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TWO-STEP APPROXIMATION SCHEMES FOR
MULTIVALUED QUASI VARIATIONAL INCLUSIONS

MUHAMMAD ASLAM NOOR

ABSTRACT. It is well known that the multivalued quasi variational inclusions
are equivalent to the implicit resolvent equations. In this paper, we use the
resolvent equations technique to suggest and analyze a class of two-step itera-
tive methods for solving the multivalued quasi variational inclusions. We also
discuss some special cases, which can be obtained from our results. The results
obtained in this paper represent an improvement and a significant refinement
of previously known results.

1. INTRODUCTION

Multivalued quasi variational inclusion, which was introduced and studied
by Noor [6-8], is a useful and important extension of the variational principles
with a wide range of applications in industry, physical, regional, social, pure
and applied sciences. Quasi variational inclusions provide us with a unified,
natural, novel, innovative and general technique to study a wide class of prob-
lems arising in different branches of mathematical and engineering sciences,
There are a substantial number of numerical methods including projection
method and its variant forms, Wiener-Hopf equations, auxiliary principle and
descent for solving various classes of variational inequalities and complemen-
tarity problems. It is well known that the projection methods, Wiener-Hopf
equations techniques and auxiliary principle techniques cannot be extended
and modified for solving variational inclusions. This fact motivated to develop
another technique, which involves the use of the resolvent operator associated
with maximal monotone operator. Using the resolvent operator technique, one
shows that the variational inclusions are equivalent to the fixed point problem.
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This alternative formulation was used to develop a number of numerical meth-
ods for solving various classes of variational inclusions and related problems,
see [3-23] and the references therein.

Equally important is the area of mathematical sciences known as the re-
solvent equations. The resolvent equations technique is being used to develop
powerful and efficient numerical techniques for solving variational inclusions
and related optimization problems. The resolvent equations technique pro-
vides a simple and convenient device for formulating a wide variety of impor-
tant problems in a unified manner. In recent years, the resolvent equations
have been generalized and extended in many directions using novel and inno-
vative techniques, both for their own sake and its applications. A useful and
important generalization is called the implicit resolvent equation, which was
introduced and studied by Noor[8] associated with multivalued quasi varia-
tional inclusions. Noor[8] has shown that the multivalued quasi variational
inclusions are equivalent to the implicit resolvent equations by using the re-
solvent operator method. In this paper, we use this equivalence is used to
suggest and analyze a number of two-step iterative methods for solving the
multivalued quasi variational inclusions and related optimization problems.
This paper is a continuous of our earlier works. We remark that if the non-
linear term is the indicator function of a closed convex set in H, then the
resolvent equations are equivalent to the Wiener-Hopf equations, which were
introduced by Shi [23] and Robinson [22] for the standard variational inequal-
ities. For applications, formulation and numerical methods for the Wiener-
Hopf equations, see Noor[12-15, 19, 22, 23] and references therein. Since
the multivalued mixed variational inequalities include the classical variational
inequalities, quasi variational inequalities and generalized quasi complemen-
tarity problems as special cases, our results also hold true for these problems.

In Section 2, we formulate the problems and review some basic results and
concepts. In Section 3, we use the implicit resolvent equations technique to
suggest and analyze a class of two-step iterative schemes for the multivalued
quasi variational inclusions. We also study the convergence criteria of these
methods.

2. FORMULATIONS AND BAsSIC RESULTS

Let H be a real Hilbert space whose inner product and norm are denoted
by (-,-) and || - || respectively. Let C'(H) be a family of all nonempty compact
subsets of H. Let T,V : H — C(H) be the multivalued operators and
g : H — H be a single-valued operator. Let A(-,-) : H x H — H be a
maximal monotone operator with respect to the first argument. For a given
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nonlinear operator N(-,-) : H x H — H, consider the problem of finding
u€ H,w e T(u), y € V(u) such that

0€ N(w,y)+ A(g(u),u), (2.1)

which is called the multivalued quasi variational inclusions, see Noor[6-8]. A
number of problems arising in structural analysis, mechanics and economics
can be studied in the framework of the multivalued quasi variational inclu-
sions; see , for example,[2,6-10,16]. We now discuss some special cases of the
problem (2.1).

Special Cases.

I.If A(-,u) = 0¢(-,u) : H x H — RU {+0o0} is a proper, convex and lower
semicontinuous function with respect to the first argument, then problem (2.1)
is equivalent to finding u € H, w € T'(u), y € V(u) such that

(N(w,y),9(v) —g(u))+d(g(v), 9(u)) —d(g(u), g(u)) > 0, for all v € H, (2.2)

which is called the set-valued mixed quasi variational inequality, see, for ex-
ample [9,10].

IL. If A(g(u,v) = A(g(u)), for all v € H, then problem (2.1) is equivalent to
finding v € H, w € T'(u), y € V(u) such that

0 € N(w,y) + A(g(u)), (2.3)

a problem considered and studied by Noor [11] using the resolvent equations
technique. See also [25] for the related work.

ITI. If A(g(u)) = 04(g9(u)), where ¢ : H — R U {+o0} is a proper, convex
and lower semicontinuous function, then problem (2.1) reduces to: find u € H,
w € T(u), y € V(u) such that

(N(w,y),g(v) = g(u)) + ¢(g(v)) — d(g(u)) > 0. (2.4)

Problem (2.4) is known as the set-valued mixed variational inequality, which
has been studied in [17,18]’

IV. If the function ¢(-,-) is the indicator function of a closed convex-valued
set K (u) in H, that is,

0, if weK(u)

400, otherwise ,

s = K) = {
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then problem (2.2) is equivalent to finding v € H, w € T(u), y € V(u),
g(u) € K(u) such that

(N(w,y),g(v) — g(u)) >0, forall ve K(u), (2.5)

a problem considered and studied by Noor [14], using the projection method
and the implicit Wiener-Hopf equations technique.

V. If K*(u) = {u € H,(u,v) > 0, for all v € K(u)} is a polar cone of the
convex-valued cone K (u) in H, then problem (2.5) is equivalent to finding
u€,w € T(u), y € V(u) such that

g(u) € K(u), N(w,y) € K*(u) and (N(w,y),g(u)) =0, (2.6)

which is called multivalued implicit complementarity problem, see Noor[6-8].

For suitable and appropriate choice of the operators T', N(-,+),g and the
convex set K, one can obtain a large number of variational inequalities and
complementarity problems, see, for example, [3-25] and the references therein.
We would like to mention that the problem of finding a zero of the sum of
two maximal monotone operators, location problem, min,cg{f(u) + g(u)},
where f, g are both convex functions, various classes of variational inequalities
and complementarity problems are very special cases of problem (2.1). Thus
it is clear that problem (2.1) is general and unifying one and has numerous
applications in pure and applied sciences.

Related to the multivalued quasi variational inclusions, we now consider
a new system of equations, which are called the implicit resolvent equations.
For this purpose, we need the following concepts and notions.

Definition 2.1. [1] If T is a maximal monotone operator on H, then, for a
constant p > 0, the resolvent operator associated with 7" is defined by

Jr(u) = (I + pT) *(u), forall u€ H,

where I is the identity operator. It is known that the monotone operator
T is maximal monotone if and only if the resolvent operator Jr is defined
everywhere on the space. Furthermore, the resolvent operator Jr is single-
valued and nonexpansive.

Remark 2.1. Since the operator A(-,-) is a mazimal monotone operator with
respect to the first argument, for a constant p > 0, we denote by

Jaw) = (I + pA(u))~H(u), forall ué€ H,
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the resolvent operator associated with A(-,u) = A(u). For example, if A(-,u)
= 0¢(-,u), for all w € H, and ¢(-,-) : H x H — R U {400} is a proper,
convez and lower semicontinuous with respect to the first argument, then it is
well-known that 0¢(-,u) is a mazimal monotone operator with respect to the
first argument. In this case, the resolvent operator Ja() = Jp(u) 8

Jo) = (I + pdd(-,u)) " (u) = (I + pdd(u))~'(u), forall ueH,

which is defined everywhere on the space H, where 0¢p(u) = 0¢(-,u). For a
recent state-of-the-art of the nonlinear convex analysis, see Gao[4].

Let Ray)y = I — Ja(y), where I is the identity operator and J(,) = (I +
pA(u))~! is the resolvent operator. For given operators T,V : H — C(H)
and N(-,-) : HxH — H, consider the problem of finding z,u € H, w € T'(u),
y € V(u) such that

N(way) + p_lRA(u)Z =0, (27)

where p > 0 is a constant. Equations (2.7) are called the implicit resolvent
equations, introduced and studied by Noor[8]. In particular, if A(g(u),u) =
A(u)), then Jawy = (I + pA)~' = J4 and implicit resolvent equations (2.7)
are equivalent to finding u,z € H, w € T(u), y € V(u) such that

N(way) + p_lRAZ =0, (28)

which are called the resolvent equations, introduced and studied by Noor [11].
It has been shown in [11] that the problems (2.8) and (2.3) are equivalent
using the technique of general principle of duality. This equivalence was used
to suggest and analyze some iterative methods for solving the generalized set-
valued variational inclusions. For formulation and applications of the resolvent
equations, see [6-13].

If A(-,-) = ¢(-,-) is the indicator function of a closed convex-valued set
K(u) in H, then the resolvent operator Ja(,) = Pg(u), the projection of H
onto K(u). Consequently problem (2.7) is equivalent to finding z,u € H,
w € T(u), y € V(u) such that

where Qg (u) = I — Pg(y) and I is the identity operator. The equations of the
type (2.9) are called the implicit Wiener-Hopf equations, which were intro-
duced and studied by Noor [14]. For applications, formulation and numerical
methods of the Wiener-Hopf equations, see [12-15, 22,23].
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Definition 2.2. For all uy,us € H, the operator N(-,-) is said to be strongly
monotone and Lipschitz continuous with respect to the first argument, if there
exist constants a > 0, 8 > 0 such that

(N(-,wy) — N(-,wa),u1 — ug) > alug — uy||?, for all wy € T(u1), ws € T (uy)
[N (u1,-) = N(uz, )| < Bllur — uzl].

In a similar way, we can define strong monotonicity and Lipschitz continuity
of the operator N (-,-) with respect to second argument.

Definition 2.3. The set-valued operator V : H — C(H) is said to be
M-Lipschitz continuous, if there exists a constant £ > 0 such that

MV (u),V(v) <{|lu—v|, forall w,veH,

where M(-,-) is the Hausdorff metric on C(H).

We also need the following condition.
Assumption 2.1. For all u,v,w € H, the resolvent operator J,) satisfies
the condition
[ a@yw — Ja@yw| < vlju—wvl], (2.10)

where v > 0 is a constant.
It has been shown in[8] that Assumption 2.1 holds in some special cases.

3. MAIN RESULTS

In this section, we use the resolvent operator technique to establish the
equivalence between the multivalued quasi variational inclusions and the im-
plicit resolvent fixed points. This equivalence is used to suggest an iterative
method for solving the quasi variational inclusions. For this purpose, we need
the following result, which is due to Noor[6-8].

Lemma 3.1. (u,w,y) is a solution of (2.1) if and only if (u,w,y) satisfies
the relation

9(u) = Jawlg(w) = pN(w,y)], (3.1)
where p > 0 is a constant and J 4,y = (I+pA(u))~" is the resolvent operator.

From Lemma 3.1, we conclude that the multivalued quasi variational in-
clusions (2.1) are equivalent to the implicit fixed point problem (3.1). This
alternative formulation is very useful from both theoretical and numerical
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analysis points of view. This equivalence has been used to propose some iter-
ative algorithm for solving multivalued quasi variational inclusions (2.1) and
related problems, see Noor[6-11] and the references therein.

The relation (3.1) can be written as

w =1 — g(u) + Taglg(w) — pN (w,w)], (3.2)

where p > 0 is a constant.

This fixed point formulation has been used to suggest and analyze the
following two-step iterative scheme for solving multivalued quasi variational
inclusions (2.1).

Algorithm 3.1. [7]. Assume that 7,V : H — C(H), g : H — H and
N(-,-), A(-,-) : Hx H — H are operators. For a given ug € H, compute the
sequences {uy,}, {wn}, {yn}, {wn} and {y,} by the iterative schemes

wy, € T'(un) ¢ [lwns1 — wnl|| < M(T(un41), T (un))

Yn € V(un) t |[Yn+1 — Ynl| < M(V(unt1), V(un))

T € T(vn) : [Tt — Tl < M(T(0n41), T(v0))

Un € V(vn) : |[Yn=1 = Unll < M(V(vn41),V(vn))

Vn = (1 = Bn)un + Bu{tn — g(un) + JA(un)[g(un) — pN (W, yn)}

Unt1 = (1 — an)un + an{vn — g(v,) + JA(vn)[g(vn) — pN (Wy, Un)l},
forn =0,1,2..., where 0 < @y, 3, < 1; for allm >0, and ) 2 ; a, diverges
and p > 0 is a constant.

In this paper, we suggest another class of two-step iterative schemes for
solving multivalued quasi variational inequalities (2.1) by using the technique

of the resolvent equations. For this purpose, we need the following result,
which is due to Noor[8]. We include its proof for the sake of completeness.

Theorem 3.1. The multivalued quasi variational inclusion (2.1) has a solu-
tionu € H, w € T(u), y € V(u) if and only if z,u € H, w € T(u), y € V(u)
is a solution of the implicit resolvent equation (2.7), where
g(u) = Jaw)? (3.3)
Z = g(u) - pN(way)a
and p > 0 is a constant.
Proof. Let v € Hyw € T(u),y € V(u) be a solution of (2.1). Then, invoking

lemma 3.1, we have

9(u) = Jawlg(u) — pN(w,y)]. (3.5)



8 M. A. Noor

Let
z=g(u) — pN(w,y). (3.6)
From (3.5) and (3.6), we have

g(u) = Jaw)?

and
2= Jaw?z = pN(w,y),
that is,
N(w,y) + p ' Ragyz =0,
the required resolvent equations (2.7). O

From Theorem 3.1, we see that both problems (2.1) and (2.7) are equivalent.
This interplay between these problems plays an important and fundamental
role in suggesting a number of iterative algorithms for solving the mixed vari-
ational inclusions (2.1). By a suitable and appropriate rearrangement of the
resolvent equations (2.7), we now suggest and analyze a new class of two-step
iterative schemes for solving multivalued quasi variational inclusions (2.1).

I. The implicit resolvent equations (2.7) can be written as

RA(u)z = —pN(w,y),
which implies that
z = JA(’U,)Z - pN(way) = g(u) - ,ON(w,y), using (33)

This fixed point formulation allows us to suggest the following two-step iter-
ative method.

Algorithm 3.2. For given zg,ug € H, wy € T'(ug), yo € V(ug), compute the
sequences {z, },{un}, {wn}, {yn}. {Wrn} and {7, } by the iterative schemes

9(un) = Ja(u,)?n (3.7)
9(vn) = Jaw,)Vn (3.8)
wy, € T'(up) ¢ |wpg1 — wp || < M(T(unt1), T (un)) (3.9)
Wn € V(un) t [Yn+1 = ynll < M(V(un41), V(un)) (3.10)
Ty € T(on) : Wzt — W]l < M(T(0n11), T(vn)) (3.11)
Un € V(vn) : [Un+1 = Ynll £ M(V(vn41), V(vn)) (3.12)
vn = (1= Bn)zn + Bn{g(un) — PN (wn,yn)} (3.13)
Znt1 = (1 — an)zn + an{g(vn) — pN(Wy,75)}, n=0,1,2,.... (3.14)
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where 0 < a,,, 6, < 1, for all n > 0, and ZZOZO ay, diverges and p > 0 is a
constant.
IT. The resolvent equations (2.7) may be written as

0= _p_lRA(u)z - N(way)a
from which it follows that

Rz = (1= p ") Rawyz — N(w,y).
Thus )
z = JA(u)z - N(w,y) + (1 - ,0_ )RA(u)Z
= g(u) - N(way) + (1 - p_l)RA(u)za using (33)
We use this fixed-point formulation to suggest the following two-step iterative
schemes for solving multivalued quasi variational inclusions (2.1).

Algorithms 3.3. For given zy,ug € H,wg € T'(up),yo € V (up), compute the
sequences {z,}, {un}, {wn}, {yn}, {wn}, and {7} by the iterative schemes

9(un) = JA(un)%n
9(vn) = JA(vn)Vn

wy € T'(up) @ ||wng1 — wpl| < M(T(uny1), T(un))
Yn € V(Un) Pllyn+1 — ynll < M(V(unt1), V(un))
Wy, € T(vn) : [ Wny1 — Wnll < M(T (vp41), T(vn))

Un € V(vn) : [Uns1 = Tnll £ M(V(vn41),V(vn))
Un = (1 - ﬂn)zn + ﬂn{g(un) - N(wnayn) + (1 - p_l)RA(un)Zn}
Zn41 = (1 - an)zn + an{g(vn) - N(w_nay_n) + (1 - p_l)RA(vn)Zn}a

—~

forn=0,1,2,..., where 0 < a,, 3, < 1, foralln >0 and Y7, o, diverges.
Note that Algorithms 3.1-3.3 are similar to the Ishikawa iterations for solv-
ing variational inequalities. For (§, = 0, Algorithms 3.1-3.3 are called the
Mann iterations for solving the multivalued quasi variational inclusions (2.1)
and appear to be new ones.
We now study the convergence analysis of Algorithm 3.2. In a similar way,
one can study the convergence of Algorithm 3.3.

Theorem 4.2. Let the operator N(-,-) be strongly monotone with constant
«a > 0 and be Lipschitz continuous with constant B > 0 with respect to the first



10 M. A. Noor

argument. Let g : H — H be strongly monotone with constant o > 0 and
Lipschitz continuous with constant 6 > 0. Let N(-,-) be a Lipschitz continuous
with constant n > 0 with respect to the second argument and V : H — C(H)
be M-Lipschitz continuous & > 0. Let T : H — C(H) be a M-Lipschitz
continuous with constant p > 0. If Assumption 2.1 and

a—(1—Fk)ne a— (1—k)né? —k(B2u? —n2e2)2 -k
o~ B2u(2—n2)€172 < Ve —( )17;252 _(nzg PER-F g
> (1= k)né + VE(B2E2 — n2€2)(2 — k) (3.16)
png <1—k (3.17)

k=2(v1-20—62) +u, (3.18)

hold, then there exist z,u € H, w € T(u), y € V(u) satisfying the implicit
resolvent equations (2.7) and the sequences {z,}, {un}, {wn}, {yn}, {Wn}
and {Yn} generated by Algorithm 4.1 converge to z,u,w,y,w and Y strongly
in H respectively.

Proof. If the Assumption (2.1) and the conditions (3.15)-(3.17) hold, then it
has been shown in [6, Theorem 3.1, pp.106] that there exists a solution u €
H,w € T(u),y € V(u) satisfying the multivalued quasi variational inclusions
(2.1). From Theorem 3.1, it follows that z,u € H is a solution of the resolvent
equations(2.7). Then

g(u) = J4)? (3.19)
z=(1—an)z+an{gu) — pN(w,y)} (3.20)
= (1= Bn)z + Bu{g(u) — pN(w,y)} (3.21)

From (3.14) and (3.20), we have

241 = 2ll < (1= an)l[zn = 2|l + an{llg(vn) — g(uw) = p(N (W, 7)) ||}
< (I —an)llzn = 2|l + anllvn = ulg(vn) = g(uw))|
+ an vy —u— p(N (W, 7)) — N(w, 7))l
+ pon [N (w, 7n) = N(w, y)|| (3.22)

Since N (+,-) is a strongly monotone Lipschitz continuous operator with respect
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to the first argument, it follows that
lon = u = p{N (W, T) = N (w,7)||?
= ||’Un - U||2 - 2p<vn - uaN(w_nay_n) - N(way_n)>
+ P |N (@, 7) = N (w,7) |2
< (1= 2pa+ p* B2 p?) vy, — ulf?,

(3.23)

Using the Lipschitz continuity of the operator N(-,-) with respect to the sec-
ond argument and the M-Lipschitz continuity of V', we have

IN(w,5n) = N(w,y) | < nllgn —yll < nM(V(vn), V(u)) < néllon —ull. (3.24)

From the strongly monotonicity and Lipschitz continuity of the operator g,
we have

o —u = (9(va) = g@)? < (1= 20+ 8o —ul®,  (325)

where o > 0 and § > 0 are the strongly monotonicity and Lipschitz continuity
constants of the operator g respectively. Combining (3.22)-(3.25), we obtain

lznt1 — 2l < (1= am)llzn = 2l + an{(V1 =20+ 6%) + pn¢

+ V1= 2pa + p2 B2} — ul (3.26)
k—v )
— (1= an)llzm — 2l + an {T o + t<p>} lon —ull, using (3.18),
where
t(p) = V1 = 2pa + p?52p2. (3.27)

Also from (3.3)-(3.8) and Assumption 2.1, we have

lvn = ull < {lvn —uw = (g(va) = gl + | awn)vn — Jaqw) 2l
< Hlon —u = (g(vn) — g + [[Ta@,)vn — Jaw,)2ll
+ 1T 4wy = Jaw=ll

k—v
< |vn, = ull + v|lvp — ul| + [Jvn = 2],

2

which implies that

1
lon —ull < {E} o — 21 (3.28)

2



12 M. A. Noor

Combining (3.26) and (3.28), we obtain

k—v
+ pné + t(p)
lzny1 — 2|| < (1—an)llzn—2||+an{ 2 1 _ kv lon — 2||
2 (3.29)

= (1 = ap)llzn — 2[| + @nlvn, — 2|

={1-an(1=0)}lvn — 2|,

where N
=2+ pné + t(p)
1— k+v
2

0= (3.30)

In a similar way, from (3.7) and (3.19), we have

E—
fom = 211 < (1= Bullon = 21+ B { £ + i 80w = w330

Also from (3.7) and (3.19), we have

lun — vl <lun —u— (g(un) — gl + 1T a(un)2n — Ja(un) 2l
+ [T a(un)z = Ja) 2]l

k+v
< (557) hun —ull + 21,

from which it follows that

1
mm—uus(l_&ﬂ>n%—zw (3.32)
2

Combining (3.31) and (3.32), we have

lon — 2| < (1 = B)llzn — 2l + Bbllzn — 2]

(3.33)
< (1 =Bu(1=0))llzn — 2]l < llzn — 2.
From (3.29) and (3.33), we have
241 — 2l < {1 = an (1 = 0)}|zn — 2]
(3.34)

= [[{1 - (0 = )}z — zlI.
1=0
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From (3.15)-(3.17), it follows that # < 1. Since >~ a, diverges and 1—6 > 0,
it implies that Y .2 [1 — (1 — #)a;] = 0. Hence the sequence {z,} converges
strongly to z. From (3.32) and (3.33), we see that the sequence {v, } and {u,}
converges strongly to z and u respectively. Using the technique of Ding[4] and
Noor[8], one can easily show that the sequences {w,}, {y,}, {w,}, and {7}
converge strongly to w, y, w and y respectively. Now by using the continuity
of the operators T,V ,g, J5(4) and Theorem 3.1, we have

z=g(u) = pN(w,y) = Jaw) — pN(w,y) € H.
It remains to show that w € T'(u), y € V(u), w € T(v) and ¥ € V(v). In fact,

d(w,T(u)) < [lw — wn || + d(wn, T(u))
< lw = wall + M(T (un), T(u))
< |lw —wypl|| + pllun —u|| — 0 as n — oo,

where d(w,T(u)) = inf{||lw — z|| : z € T(u)}. Since the sequences {w,} and
{un} are the Cauchy sequences, it follows that d(w,T(u)) =. This implies
that w € T'(u). In a similar way, one can show that y € V(u), w € T'(v), and
y € V(v). By invoking Theorem 3.1, we have z,u € H,w € T(u),y € V(u)
which satisfies the implicit resolvent equations (2.7) and the sequences {z,},
{un}, {wn}, {yn}, {w,} and {7,} converge strongly to z,u,w,y,w and ¥ in
H respectively, the required result. O
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