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INFINITE TIME HORIZON OPTIMAL CONTROL

OF THE SEMILINEAR HEAT EQUATION

Mihai Ŝirbu

Abstract. We consider here the infinite horizon control problem for the semi-
linear heat equation with Lipschitz nonlinearity and quadratic cost functional.
We prove that the associated value function is locally Lipschitz using observ-
ability inequalities for the linear backward parabolic equations. Optimality
conditions and feedback representation of the the optimal controls are also
considered.

1. Introduction

In this paper we study the infinite horizon quadratic control problem for
the semilinear heat equation. Since the results presented in Section 2 are
valid for a larger class of state systems and cost functionals, we consider first
the problem in an abstract form, and then we proceed in Section 3 to the
particular case of parabolic systems and quadratic performance index.

Let H be a real Hilbert space, A : D(A) ⊂ H → H a linear unbounded
operator such that −A generates a C0 semigroup, and F : H → H a Lipschitz
nonlinear mapping. If U is a Hilbert space and B ∈ L(U,H) is a bounded
linear operator from U to H, for each control u ∈ L2(0,∞;U) and each initial
value x ∈ H we denote by y(·) = y(·, x, u) ∈ C([0,∞); H) the unique mild
solution of the state system:

{
y′(s) + Ay(s) + Fy(s) = Bu(s) on [0,∞)
y(0) = x.

(1.1)
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For g : H → [0,∞] strongly lower semicontinous, we try to minimize:

J(x, u) =
∫ ∞

0

(
1
2
|u(s)|2 + g(y(s))

)
ds (1.2)

over all controls u ∈ L2(0,∞;U), provided that y(·) = y(·, x, u) is the solution
of (1.1). Along the paper, we will denote by | · | (〈· , ·〉) the norm (respectively
the inner product) in all abstract Hilbert spaces H, U , etc.

We define the value function V : H → [0,∞] to be:

V (x) = inf
{
J(x, u) : u ∈ L2(0,∞; U)

}
. (1.3)

In order to study this problem, we also need to consider the finite horizon
problems:

inf{J(t, x, u) : u ∈ L2(0, t; U)},
where we denoted

J(t, x, u) =
∫ t

0

(
1
2
|u(s)|2 + g(y(s, x, u))

)
ds (1.4)

We define v : [0,∞)×H → [0,∞] by:

v(t, x) = inf
{
J(t, x, u) : u ∈ L2(0, t;U)

}
. (1.5)

It is well known that for the linear quadratic case, which means that F ≡ 0
and g(y) = 1

2 |Cy|2 for C ∈ L(H, Y ) (where Y is a third Hilbert space), we
have that

v(t, x) → V (x) as t →∞, for each x ∈ H, (1.6)

provided that V (x) < ∞ for all x ∈ H (the pair (A,B) is C stabilizable). In
this case the proof of (1.6) requires considerations on Riccati equations and
uses essentially the uniform boundedness principle. We obtain that V (x) =
1
2 〈Qx, x〉 where Q ∈ Σ+(H) is the minimal solution of the algebraic Riccati
equation:

A∗Q + QA + QBB∗Q = C∗C.

(See [3] for details.)
All these arguments are only valid for the linear quadratic case. In the

present paper, in Section 2, we prove that in case −A generates a compact
semigroup (1.6) is also true for the semilinear case, and even if V (x) = ∞ for
some x ∈ H.
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In Section 3, we consider further assumptions on A,F,B and g, such that
(1.1) becomes in fact the semilinear heat equation with internal control and
(1.2) is a quadratic generalized energy. We know the state system is stabiliz-
able (since it is null controllable), so V (x) < ∞ (∀) x ∈ H. Using observability
inequalities for the backward linear parabolic systems (which allowed us to
conclude that the state system is null controllable), we prove that V (·) is lo-
cally Lipschitz on H. We deliberately avoid a viscosity approach, since it was
considered in greater generality in [6]. Our purpose is to prove the regularity
of V , the necessary conditions of optimality, as well as the feedback represen-
tation of the optimal controls (in this particular case), which does not overlap
with [6].

2. Approximation of the Value
Function by Finite Horizon Problems

This section is devoted to the proof of (1.6) under the following assump-
tions:
−A generates a compact C0-semigroup, F : H → H is globally Lipschitz

(|Fx−Fy| ≤ L|x− y| (∀)x, y ∈ H), g : H → [0,∞] is strongly lower semicon-
tinous, and B : U → H is a linear bounded operator.

Compactness of the semigroup generated by −A is particulary important
because it implies the stability of the solutions of (1.1), namely:

{
if un ⇀ u in L2(0, t; H) for some t > 0 and xn → x in H then
y(·, xn, un) → y(·, x, u) in C([0, t]; H).

(2.1)

This can be proved using the linear version of Baras theorem (see [8]), as well
as the continuity of the nonlinear mapping F : H → H. Stability condition
(2.1) allows us to conclude that for each x ∈ H the infimum is attained in
(1.5), and for any t > 0, v(t, ·) is strongly lower semicontinuous on H.

In order to prove (1.6) we need the following lemma:

Lemma 2.1. Let T > 0 and ψ1, . . . , ψn, · · · : H → [0,∞] such that ψn is
strongly l.s.c for each n, and ψ1 ≤ ψ2 ≤ · · · ≤ ψn ≤ . . . We define ψ =
supn ψn and for each x ∈ H

ϕn(x) = inf

{∫ T

0

(
1
2
|u(s)|2 + g(y(s, x, u)))ds + ψn(y(T, x, u))

}

ϕ(x) = inf

{∫ T

0

(
1
2
|u(s)|2 + g(y(s, x, u)))ds + ψ(y(T, x, u))

}
.
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Then ϕn(x) → ϕ(x) as n →∞ for each x ∈ H.

Proof. Since ψn ≤ ψ on H, it is obvious that

ϕn(x) ≤ ϕ(x) (∀)x ∈ H. (2.2)

Let us denote ϕ(x) = supn ϕn(x), for each x ∈ H. Using (2.2) we obtain
ϕ(x) ≤ ϕ(x) for each x ∈ H. Let x be a fixed element of H.

In case ϕ(x) = ∞, there is nothing to prove. If ϕ(x) < ∞, then, for each n
we have that ϕn(x) ≤ ϕ(x) < ∞. Using stability condition (2.1) , since ψn is
strongly l.s.c. we can conclude that for each n there exists un ∈ L2(0, T ; H)
such that

ϕn(x) =
∫ T

0

(
1
2
|un(s)|2 + g(yn(s))

)
ds + ψn(yn(T ))

where yn(·) = y(·, x, un). Since 1
2

∫ T

0
|un(s)|2 ≤ ϕn(x) ≤ ϕ(x) < ∞, using

again (2.1) we can conclude that (choosing eventually a subsequence), un ⇀ u
in L2(0, T ;U) and yn(·) → y(·, x, u) in C([0, T ];H). Taking into account that

ψ(y(T, x, u)) ≤ lim infn→∞ψn(y(T, x, un)) (2.3)

(see [6] Lemma (5.1)), we obtain that

ϕ(x) ≤
∫ T

0

(
1
2
|u(s)|2 + g(y(s, x, u))

)
ds + ψ(y(T, x, u))

≤ lim infn→∞

{∫ T

0

(
1
2
|un(s)|2 + g(yn(s))

)
ds + ψn(yn(T ))

}

= lim infn→∞ϕn(x) ≤ ϕ(x) ≤ ϕ(x).

So ϕ(x) = ϕ(x), which means that ϕn(x) → ϕ(x) as n →∞. ¤
We are now ready to state the main result of this section:

Theorem 2.1. If the semigroup generated by −A is compact, then

v(t, x) → V (x) as t →∞, for each x ∈ H.

Proof. It is obvious that for each x ∈ H we have that v(t, x) ≤ V (x) and
v(t, x) increases as t increases. Let us denote, for each x ∈ H by

v(x) = sup
t≥0

v(t, x) = limt↗∞v(t, x) ≤ V (x). (2.4)
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For fixed T > 0, v(·, ·) verifies the dynamic programming principle

v(t + T, x) = inf

{∫ T

0

(
1
2
|u(s)|2 + g(y(s, x, u))

)
ds + v(t, y(T, x, u))

}
(2.5)

for any t ≥ 0 and x ∈ H.
The proof of (2.5) is standard so we skip it. Since v(t, ·) → v(·) and

v(t + T, ·) → v(·) as t →∞, using Lemma 2.1, we can conclude that

v(x) = inf

{∫ T

0

(
1
2
|u(s)|2 + g(y(s, x, u))

)
ds + v(y(T, x, u))

}
(2.6)

for any x ∈ H. By the way we defined v(·), since v(t, ·) is strongly l.s.c and
positive for all t ≥ 0, we obtain that v : H → [0,∞] is strongly l.s.c. Let
0 = t0 < t1 < . . . tn < . . . such that tn →∞ as n → ∞. Since A,F,B and g
are independent on the time variable, we can use (2.6) to obtain

v(x) = inf
{∫ tn+1

tn

(
1
2
|u(s)|2 + g(y(s))

)
ds + v(y(tn+1))

}
(2.7)

provided that the infimum is considered over the set of solutions of the system
{

y′ + Ay + Fy = Bu on [tn, tn+1]
y(tn) = x.

Let now x ∈ H be fixed. If v(x) = ∞, by (2.4) it is obvious that v(x) = V (x).
In case v(x) < ∞, since v(·) is strongly l.s.c and positive, we can use the
stability condition (2.1) to conclude that the infimum is attained in(2.7), for
n = 0. This means there exist (u0, y0) ∈ L2(0, t1; U)× C([0, t1];H) such that

{
y′0 + Ay0 + Fy0 = Bu0 on [0, t1]
y0(0) = x

and

v(x) =
∫ t1

t0

(
1
2
|u0(s)|2 + g(y0(s))

)
ds + v(y0(t1)).

Inductively, if we have the pair (un−1, yn−1) ∈ L2(tn−1, tn;U)× C([tn−1, tn];
H) we can find in the same way (un, yn) ∈ L2(tn, tn+1;U) × C([tn, tn+1];H)
such that {

y′n + Ayn + Fyn = Bun on [tn, tn+1]
yn(tn) = yn−1(tn)
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and

v(yn−1(tn)) =
∫ tn+1

tn

(
1
2
|un(s)|2 + g(yn(s))

)
ds + v(yn(tn+1)).

We can now define (u, y) ∈ L2
loc([0,∞); U) × C([0,∞); H) by u(s) = un(s)

a.e s ∈ [tn, tn+1] and y(s) = yn(s) for all s ∈ [tn, tn+1]. We denoted by
L2

loc([0,∞); U) the set

{u : [0,∞) → U : u is strongly measurable and u ∈ L2(0, T ; U) (∀)T > 0}.

Now (u, y) is a solution of the state system

{
y′ + Ay + Fy = Bu on [0,∞)
y(0) = x

and, in the same time

v(x) =
∫ tn

0

(
1
2
|u(s)|2 + g(y(s)

)
ds + v(y(tn)) for each n ∈ N.

Since v(y(tn)) ≥ 0 (∀)n ∈ N we are able to conclude that

∫ ∞

0

(
1
2
|u(s)|2 + g(y(s))

)
ds ≤ v(x) < ∞.

Taking into account the way we defined V (·), we have V (x) ≤ v(x) ≤ V (x),
so V (x) = v(x). The proof is now complete. ¤

Remark 2.1. Using weak lower semicontinuity arguments we can prove in
the same way that, in the linear quadratic case, (1.6) holds without the com-
pactness assumption on the semigroup, and even if the pair (A,B) is not C
stabilizable.

3. Regularity of the Value Function.
Optimality Conditions and Feedback Laws.

The main purpose of this section is to prove that V (·) is locally Lipschitz
in the case when the state system (1.1) is nothing else than the abstract
expression of the semilinear heat equation on the L2 space, and g is a quadratic
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term. Consequently, we will be able to prove the necessary conditions of
optimality together with the feedback representation of the optimal controls.

So, along this section, we assume that H = L2(Ω) for a regular domain
Ω in Rn.We define A : D(A) ⊂ H → H by Ay = −4y for y ∈ D(A) =
H1

0 (Ω) ∩ H2(Ω) and F : H → H by (Fy)(ξ) = f(ξ, y(ξ)) a.e. ξ ∈ Ω, where
the function f : Ω×R → R is measurable in ξ and C1 in y and satisfies:

f(ξ, 0) = 0 (∀) ξ ∈ Ω and
∣∣∣∣
∂f

∂y
(ξ, y)

∣∣∣∣ ≤ L (∀) ξ ∈ Ω, (∀) y ∈ R. (3.1)

Using (3.1) we can conclude that F : H → H defined in this way is globally
Lipschitz (with Lip. constant L), and it is Gateaux differentiable:

(F ′(y)(h))(ξ) =
∂f

∂y
(ξ, y(ξ))h(ξ) a.e ξ ∈ Ω if y, h ∈ H = L2(Ω).

We also consider that U = L2(Ω) and B ∈ L(L2(Ω)) is the internal con-
troler (Bu)(ξ) = m(ξ)u(ξ) a.e ξ ∈ Ω for u ∈ L2(Ω), provided that m is the
characteristic function of an open subset of Ω, ω b Ω.

Under all these assumptions, state system (1.1) is in fact the semigroup
representation of




yt(t, ξ)−4y(t, ξ) + f(ξ, y(t, ξ)) = m(ξ)u(t, ξ), (∀) (t, ξ) ∈ (0,∞)× Ω

y(t, ξ) = 0 (∀) (t, ξ) ∈ (0,∞)× ∂Ω

y(0, ξ) = x(ξ) (∀) ξ ∈ Ω (3.2)

for u ∈ L2((0,∞)× Ω) and x ∈ L2(Ω).
We further assume that g(y) = 1

2 |Cy|2 where C is a bounded linear operator
from H to another Hilbert space Y , so (1.2) is a quadratic cost functional.

For sure the semigroup generated by −A is compact and g is lower semi-
continuous, so all hypotheses assumed in Section 2 are fullfiled. Consequently,
it is true that v(t, x) → V (x) as t →∞, for each x ∈ H.

It is well known (see [5]), that for global Lipschitz nonlinearities (which is
the case), system (3.2) (or equivalently (1.1)) is null controllable in finite time
and consequently it is stabilizable.This means that V (x) < ∞ (∀) x ∈ H.

A sufficient condition for null controllability (in finite time t) is the observ-
ability inequality:

‖p(0)‖2L2(Ω)

≤ C(t, ‖a‖L∞((0,t)×Ω))
(∫ t

0

∫

ω

|p(τ, ξ)|2dξdτ +
∫ t

0

∫

Ω

|g(τ, ξ)|2dξdτ

) (3.3)
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provided that p is a solution of the the backward parabolic equation:

{
pτ (τ, ξ) +4p(τ, ξ) + a(τ, ξ)p(τ, ξ) = g(τ, ξ) (∀) (τ, ξ) ∈ (0, t)× Ω
p(τ, ξ) = 0 (∀) (τ, ξ) ∈ (0, t)× ∂Ω.

(3.4)

We know that (3.3) is true from [5]. In this case, eventually changing the
observability constant to take into account the norm of the bounded linear
operator C, we obtain that

|p(0)|2 ≤ C(t, ‖a‖L∞((0,t)×Ω))
∫ t

0

(|B∗p(τ)|2 + |Cy(τ)|2) dτ (3.5)

if p is a solution of

{
pτ (τ, ξ) +4p(τ, ξ) + a(τ, ξ)p(τ, ξ) = (C∗Cy(τ))(ξ) (∀) (τ, ξ) ∈ (0, t)× Ω

p(τ, ξ) = 0 (∀) (τ, ξ) ∈ (0, t)× ∂Ω. (3.6)

Using (3.5) and Schauder’s Fixed Point Theorem, we obtain that for each
x ∈ H and t > 0, there exists u ∈ L2(0, t; H) such that

{
y′ + Ay + Fy = Bu on [0, t]
y(0) = x, y(t) = 0

and
∫ t

0

(
1
2 |u(s)|2 + 1

2 |Cy(s)|2) ds ≤ 1
2C(t, L)|x|2, where L is the Lipschitz con-

stant in (3.1). Since F0 = 0, we can conclude that V (x) ≤ 1
2C(t, L)|x|2. This

holds for any t > 0. In case we choose C(t, L) to be the best constant in (3.5)
it is obvious that C(t1, L) ≥ C(t2, L) for t1 ≤ t2 so we can denote by

C(L) = inft≥0C(t, L) = limt→∞C(t, L). (3.7)

Using this notation we have that V (x) ≤ 1
2C(L)|x|2.

We now intend to prove that v(t, ·) is locally Lipschitz, uniformly for t ≥ 0.
The idea is the same as in [7] , so we need the following lemma proved in [7].

Lemma 3.1. Under the hypotheses assumed in the beginning of the section,
if (u∗, y∗) is an optimal pair for the problem

inf
{∫ t

0

(
1
2
|u|2 +

1
2
|Cy|2)dτ + l0(y(0)) : y′ + Ay + Fy = Bu on [0, t]

}
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where l0 : H → R is continuous, then there exists p ∈ C([0, t];H) satisfying





p′ −A∗p− (F ′(y∗))∗p = C∗Cy∗ on [0, t]
u∗ = B∗p a.e. on [0, t]
p(t) = 0

and also

〈p(0), h〉 ≤ lim infε→0
1
ε

(l0(y∗(0) + εh)− l0(y∗(0))) (∀) h ∈ H.

We can now state the main result concerning the regularity of the value
function V :

Theorem 3.1. For any R > 0, if |x|, |y| ≤ R, then

|V (x)− V (y)| ≤ C(L)R|x− y|.

For any x ∈ H the infimum is attained in (1.3).

Proof. Let R > 0 and x, y ∈ H such that |x|, |y| ≤ R.
We know that v(t, ·) is locally Lipschitz (see [1]) since y → 1

2 |Cy|2 is locally
Lipschitz. So f(λ) = v(t, x + λ(y − x)) is Lipschitz on [0, 1]. This means that
f(·) is differentiable almost everywhere on [0, 1] and

v(t, y)− v(t, x) = f(1)− f(0) =
∫ 1

0

f
′
(λ)dλ. (3.8)

Let λ0 ∈ (0, 1) such that f is differentiable at λ0. This means that

limλ→0
f(λ + λ0)− f(λ0)

λ

= limλ→0
v(t, x + (λ + λ0)(y − x))− v(t, x + λ0(y − x))

λ

exists and it is equal to f
′
(λ0).

Let us denote h0 = y − x and x0 = x + λ0(y − x).In this notation ,

f
′
(λ0) = limλ→0

v(t, x0 + λh0)− v(t, x0)
λ

.



78 Mihai Sirbu

We remind that we defined

v(t, x) = inf
{∫ t

0

(
1
2
|u(s)|2 +

1
2
|Cy(s, x, u)|2)ds : u ∈ L2(0, t; H)

}
.

Since stability condition (2.1) holds, we conclude that there exists an optimal
pair (u∗, y∗) ∈ L2(0, t; H)× C([0, t];H) such that

v(t, x0) =
∫ t

0

(
1
2
|u∗(s)|2 +

1
2
|Cy∗(s)|2)ds

where y∗(·) = y(·, x0, u
∗). By the definition of the value function v(t, ·), it

turns out that the pair (u∗, y∗) also attains the infimum for the problem

inf
{∫ t

0

(
1
2
|u|2 +

1
2
|Cy|2)dτ − v(t, y(0)) : y′ + Ay + Fy = Bu on [0, t]

}

According to Lemma 3.1, there exists p ∈ C([0, t];H) such that




p′ −A∗p− (F ′(y∗))∗p = C∗Cy∗ on [0, t]
u∗ = B∗p a.e. on [0, t]
p(t) = 0

(3.9)

and also

〈p(0), h〉 ≤ lim infλ→0
−(v(t, x0 + λh)− v(t, x0))

λ
(∀) h ∈ H. (3.10)

Taking h = h0 in (3.10) we get

〈p(0), h0〉 ≤ limλ→0
−(v(t, x0 + λh0)− v(t, x0))

λ
= −f

′
(λ0).

For h = −h0 we obtain

−〈p(0), h0〉 ≤ lim infλ→0
−(v(t, x0 − λh0)− v(t, x0))

λ

= lim infλ→0
v(t, x0 − λh0)− v(t, x0)

−λ

= limλ→0
v(t, x0 + λh0)− v(t, x0)

λ
= f

′
(λ0).
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So −f
′
(λ0) ≤ 〈p(0), h0〉 ≤ −f

′
(λ0), therefore f

′
(λ0) = −〈p(0), h0〉

We can conclude now that |f ′(λ0)| ≤ |p(0)||h0| = |p(0)||x− y|. In the same
time, since p is a solution of the adjoint system, taking (3.5) into account,we
obtain

|p(0)|2 ≤ C(t, L)
∫ t

0

(|u∗|2 + |Cy∗|2) ds = C(t, L)2v(t, x0) ≤ C(t, L)C(L)|x0|2

≤ C(t, L)C(L)R2

since x0 ≤ R. This means that

|f ′(λ0)| ≤ (C(t, L)C(L))
1
2 R|x− y|,

anytime f is differentiable at λ0. Going back to (3.8) we conclude that

|v(t, x)− v(t, y)| ≤ (C(t, L)C(L))
1
2 R|x− y| for |x|, |y| ≤ R. (3.11)

Since v(t, x) → V (x) as t →∞ for any x ∈ H and C(t, L) → C(L) for t →∞,
we can pass to limit in (3.11) to conclude

|V (x)− V (y)| ≤ C(L)R|x− y| if |x|, |y| ≤ R.

The existence of optimal pairs is easily obtained by choosing an appropri-
ate subsequence of a minimizing sequence for (1.3) and then using stability
condition (2.1) and Fatou’s lemma. ¤

Once we proved Theorem 3.1 we can use dynamic programming arguments
to obtain the optimality conditions and the expected feedback law, namely:

Theorem 3.2. If (y∗, u∗) ∈ C([0,∞); H) × L2(0,∞; H) is an optimal pair
for the control problem (1.3) then there exists a unique p ∈ C([0,∞;H)) which
satisfies the conditions





p′ −A∗p− (F ′(y∗))∗p = C∗Cy∗ on [0,∞)
u∗ = B∗p a.e. on [0,∞)
p(∞) = 0

(3.12)

and also
p(t) ∈ −∂V (y∗(t)) for every t ≥ 0. (3.13)
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Remark 3.1. We denoted by ∂V (·) the generalized gradient in the sense of
F.Clarke of the function V (·). For details regarding the generalized gradient,
we refer the reader to [2].

Proof of Theorem 3.2. Let (u∗, y∗) ∈ L2(0,∞;H)× C([0,∞; H)) such that

V (x) =
∫ ∞

0

(
1
2
|u∗|2 +

1
2
|Cy∗|2

)
ds, y∗(·) = y(·, x, u∗).

We know that for any t > 0

V (x) = inf
{∫ t

0

(
1
2
|u(s)|2 +

1
2
|Cy(s, x, u)|2)ds + V (y(t, x, u))

}
(3.14)

and, furthermore, (u∗, y∗) is an optimal pair on [0, t], i.e.

V (x) =
∫ t

0

(
1
2
|u∗(s)|2 +

1
2
|Cy∗(s)|2)ds + V (y∗(t)). (3.15)

We have to say that we can either prove (3.14) directly or see that V (·) = v(·)
and (2.6) holds. Also, (3.15) can be proved by usual dynamic programming
arguments, once we know (3.14). By [2], there exists pt ∈ C([0, t];H) such
that 




(pt)′ −A∗pt − (F ′(y∗))∗pt = C∗Cy∗ on [0, t]
u∗ = B∗pt a.e. on [0, t]
pt(t) ∈ −∂V (y∗(t)).

(3.16)

Let us consider 0 < t1 < t2. We conclude that there exist pt1 ∈ C([0, t1];H),
pt2 ∈ C([0, t2];H), satisfying the corresponding conditions (3.16) for t1, t2.
Since B∗pt1 = u∗ = B∗pt2 a.e on [0, t1], if we denote p = pt1 − pt2 ∈
C([0, t1]; H) we have B∗p = 0 a.e. on [0, t1]. In the same time p satisfies
the adjoint system

p′ −A∗p− (F ′(y∗))∗p = 0,

so if we use observability inequality (3.3) on subintervals [s, t1] ⊂ [0, t1] (rather
then on[0, t1]) for g(t, ξ) = 0, a(t, ξ) = −∂f

∂y (ξ, y∗(t, ξ)), namely

|p(s)|2 ≤ C(t1 − s, L)
∫ t1

s

|B∗p(τ)|2dτ
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we conclude that pt1(s) = pt2(s) for each s ∈ [0, t1]. Considering any t > 0
and going over the same argument, we obtain that there exist a unique p ∈
C([0,∞); H) such that

{
p′ −A∗p− (F ′(y∗))∗p = C∗Cy∗ on [0,∞)
u∗ = B∗p a.e. on [0,∞)

(3.17)

and p(t) ∈ −∂V (y∗(t)) for every t > 0. Taking into account that the multi-
valued mapping y → ∂V (y) is strongly closed and p is continuous at 0, we
obtain that p(0) ∈ −∂V (x) as well, so (3.13) is proved. ¤

Since p satisfies (3.17), we know that a similar inequality to (3.5) holds on
the interval [t, t + 1] for each t > 0. In other words we have

|p(t)|2 ≤ C(1, L)
∫ t+1

t

(|B∗p(τ)|2 + |Cy∗(τ)|2) dτ.

Taking into account that B∗p = u∗ a.e. on [0,∞) we conclude that

|p(t)|2 ≤ C(1, L)
∫ t+1

t

(|u∗(τ)|2 + |Cy∗(τ)|2) dτ. (3.18)

Since
∫∞
0

(|u∗(τ)|2 + |Cy∗(τ)|2) dτ = 2V (x) < ∞, using Lebesgue’s domi-
nated convergence theorem we get that

∫ t+1

t

(|u∗(τ)|2 + |Cy∗(τ)|2) dτ → 0 for t →∞,

which implies, together with (3.18) that

p(∞) = lim
t→∞

p(t) = 0. (3.19)

We see that (3.17) and (3.19) together are nothing else but the necessary
conditions of optimality, namely (3.12)

Since u∗(·) = B∗p(·) a.e. on [0,∞), condition (3.13) is a feedback repre-
sentation formula for the optimal control u∗. In fact we have

u∗(·) ∈ −B∗∂V (y∗(·)) a.e. on [0,∞).
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Remark 3.2. The idea to use dynamic programming arguments to obtain
optimality conditions for the infinite horizon control problems was previously
used in [2](pages 210− 213). Here the author considers a monotonic nonlin-
earity (possibly discontinous and multivalued) which allows to conclude that
the trajectories of the state systems have exponential decay if we consider the
feedback control u = −B∗y. This means that the state system is stabilizable,
and it is possible to prove directly the regularity of V . This approach still
works in our case if the Lipschitz constant L is strictly smaller then the first
eigenvalue of the Laplacean with Dirichlet boundary conditions.

However, for general C1 and globally Lipschitz nonlinearities this approach
does not work and this is the case were the results in this paper apply. In
fact, null controllability (a consequence of observability inequalities) is the
only way to prove that the state system is stabilizable. The same observability
inequalities allowed us to conclude that the dual state is unique (compared
to [2] where R(B) = H was needed for this) and that the extra condition
p(∞) = 0 holds.

Remark 3.3. For the particular case of the semilinear heat equation, the
convergence result (1.6) can be improved, namely we can prove that

v(t, x) ↗ V (x) uniformly for x ∈ BR (∀) R > 0 (3.20)

where BR = {x ∈ H : |x| ≤ R}. In order to prove (3.20) we just have to
use Dini’s criterion on the weak (sequentially) compact set BR as well as the
monotone convergence (1.6). Weak sequential continuity of v(t, ·) and V (·)
follows from the fact that v(t, ·) is defined by (1.5) and V (·) satisfies (3.14)
and V (regarded as the penalization for time t in (3.14)) is locally Lipschitz.
Using the results in [4] Section VII, we can conclude that v(t, ·) and V (·) are
D-continuous, where D = (I+A)−1 is self adjoint and compact. Compactness
of D implies that D-continuity is nothing else than weak sequential continuity.
(See [4] for details regarding D-continuity.) Taking in account all these we are
now able to use Dini’s criterion to conclude (3.20).

Remark 3.4. The results presented in Section 3 are still valid for differ-
ent kinds of homogenous boundary conditions. Namely, we can replace the
Dirichlet condition by

yν(t, ξ) + βy(t, ξ) = 0 (∀) (t, ξ) ∈ (0,∞)× Ω

where yν is the outward normal derivative and β ≥ 0.
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Remark 3.5. We want to emphasize that condition f(·, 0) ≡ 0 means in fact
that ye ≡ 0 is a steady-state(equilibrium) solution of (3.2).

For the general case (f(·, 0) 6≡ 0), the stabilizability of an equilibrium solu-
tion ye can be reduced to the stabilizability of the trivial solution substituting
y by y + ye in the state system.
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4. M. G. Crandall, P. L. Lions, Hamilton-Jacobi Equations in Infinite Dimensions, Part
V. B-continuous Solutions, J. Funct. Anal. 97 (1991), 417-465.

5. A. V. Fursikov, O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture
Notes Series 34 (1996), Research Institute of Mathematics, Seoul National University,
Korea.

6. M. Kocan, P. Soravia, A Viscosity Approach to Infininite-Dimensional Hamilton-Jacobi
Equations Arising in Optimal Control with State Constraints, SIAM Journal Control
Optim. 36(4) (1998), 1348-1375.

7. M. Sirbu, Feedback Null Controllability of the Semilinear Heat Equation, Diff. Integral
Eqns. 15(1) (2002), 115-128.

8. I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd ed., Longman, London
(1995).

Mihai Ŝirbu+
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