Schäffer [6], we define ∂T : S(X) → S(Y )
by ∂T (x) = Tx

||Tx|| . It is clear that ∂T is bijection.
Let X∗ and Y ∗ be the dual space of X and Y, respectively. For any x ∈

S(X), we use ∇x ⊆ S(X∗) to denote the set of norm 1 supporting functionals
of S(X) at x and T ∗ the conjugate mapping of T from Y ∗ to X∗. For any
x ∈ X and f ∈ X∗, we use 〈x, f〉 to denote the value of linear functional f at
x.

Lemma 1. For any x ∈ S(X), T∗
‖T (x)‖ maps ∇(∂T )x of Y ∗ to ∇x of X∗ and

T∗
‖T (x)‖ is bijection from ∇(∂T )x of Y ∗ to ∇x of X∗.

Proof. For any f(∂T )x ∈ ∇(∂T )x, 〈x,
T∗(f(∂T )x)

||Tx|| 〉 = 〈Tx,
f(∂T )x

||Tx|| 〉 = 〈 Tx
||Tx|| ,

f(∂T )x〉 = 〈(∂T )x, f(∂T )x〉 = 1. So T∗(f(∂T )x)

||Tx|| ∈ ∇x.
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Conversely, for any fx ∈ ∇x, consider ||Tx||(T ∗)−1(fx) ∈ Y ∗, we have
T∗(||Tx||(T∗)−1(fx))

||Tx|| = fx, and 〈(∂T )x, ||Tx||(T ∗)−1(fx)〉 = 〈Tx, (T ∗)−1(fx) 〉 =
〈x, (T ∗)(T ∗)−1(fx)〉 = 〈x, fx〉 = 1. So ||Tx||(T ∗)−1(fx) ∈ ∇(∂T )x. ¤

For any x, y ∈ S(X), fx ∈ ∇x, let f(∂T )x = ( T∗
||Tx|| )

−1(fx). From Lemma 1,
f(∂T )x ∈ ∇(∂T )x. Furthermore, we have following lemma:

Lemma 2. 1
||T ||·||T−1|| 〈y, fx〉 ≤ 〈(∂T )y, f(∂T )x〉 ≤ ||T || · ||T−1||〈y, fx〉.

Proof. 〈y, fx〉 = 〈y,
T∗(f(∂T )x)

||Tx|| 〉 = 〈Ty,
f(∂T )x

||Tx|| 〉 = ||Ty||
||Tx|| 〈 Ty

||Ty|| , f(∂T )x 〉 =
||Ty||
||Tx|| 〈(∂T )y, f(∂T )x〉. Since 1 = ||x|| = ||T−1(Tx)|| ≤ ||T−1|| · ||Tx||, ||Tx|| ≥

1
||T−1|| . Similarly ||Ty|| ≥ 1

||T−1|| . We have 〈y, fx〉 ≤ ||T || · ‖y‖ · ||T−1||
〈(∂T )y, f(∂T )x〉 = ||T || · ||T−1||〈(∂T )y, f(∂T )x〉 and 〈y, fx〉 ≥ 1

||T ||·‖x‖·||T−1||
〈(∂T )y, f(∂T )x〉 = 1

||T ||·||T−1|| 〈(∂T )y, f(∂T )x〉. ¤

Lemma 3. [3] For any x, y ∈ S(X), 1
||T ||·||T−1|| (‖x ± y‖ + 2) ≤ ‖(∂T )y ±

(∂T )x‖+ 2 >≤ ||T || · ||T−1||(‖x± y‖+ 2).

3. Main Theorem

Definition 1. [5] A normed linear space X is called uniformly nonsquare if
there exists a δ > 0 such that either 1

2 (x + y) ≤ 1− δ or 1
2 (x− y) ≤ 1− δ.

Definition 2. [1] A bounded, convex subset K of a Banach space X is said to
have normal structure if every convex subset H of K that contains more than
one point contains a point x0 ∈ H, such that sup{‖x0 − y‖, y ∈ H} < d(H),
where d(H) = sup{‖x − y‖, x, y ∈ H} denotes the diameter of H. A Banach
space X is said to have normal structure if every bounded, convex subset of X
has normal structure. A Banach space X is said to have weak normal structure
if for each weakly compact convex set K in X that contains more than one
point has normal structure. X is said to have uniform normal structure if
there exists 0 < c < 1 such that for any subset K as above, there exists
x0 ∈ K such that sup{‖x0 − y‖, y ∈ K} < c · (d(K)).

For a reflexive Banach space X, the normal structure and weak normal
structure coincide.

Definition 3. [6] Let X be a given normed linear space and X̃ be the class of
spaces isomorphic to X. The pseudo metric D on X̃ is defined as: D(X,Y ) =
inf{ ln(||T || · ||T−1||) : T : X → Y is an isomorphism}.

Recently, Gao introduced a parameter W (ε) for a Banach space:
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Definition 4. [2] Let X be a given normed linear space, x, y ∈ S(X), fx ∈
∇x, and γ(x, y) = sup{〈x−y

2 , fx〉 : fx ∈ ∇x}. Then WX(ε) = inf{γ(x, y), ‖x−
y‖ ≥ ε}, 0 ≤ ε ≤ 2, is called the modulus of W -convexity.

Remark. In Definition 4, ‖x − y‖ ≥ ε may be replaced by ‖x − y‖ > ε or
‖x− y‖ = ε.

Proposition 1. [2] WX(ε) is an increasing function of ε, 0 ≤ ε ≤ 2.

Theorem 1. [2] Let X be a Banach space.
(i) If WX(2−) > 0, then X is uniformly nonsquare.
(ii) If WX(1−) > 0 then X has a uniform normal structure.

We will make use of the parameter WX(ε) to obtain bounds of pseudo
metric D for uniformly nonsquare and normal structure.

Theorem 2. If ∆(X, Y ) satisfies the condition

WX(
3

e∆(X,Y )
− 2) >

e∆(X,Y ) − 1
2e∆(X,Y )

,

then both X with continuous W (ε) and Y has a uniform normal structure.

Proof. Since e∆(X,Y ) ≥ 1, WX( 3
e∆(X,Y ) − 2) > e∆(X,Y )−1

2e∆(X,Y ) implies WX(1) > 0,
by Proposition 1, and hence X has a uniform normal structure by Theorem
1.

To prove Y has a uniform normal structure, if x, y ∈ S(X), and T is an
isomorphism fromX to Y such that ‖(∂T )x−(∂T )y‖ ≥ ‖T‖·‖T−1‖(2+ε)−2.
From Lemma 3, we have ‖x − y‖ ≥ ε, hence 〈x−y

2 , fx〉 > WX(ε) for some
fx ∈ ∇x.

Let f(∂T )x = ( T∗
||Tx|| )

−1(fx) ∈ ∇(∂T )x, then 〈 (∂T )x−(∂T )y
2 , f(∂T )x〉 = 1

2−
〈 (∂T )y

2 , f(∂T )x〉 ≥ 1
2 −‖T‖ · ‖T−1‖〈y

2 , fx〉 = 1
2 + ‖T‖ · ‖T−1‖〈x−y

2 , fx〉 − 1
2‖T‖ ·

‖T−1‖ ≥ ‖T‖ · ‖T−1‖WX(ε)− 1
2 (‖T‖ · ‖T−1‖ − 1).

We have proved that for all x, y ∈ S(X), therefore for all (∂T )x, (∂T )y ∈
S(Y ) with ‖(∂T )x− (∂T )y‖ ≥ ‖T‖ · ‖T−1‖(2 + ε)− 2, there exists a f(∂T )x ∈
∇(∂T )x such that 〈 (∂T )x−(∂T )y

2 , f(∂T )x〉 ≥ ‖T‖·‖T−1‖WX(ε)− 1
2 (‖T‖·‖T−1‖−

1).
Therefore, by definition of WY , WY (‖T‖ · ‖T−1‖(2 + ε) − 2) ≥ ‖T‖ ·

‖T−1‖WX(ε)− 1
2 (‖T‖ · ‖T−1‖ − 1).

Let ε = 3
‖T‖·‖T−1‖ − 2, we have WY (1) ≥ ‖T‖ · ‖T−1‖WX( 3

‖T‖·‖T−1‖ − 2)−
1
2 (‖T‖ · ‖T−1‖ − 1).
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If 4(X, Y ) satisfies WX( 3
e∆(X,Y ) − 2) > e∆(X,Y )−1

2e∆(X,Y ) , we can take an isomor-

phism T such that WX( 3
‖T‖·‖T−1‖−2) > (‖T‖·‖T−1‖−1)

2‖T‖·‖T−1‖ . Therefore WY (1) > 0.
From [2], Y has a uniform normal structure. ¤

Similarly we can prove the following theorem about uniformly nonsquare:

Theorem 3. If ∆(X, Y ) satisfies the condition

WX

(
4

e∆(X,Y )
− 2

)
>

e∆(X,Y ) − 1
2e∆(X,Y )

,

then both X with continuous W (ε) and Y are uniformly nonsquare spaces.

Proposition 2. For a Hilbert space H, WH(ε) = ε2

4 .

Proof. Let x, y ∈ S(H) with ‖x−y‖ = ε. From ‖x−y‖2 = ‖x‖2−2x ·y+‖y‖2
where x · y denotes the inner product of x and y. we have x · y = 2−ε2

2 .
Therefore 〈x−y

2 , fx〉 = 1
2 − 1

2 〈y, fx〉 = 1
2 − 1

2x · y = ε2

4 . ¤

Theorem 4. If ∆(X,H) < ln 5−√7
2 , then X has a uniform normal structure.

Proof. From Theorem 2, and Proposition 1, 1
4 ( 3

e∆(X,H) − 2)2 > e∆(X,H)−1
2e∆(X,H)

implies X has a uniform normal structure. By solving the above quadratic
equation for e∆(X,H) we have e∆(X,H) < 5−√7

2 , hence ∆(X, H) ≤ ln 5−√7
2

implies X has a uniform normal structure. ¤
Similarly we can prove the following theorem about uniformly nonsquare:

Theorem 5. If ∆(X, H) < ln 7−√17
2 , then X is uniformly nonsquare.

Theorem 5 improved the Theorem 4.4 and Theorem 4.5 of [3] for p = 2,
and Corollary 6.5 of [4] for p = 2.
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