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WELL-POSEDNESS OF GENERALIZED

BEST APPROXIMATION PROBLEMS

Simeon Reich and Alexander J. Zaslavski

Abstract. Given a closed subset A of a Banach space X, a point x ∈ X
and a continuous function f : X → R1, we consider the problem of finding
a solution to the minimization problem min{f(x − y) : y ∈ A}. For a fixed
function f , we define an appropriate complete metric space M of all pairs
(A, x) and construct a subset Ω of M which is a countable intersection of open
everywhere dense sets such that for each pair in Ω our minimization problem
is well posed.

1. Introduction

Let (X, || · ||) be a Banach space and let f : X → R1 be a continuous
function. Assume that

inf{f(x) : x ∈ X} is attained at a unique point x∗ ∈ X, (1.1)

lim
||u||→∞

f(u) = ∞, (1.2)

if {xi}∞i=1 ⊂ X and lim
i→∞

f(xi) = f(x∗), then lim
i→∞

xi = x∗, (1.3)

and that for each integer n ≥ 1, there exists an increasing function φn :
(0, 1) → (0, 1) such that

f(αx + (1− α)x∗) ≤ φn(α)f(x) + (1− φn(α))f(x∗) (1.4)
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for all x ∈ X satisfying ||x|| ≤ n and all α ∈ (0, 1). Clearly (1.4) holds if f is
convex.

Given a closed subset A of X and a point x ∈ X, we consider the mini-
mization problem

min{f(x− y) : y ∈ A}. (P)

This problem was studied by many mathematicians mostly in the case where
f(x) = ||x||. In this special case it is well known that if A is convex and X
is reflexive, then problem (P) always has at least one solution. This solution
is unique when X is strictly convex. If f = || · ||, A is merely closed, but X
is uniformly convex, then according to classical results of Stechkin [18] and
Edelstein [8], the set of all points in X having a unique nearest point in A is
a dense Gδ subset of X. Since then there has been a lot of activity in this
direction. In particular, it is known [10, 13] that the following properties are
equivalent for any Banach space X:

(A) X is reflexive and has a Kadec-Klee norm.
(B) For each closed nonempty subset A of X, the set of points in X \ A

with nearest points in A is dense in X \A.
(C) For each closed nonempty subset A of X, the set of points in X \ A

with nearest points in A is generic (that is, a dense Gδ subset) in X \A.
A more recent result of De Blasi, Myjak and Papini [6] establishes well-

posedness of problem (P) for f = || · ||, a uniformly convex X, a closed A and
a generic x ∈ X.

In this connection we recall that the minimization problem (P) is said to be
well posed if it has a unique solution, say a0, and every minimizing sequence
of (P) converges to a0. In other words, if {yi}∞i=1 ⊂ A and limi→∞ f(x−yi) =
f(x− a0), then limi→∞ yi = a0.

In the generic approach, instead of considering the existence of a solution
to problem (P) for a single point x ∈ X, one investigates it for the whole space
X and shows that solutions exist for most points in X. Such an approach is
common in many areas of Analysis. We mention, for instance, the theory of
dynamical systems [2, 7, 12], optimization [9, 15, 17], and optimal control
[19]. Note that in all the above-mentioned studies of problem (P) [6, 8, 10,
13, 18], the function f is the norm of the space X. There are some additional
results in the literature where either f is a Minkowski functional [5, 14] or the
function ||x− y||, y ∈ A, is perturbed by some convex function [1].

However, the fundamental restriction in all these results is that they hold
only under certain assumptions on either the space X or the set A. In view
of the Lau-Konjagin result mentioned above (see also [14]), these assumptions
cannot be removed. On the other hand, many generic results in nonlinear
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functional analysis hold in any Banach space. Therefore a natural question
is whether generic existence results for best approximation problems can be
obtained for general Banach spaces. Positive answers to this question in the
special case where f = || · || can be found in [3, 4, 16]. In the present paper
we answer this question in the affirmative for a general function f satisfying
(1.1)-(1.4).

To this end, as in [3, 4, 16], we change our point of view and consider
another framework the main feature of which is that the set A in problem
(P) can also vary. In our first result (Theorem 2.1), we fix x and consider the
space S(X) of all nonempty closed subsets of X equipped with an appropriate
complete metric, say h. We then show that the collection of all sets A ∈ S(X)
for which problem (P) is well posed contains an everywhere dense Gδ set. In
the second result (Theorem 2.2), we consider the space of pairs S(X) × X
with the metric h(A,B) + ||x − y||, A,B ∈ S(X), x, y ∈ X. Once again we
show that the family of all pairs (A, x) ∈ S(X)×X for which problem (P) is
well posed contains an everywhere dense Gδ set. In our third result (Theorem
2.3), we show that for any separable closed subset X0 of X there exists an
everywhere dense Gδ subset F of (S(X), h) such that any A ∈ F has the
following property: There exists a Gδ dense subset F of X0 such that for any
x ∈ F , problem (P) is well posed.

In our final result (Theorem 2.4) we show that a continuous coercive convex
f : X → R1 which has a unique minimizer and a certain well-posedness
property (on the whole space X) has a unique minimizer and the same well-
posedness property on a generic closed subset of X.

2. Main results

We recall that (X, || · ||) is a Banach space, f : X → R1 is a continuous
function satisfying (1.1)-(1.3) and that for each integer n ≥ 1, there exists an
increasing function φn : (0, 1) → (0, 1) such that (1.4) is true.

For each x ∈ X and each A ⊂ X set

ρ(x,A) = inf{ρ(x, y) : y ∈ A} (2.1)

and
ρf (x, A) = inf{(f(x− y) : y ∈ A}. (2.2)

Denote by S(X) the collection of all nonempty closed subsets of X. For
each A,B ∈ S(X) define

H(A,B) = max{sup{ρ(x,B) : x ∈ A}, sup{ρ(y, A) : y ∈ B}} (2.3)
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and
H̃(A,B) = H(A,B)(1 + H(A,B))−1.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (S(X), H̃) is complete.
For each natural number n and each A,B ∈ S(X) we set

hn(A,B) = sup{|ρ(x,A)− ρ(x,B)| : x ∈ X and ||x|| ≤ n} (2.4)

and

h(A,B) =
∞∑

n=1

[2−nhn(A,B)(1 + hn(A,B))−1].

Once again it is not difficult to see that h is a metric on S(X) and that the
metric space (S(X), h) is complete. Clearly, H̃(A,B) ≥ h(A, B) for all A,B ∈
S(X).

We equip the set S(X) with the pair of metrics H̃ and h. The topologies
induced by the metrics H̃ and h on S(X) will be called the strong topology
and the weak topology, respectively.

We now state our four main results. The proofs of the first three will be
given in Section 4. The proof of the last result will be given at the end of
Section 2.

Theorem 2.1. Let x̃ ∈ X. Then there exists a set Ω ⊂ S(X) which is a
countable intersection of open (in the weak topology) everywhere dense (in
the strong topology) subsets of S(X) such that for each A ∈ Ω the following
property holds:

(C1) There exists a unique ỹ ∈ A such that f(x̃− ỹ) = ρf (x̃, A). Moreover,
for each ε > 0 there exists δ > 0 such that if x ∈ A satisfies f(x̃ − x) ≤
ρf (x̃, A) + δ, then ||x− ỹ|| ≤ ε.

To state our second result we endow the Cartesian product S(X)×X with
the pair of metrics d1 and d2 defined by

d1((A, x), (B, y)) = h(A,B) + ρ(x, y), d2((A, x), (B, y)) = H̃(A,B) + ρ(x, y),

x, y ∈ X, A, B ∈ S(X).

We will refer to the topologies induced on S(X) × X by d2 and d1 as the
strong and weak topologies, respectively.
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Theorem 2.2. There exists a set Ω ⊂ S(X)×X which is a countable intersec-
tion of open (in the weak topology) everywhere dense (in the strong topology)
subsets of S(X)×X such that for each (A, x̃) ∈ Ω the following property holds:

(C2) There exists a unique ỹ ∈ A such that f(x̃− ỹ) = ρf (x̃, A). Moreover,
for each ε > 0 there exists δ > 0 such that if z ∈ X satisfies ||z − x̃|| ≤ δ,
B ∈ S(X) satisfies h(A,B) ≤ δ, and y ∈ B satisfies f(z − y) ≤ ρf (z,B) + δ,
then ||y − ỹ|| ≤ ε.

In most classical generic results the set A was fixed and x varied in a dense
Gδ subset of X. In our first two results the set A is also variable. However,
our third result shows that for every fixed A in a dense Gδ subset of S(X),
the set of all x ∈ X for which problem (P) is well posed contains a dense Gδ

subset of X.

Theorem 2.3. Assume that X0 is a closed separable subset of X. Then there
exists a set F ⊂ S(X) which is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) subsets of S(X) such that
for each A ∈ F the following property holds:

(C3) There exists a set F ⊂ X0 which is a countable intersection of open
everywhere dense subsets of X0 with the relative topology such that for each
x̃ ∈ F there exists a unique ỹ ∈ A for which f(x̃ − ỹ) = ρf (x̃, A). Moreover,
if {yi}∞i=1 ⊂ A satisfies limi→∞ f(x̃− yi) = ρf (x̃, A), then yi → ỹ as i →∞.

Now we will show that Theorem 2.1 implies the following result.

Theorem 2.4. Assume that g : X → R1 is a continuous convex function such
that inf{g(x) : x ∈ X} is attained at a unique point y∗ ∈ X, lim||u||→∞ g(u) =
∞, and if {yi}∞i=1 ⊂ X and limi→∞ g(yi) = g(y∗), then yi → y∗ as i → ∞.
Then there exists a set Ω ⊂ S(X) which is a countable intersection of open (in
the weak topology) everywhere dense (in the strong topology) subsets of S(X)
such that for each A ∈ Ω the following property holds:

(C4) There is a unique yA ∈ A such that g(yA) = inf{g(y) : y ∈ A}.
Moreover, for each ε > 0 there exists δ > 0 such that if y ∈ A satisfies
g(y) ≤ g(yA) + δ, then ||y − yA|| ≤ ε.

Proof of Theorem 2.4. Define f(x) = g(−x), x ∈ X. Clearly f is convex
and satisfies (1.1)-(1.3). Therefore Theorem 2.1 is valid with x̃ = 0 and there
exists a set Ω ⊂ S(X) which is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) subsets of S(X) such
that for each A ∈ Ω the following property holds:

There is a unique ỹ ∈ A such that

g(ỹ) = f(−ỹ) = inf{f(−y) : y ∈ A} = inf{g(y) : y ∈ A}.
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Moreover, for each ε > 0 there exists δ > 0 such that if x ∈ A satisfies

g(x) = f(−x) ≤ ρf (0, A)+δ = inf{f(−y) : y ∈ A}+δ = inf{g(y) : y ∈ A}+δ,

then ||x− ỹ|| ≤ ε. Theorem 2.4 is proved. ¤
It is easy to see that in the proofs of Theorems 2.1-2.3 we may assume

without loss of generality that inf{f(x) : x ∈ X} = 0. It is also not difficult to
see that we may assume without loss of generality that x∗ = 0. Indeed, instead
of the function f(·) we can consider f(·+x∗). This new function also satisfies
(1.1)-(1.4). Once Theorems 2.1-2.3 are proved for this new function they will
also hold for the original function f because the mapping (A, x) → (A, x+x∗),
(A, x) ∈ S(X)×A, is an isometry with respect to both metrics d1 and d2.

3. Basic lemma

Lemma 3.1. Let A ∈ S(X), x̃ ∈ X, and let r, ε ∈ (0, 1). Then there exist
Ã ∈ S(X), x̄ ∈ Ã, and δ > 0 such that

H̃(A, Ã) ≤ r, f(x̃− x̄) = ρf (x̃, Ã), (3.1)

and such that the following property holds:
For each ỹ ∈ X satisfying ||ỹ−x̃|| ≤ δ, each B ∈ S(X) satisfying h(B, Ã) ≤

δ, and each z ∈ B satisfying

f(ỹ − z) ≤ ρf (ỹ, B) + δ, (3.2)

the inequality ||z − x̄|| ≤ ε holds.

Proof. There are two cases: either ρ(x̃, A) ≤ r or ρ(x̃, A) > r. Consider the
first case where

ρ(x̃, A) ≤ r. (3.3)

Set
x̄ = x̃ and Ã = A ∪ {x̃}. (3.4)

Clearly (3.1) is true. Fix an integer n > ||x̃||. By (1.3) there is ξ ∈ (0, 1) such
that

if z ∈ X and f(z) ≤ 4ξ, then ||z|| ≤ ε/2. (3.5)

Using (1.1), we choose a number δ ∈ (0, 1) such that

δ < 2−n−4 min{ε, ξ} (3.6)
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and
if z ∈ X and ||z|| ≤ 2n+4δ, then f(z) ≤ ξ. (3.7)

Let
ỹ ∈ X, ||ỹ − x̃|| ≤ δ, B ∈ S(X), h(B, Ã) ≤ δ (3.8)

and let z ∈ B satisfy (3.2). By (3.8) and (2.4), hn(Ã, B)(1 + hn(Ã, B))−1 ≤
2nδ. This implies that hn(Ã, B)(1 − 2nδ) ≤ 2nδ. Combined with (3.6) this
inequality shows that hn(Ã, B) ≤ 2n+1δ. Since n > ||x̃||, the last inequality,
when combined with (3.4) and (2.4), implies that ρ(x̃, B) ≤ 2n+1δ. Hence
there is x0 ∈ B such that ||x̃− x0|| ≤ 2n+2δ. This inequality and (3.8) imply
in turn that ||ỹ−x0|| ≤ 2n+3δ. The definition of δ (see (3.7)) now shows that
f(ỹ − x0) ≤ ξ. Combining this inequality with (3.2), (3.6) and the inclusion
x0 ∈ B, we see that

f(ỹ − z) ≤ δ + f(ỹ − x0) ≤ ξ + δ ≤ 2ξ. (3.9)

It now follows from (3.5) that ||z − ỹ|| ≤ ε/2. Hence (3.6), (3.8) and (3.4)
imply that ||x̄ − z|| ≤ ε. This concludes the proof of the lemma in the first
case.

Now we turn our attention to the second case where

ρ(x̃, A) > r. (3.10)

For each t ∈ [0, r], set

At = {v ∈ X : ρ(v,A) ≤ t} ∈ S(X) (3.11)

and
µ(t) = ρf (x̃, At). (3.12)

By (3.10) and (1.3),
µ(t) > 0, t ∈ [0, r]. (3.13)

Clearly µ(t), t ∈ [0, r], is a decreasing function. Choose a number

t0 ∈ (0, r/4) (3.14)

such that µ is continuous at t0. By (1.2), there exists a natural number n
which satisfies the following conditions:

n > 4||x̃||+ 8 (3.15)
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and
if z ∈ X, f(x) ≤ µ(0) + 1, then ||z|| ≤ n/4. (3.16)

Let φn : (0, 1) → (0, 1) be an increasing function for which (1.4) is true.
Choose a positive number γ ∈ (0, 1) such that

γ < µ(t0)(1− φ(1− 2r/n))/8. (3.17)

Next, choose a positive number δ0 < 1/4 such that

2n+3δ0 < min{ε, γ}, (3.18)

[t0 − 4δ0, t0 + 4δ0] ⊂ (0, r/4), (3.19)

and
|µ(t)− µ(t0| ≤ γ, t ∈ [t0 − 4δ0, t0 + 4δ0]. (3.20)

Finally, choose a vector x0 such that

x0 ∈ At0 and f(x̃− x0) ≤ µ(t0) + γ. (3.21)

It follows from (3.21), (3.11) and (3.14) that

||x0 − x̃|| ≥ ρ(x̃, A)− ρ(x0, A) ≥ ρ(x̃, A)− t0 ≥ ρ(x̃, A)− r/2, (3.22)

and hence by (3.10),
||x0 − x̃|| > r/2. (3.23)

It follows from (3.21) and (3.16) that

||x0 − x̃|| ≤ n/4. (3.24)

There exist x̄ ∈ {αx0 + (1− α)x̃ : α ∈ (0, 1)} and α0 ∈ (0, 1) such that

||x̄− x0|| = r/2 (3.25)

and
x̄ = α0x0 + (1− α0)x̃. (3.26)

By (3.26) and (3.25), r/2 = ||x̄ − x0|| = ||α0x0 + (1 − α0)x̃ − x0|| = (1 −
α0)||x̃− x0|| and

α0 = 1− r(2||x̃− x0||)−1. (3.27)
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The relations (3.27) and (3.24) imply that

α0 ≤ 1− r/(2n/4) = 1− 2r/n. (3.28)

Set
Ã = At0 ∪ {x̄}. (3.29)

Now we will estimate f(x̃− x̄). By (3.26), (3.24), (1.4), (3.21) and (3.28),

f(x̃− x̄) = f(x̃− (α0x0 + (1− α0)x̃)) = f(α0(x̃− x0)) ≤

φn(α0)f(x̃− x0) ≤ φn(α0)(µ(t0) + γ) ≤ φn(1− 2r/n)(µ(t0) + γ).

Thus

f(x̃− x̄) ≤ φn(1− 2r/n)(µ(t0) + γ) ≤ µ(t0)φn(1− 2r/n) + γ. (3.30)

By (3.29), (3.12), (3.17) and (3.30), for each x ∈ Ã \ {x̄} ⊂ At0 ,

f(x̃− x) ≥ µ(t0) > f(x̃− x̄) (3.31)

and therefore
f(x̃− x̄) = ρf (x̃, Ã). (3.32)

There exists δ ∈ (0, δ0) such that

2n+4δ < δ0 (3.33)

and

|f(z)−f(x̃− x̄)| ≤ γ/4 for all z ∈ X satisfying ||z−(x̃− x̄)|| ≤ 2n+3δ. (3.34)

By (3.29), (2.3), (3.25), (3.21), (3.14) and (3.11),

H̃(Ã, A) ≤ H(Ã, A) ≤ r. (3.35)

The relations (3.35) and (3.32) imply (3.1). Assume now that

ỹ ∈ X, ||ỹ − x̃|| ≤ δ (3.36)

and
B ∈ S(X) and h(Ã, B) ≤ δ. (3.37)
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First we will show that

ρf (ỹ, B) ≤ µ(t0)φn(1− 2r/n) + 2γ. (3.38)

By (3.37) and the definition of h (see (2.4)), hn(Ã, B)(1 + hn(Ã, B))−1 ≤
2nδ. When combined with (3.33), this inequality implies that

hn(Ã, B) ≤ 2nδ(1− 2nδ)−1 ≤ 2n+1δ. (3.39)

It follows from (3.30) and the definition of n (see (3.16), (3.15)) that ||x̃−x̄|| ≤
n/2 and ||x̄|| ≤ n. Combined with (3.29) and (3.39) this implies that ρ(x̄, B) ≤
2n+1δ. Therefore there exists ȳ ∈ B such that ||x̄ − ȳ|| ≤ 2n+2δ. Combining
this inequality with (3.36), we see that ||(ȳ−ỹ)−(x̄−x̃)|| ≤ ||x̄−ȳ||+||ỹ−x̃|| ≤
2n+3δ. It follows from this inequality and (3.34) that f(ỹ−ȳ) ≤ f(x̃−x̄)+γ/4.
By the last inequality and (3.30), f(ỹ − ȳ) ≤ µ(t0)φn(1 − 2r/n) + 2γ. This
implies (3.38).

Assume now that z ∈ B satisfies (3.2). To complete the proof of the lemma
it is sufficient to show that ||x̄− z|| ≤ ε. Assume the contrary. Then

||x̄− z|| > ε. (3.40)

We will show that there exists z̄ ∈ Ã such that

||z − z̄|| ≤ 2n+2δ. (3.41)

We have already shown that (3.39) holds. By (3.2), (3.38), (3.17) and (3.33),

f(ỹ − z) ≤ ρf (ỹ, B) + δ ≤ φn(1− 2r/n)µ(t0) + 2γ + δ ≤ µ(0) + 1/2.

Hence ||z − ỹ|| ≤ n/4 by (3.16), and by (3.36) and (3.15),

||z|| ≤ n/4 + ||ỹ|| ≤ n/4 + ||x̃||+ ||ỹ − x̃|| ≤ n.

Thus ||z|| ≤ n. The inclusion z ∈ B and (3.39) now imply that ρ(z, Ã) ≤
hn(B, Ã) ≤ 2n+1δ. Therefore there exists z̄ ∈ Ã such that (3.41) holds. It
follows from (3.41), (3.40), (3.29), (3.33) and (3.18) that

z̄ ∈ At0 . (3.42)

By (3.41) and (3.36), ||z+ x̃− ỹ− z̄|| ≤ ||x̃− ỹ||+ ||z− z̄|| ≤ 2n+2δ+δ ≤ 2n+3δ.
It follows from this inequality, (3.42), (3.11) and (3.33) that

ρ(z + x̃− ỹ, A) ≤ ||z + x̃− ỹ − z̄||+ ρ(z̄, A) ≤ 2n+3δ + t0 ≤ t0 + δ0.
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Thus z + x̃− ỹ ∈ At0+δ0 . By this inclusion, (3.11), (3.12) and (3.20),

f(ỹ − z) = f(x̃− (z + x̃− ỹ)) ≥ ρf (x̃, At0+δ0) = µ(t0 + δ0) ≥ µ(t0)− γ.

Hence, by (3.2), (3.38), (3.18) and (3.33),

µ(t0)− γ ≤ f(ỹ − z) ≤ ρf (ỹ, B) + δ ≤ φn(1− 2r/n)µ(t0) + 2γ + δ ≤

φn(1− 2r/n)µ(t0) + 3γ.

Thus µ(t0) − γ ≤ φn(1 − 2r/n)µ(t0) + 3γ, which contradicts (3.17). This
completes the proof of Lemma 3.1. ¤

4. Proofs of Theorems 2.1-2.3

The cornerstone of our proofs is the property established in Lemma 3.1.
Since this property is close, but not identical to the hypotheses of the varia-
tional principle in [9], we will present direct proofs of our results.

By Lemma 3.1, for each (A, x) ∈ S(X) ×X and each integer k ≥ 1, there
exist A(x, k) ∈ S(X), x̄(A, k) ∈ A(x, k), and δ(x,A, k) > 0 such that

H̃(A,A(x, k)) ≤ 2−k, f(x− x̄(A, k)) = ρf (x,A(x, k)), (4.1)

and the following property holds:
(P1) For each y ∈ X satisfying ||y − x|| ≤ 2δ(x,A, k), each B ∈ S(X)

satisfying h(B, A(x, k)) ≤ 2δ(x,A, k), and each z ∈ B satisfying f(y − z) ≤
ρf (y, B) + 2δ(x,A, k), the inequality ||z − x̄(A, k)|| ≤ 2−k holds.

For each (A, x) ∈ S(X)×X and each integer k ≥ 1, define

V (A, x, k) = {(B, y) ∈ S(X)×X : (4.2)

h(B, A(x, k)) < δ(x,A, k) and ||y − x|| < δ(x,A, k)}
and

U(A, x, k) = {B ∈ S(X) : h(B, A(x, k)) < δ(x,A, k)}. (4.3)

Now set

Ω = ∩∞n=1 ∪ {V (A, x, k) : (A, x) ∈ S(X)×X, k ≥ n}, (4.4)

and for each x ∈ X let

Ωx = ∩∞n=1 ∪ {U(A, x, k) : A ∈ S(X), k ≥ n}. (4.5)
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It is easy to see that Ωx × {x} ⊂ Ω for all x ∈ X, Ωx is a countable
intersection of open (in the weak topology) everywhere dense (in the strong
topology) subsets of S(X) for all x ∈ X, and Ω is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology)
subsets of S(X)×X.

Completion of the proof of Theorem 2.2. Let (A, x̃) ∈ Ω. We will show that
(A, x̃) has property (C2). By the definition of Ω (see (4.4)), for each integer
n ≥ 1 there exist an integer kn ≥ n and a pair (An, xn) ∈ S(X)×X such that

(A, x̃) ∈ V (An, xn, kn). (4.6)

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞

f(x̃− zi) = ρf (x̃, A). (4.7)

Fix an integer n ≥ 1. It follows from (4.6), (4.2) and property (P1) that for
all large enough integers i, f(x̃ − zi) < ρf (x̃, A) + δ(xn, An, kn) and ||zi −
x̄n(An, kn)|| ≤ 2−n. Since n ≥ 1 is arbitrary, we conclude that {zi}∞i=1 is
a Cauchy sequence which converges to some ỹ ∈ A. Clearly f(x̃ − ỹ) =
ρf (x̃, A). If the minimizer ỹ were not unique we would be able to construct a
nonconvergent minimizing sequence {zi}∞i=1. Thus ỹ is the unique solution to
problem (P) (with x = x̃).

Let ε > 0. Choose an integer n > 4/ min{1, ε}. By property (P1), (4.6)
and (4.2),

||ỹ − x̄n(An, kn)|| ≤ 2−n. (4.8)

Assume that z ∈ X satisfies ||z − x̃|| ≤ δ(xn, An, kn), B ∈ S(X) satis-
fies h(A, B) ≤ δ(xn, An, kn), and y ∈ B satisfies f(z − y) ≤ ρf (z, B) +
δ(xn, An, kn). Then

h(B, An(xn, kn)) ≤ 2δ(xn, An, kn) and ||z − x̄n(An, kn))| ≤ 2δ(xn, An, kn)

by (4.6) and (4.2). Now it follows from property (P1) that ||y− x̄n(An, kn)|| ≤
2−n. When combined with (4.8), this implies that ||y − ỹ|| ≤ 21−n < ε. The
proof of Theorem 2.2 is complete. ¤

Theorem 2.1 follows from Theorem 2.2 and the inclusion Ωx̃ × {x̃} ⊂ Ω.
Although a variant of Theorem 2.3 also follows from Theorem 2.2 by a

classical result of Kuratowski and Ulam [11], the following direct proof may
also be of interest.
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Proof of Theorem 2.3. Let the sequence {xi}∞i=1 ⊂ X0 be everywhere dense in
X0. Set F = ∩∞p=1Ωxp

. Clearly F is a countable intersection of open (in the
weak topology) everywhere dense (in the strong topology) subsets of S(X).

Let A ∈ F and let p, n ≥ 1 be integers. Clearly A ∈ Ωxp
and by (4.5) and

(4.3), there exist An ∈ S(X) and an integer kn ≥ n such that

h(A,An(xp, kn)) < δ(xp, An, kn) with A ∈ S(X). (4.9)

It follows from this inequality and property (P1) that the following property
holds:

(P2) For each y ∈ X satisfying ||y−xp|| ≤ δ(xp, An, kn) and each z ∈ A sat-
isfying f(y−z) ≤ ρf (y,A)+2δ(xp, An, kn), the inequality ||z− x̄p(An, kn)|| ≤
2−n holds.

Set W (p, n) = {z ∈ X0 : ||z − xp|| < δ(xp, An, kn)} and

F = ∩∞n=1 ∪ {W (p, n) : p = 1, 2, . . . }.

Clearly F is a countable intersection of open everywhere dense subsets of X0.
Let x ∈ F . Consider a sequence {zi}∞i=1 ⊂ A such that

lim
i→∞

f(x− zi) = ρf (x,A). (4.10)

Let ε > 0. Choose an integer n > 8/ min{1, ε}. There exists an integer p ≥ 1
such that x ∈ W (p, n). By the definition of W (p, n), ||x−xp|| < δ(xp, An, kn).
It follows from this inequality, (4.10) and property (P2) that for all sufficiently
large integers i, f(x− zi) ≤ ρf (x,A) + δ(xp, An, kn) and ||zi − x̄p(An, kn)|| ≤
2−n < ε. Since ε > 0 is arbitrary, we conclude that {zi}∞i=1 is a Cauchy
sequence which converges to ỹ ∈ A. Clearly ỹ is the unique minimizer of the
minimization problem z → f(x − z), z ∈ A. Note that we have shown that
any sequence {zi}∞i=1 ⊂ A satisfying (4.10) converges to ỹ. This completes
the proof of Theorem 2.3. ¤
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