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AN EXTENSION OF LIE-TROTTER PRODUCT FORMULA

CosTICA MOROSANU AND DUMITRU MOTREANU

ABSTRACT. The paper establishes the product formula for semigroups of non-
linear operators on a real Hilbert space in the case where one of the operators
is w-m-accretive. This extends a well-known result for maximal monotone
operators (the case w = 0). An example dealing with Caginalp’s model is
given.

1. INTRODUCTION AND MAIN RESULT

Let H be a real Hilbert space endowed with the scalar product (-,-) and
the induced norm || - ||. For a (nonlinear) operator A on H the notation D(A)
represents the domain of A, and R(A) denotes the range of A.

Given a number w € R, a (single-valued) operator A : D(A) C H - H
is said to be w-accretive if A + wI (where I stands for the identity of H) is
accretive, i.e.,

(Azy — Axo, 21 — 22) > —wl|z1 — :Jc2||2 Vxi,29 € D(A). (1.1)

When w = 0 the operator A is called accretive (or monotone).
An w-accretive operator A : D(A) C H — H is said to be w-m-accretive if
A + wl is m-accretive (or maximal monotone). If A: D(A) C H — H is an
w-m-accretive operator, then — A generates a semigroup {S4(t); t > 0} which
is differentiable a.e. with respect to ¢ (on D(A)) and satisfies
d+
dt
For a detailed study we refer to Barbu [1] and Brézis [2]. Different aspects
related to these topics are also discussed in Section 2.
The main result of the paper is the following extension of Lie-Trotter prod-
uct formula.

(Sa(t)r) + ASa(t)z =0 Vte[0,00), Yz € D(A). (1.2)
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Theorem 1. Let A : D(A) C H — H be an m-accretive operator and let
B: D(B) C H— H be an w-m-accretive operator, for some w € R, such that
the operator A+ B : D(A)N D(B) C H — H is w-m-accretive. If

(I+XA)"Y(D(A)ND(B)) c D(A)YND(B) Y A>0

and

(I+AB)"Y(D(A)ND(B)) c D(A)ND(B) Y A >0 with \w < 1,

then one has the convergence

t t\]" _
[SB (E)SA(E)] x — Satp(t)r strongly in H as n — oo (1.3)
uniformly on the bounded intervals of [0,00), for every x € D(A)N D(DB).
Here {Sa(t);t > 0}, {Sp(t);t > 0}, {Sat+p(t);t > 0} denote the semigroups
generated by —A, —B, —(A + B), respectively.

Theorem 1 extends the Lie-Trotter product formula (on the closed convex
set D(A) N D(B)) for w = 0 (see Barbu [1], Brézis [2], Brézis and Pazy [3]).

Theorem 1 does not cover the multivalued situation for w-accretive op-
erators. When w = 0 the corresponding set-valued result was treated in
Kobayashi [5].

As an application of Theorem 1 we indicate how the Caginalp’s model [5]
can be decoupled in two simpler systems.

The rest of the paper is organised as follows. Section 2 contains some rel-
evant properties of w-m-accretive operators that are needed in the sequel. In
Section 3 the proof of Theorem 1 is presented. Section 4 contains the appli-
cation of Theorem 1 to Caginalp’s model describing the phase-field changes.

2. PROPERTIES OF w-m-ACCRETIVE OPERATORS

This Section is devoted to the extension of some results known for m-
accretive operators (see, e.g., Barbu [1] and Brézis [2]) to w-m-accretive op-
erators, with a fixed real number w. We point out that if v < 0, an w-m-
accretive operator is m-accretive. Consequently, throughout the Section we
fix a number w > 0.
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Lemma 1. An operator A: D(A) C H — H is w-accretive if and only if A
is in the class A(w) as introduced in Brézis and Pazy [4], that is,

[(x1 + AAzy) — (z2 + MNzxa)|| > (1 — Aw) ||z — 22|
VO<A<w ™ oz, zp€ D(A).

Proof. See, e.g., [8, p. 352]. O

Lemma 1 allows to define the resolvent Ji! : R(I + AA) — D(A) C H and
the Yosida approximation Ay : R(I + MA) — H associated to an w-accretive
operator A: D(A) C H — H by

1
JE =T +XA)7' and Ay = S - T, (2.1)

respectively, for every 0 < A < w™1.
For an w-m-accretive operator A, the next lemma ensures that the map-
pings in (2.1) are defined on H.

Lemma 2. If A: D(A) C H — H is w-m-accretive with w > 0, then

RI+MA)=H Y0<A<w ™

Proof. Since A is w-m-accretive, it follows that
R(I+pu(A+wl))=H Vu>0,

or, equivalently,

RUI+—L—A)y=H vu>o.
1+ pw
For every 0 < A < w™!, there exists u > 0 satisfying p/(1 + pw) = A. This
leads to the desired result. O

Now we state some basic properties of operator Aj.

Lemma 3. Let A: D(A) C H — H be an w-m-accretive operator. Then for
each 0 < A < w™1,

||(II1 — (II2||2 Vai,z0 € H.

(Axz1 — Axzo, 21 — 22) > — u
1-)w

Proof. The result follows directly from (2.1) and Lemma 2.1 (i) in [4] (see also
8, p. 355]). 0
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Lemma 4. Let A: D(A) C H — H be an w-m-accretive operator. Then for
each © € D(A) one has that Axz — Az strongly in H as X | 0.

Proof. Let us fix £ € D(A). The set {Axz : X > 0} is bounded in H (see,
e.g., [8, p. 355]), thus there exists y € H fulfilling Ayz — y weakly in H as
A J 0 along a relabelled subsequence. It follows that

< limi <1 _ —1
Il < liminf | Ara] < lim(1 - Ao) | Az

(cf. [8, p. 355]). Taking into account that Ayz = AJ/‘\“:E, J;f‘x —zas A0
and the operator A is demiclosed, it turns out that y = Az. Then (2.2)
enables us to conclude that a subsequence of (A z) can be found such that
|Axz|| — ||Az||, consequently, Axz — Az strongly as A | 0. Since this occurs
for every weakly convergent subsequence of (Ayx), the proof is complete. [

Lemma 5. Let A: D(A) C H — H be an w-m-accretive operator and let
C be a nonempty closed convex subset of H with C C D(A). If, for every
0<A<w™?, one has

J(C) cc, (2.2)
then the estimate below holds

1Sa(t)z — PcSa(t)z| < ||z — Pox||e®*?t Vo € D(A), Vt>0, (2.3)

where Po stands for the projection (in H) on C.
Proof. Firstly we show that assumption (2.2) implies

(Ayz,y) >0 Vy € dlc(x), VzeCl, (2.4)

where 0I¢ represents the subdifferential of the indicator function I of the
set C. Indeed, y € dI¢(z) is equivalent to (y,z — z) < 0, Vz € C. According
to (2.2), we may set here z = Jilz. This yields (2.4).

The next step in the proof is to show that

p(l = w)

forallz € H, 0 < A < w™!, g > 0. Since (0I¢)u(z) = p~'(z — Pox) (see
Brézis [2], p. 46), by Lemma 3 we can write

(Axz, (0lc)u(2)) = = Iz — Pewl|? (2.5)

(A (016) (@) > = | 5

|z — Poz||® + (AxPow,z — Pcx)|. (2.6)



An extension of Lie-Trotter product formula 521

Using the properties z — Pox € 0l¢(Pcox), (2.4) (for Pox in place of ) and
(2.6), we arrive at (2.5).
Lemma 4 allows to pass to the limit as A | 0 in (2.5), which leads to

(Az, (9I¢), (7)) > —%Hx — Poz||? YaeD(A), Yu>o0. (2.7)

We check now that the convex regularization (I¢), of I¢ (see, e.g., [2, p.
46] or [8, p. 404]) satisfies

(Lo)u(Sat)z) < (Io)u(z) + %/0 ISa(s)z — PeSa(s)z|®ds  (2.8)

Ve DA, Vu>0, Vt>D0.

Clearly, to establish (2.8) it is sufficient to consider the case where z € D(A).
By (1.2) and (2.7) (with S4(¢)z in place of z) we derive

a
dt

(I0), (S4(12) 5 (Sa(1)2)
~(A(S4(B)2), (91C)u(S4(1)2))

%usA(t)x — PeSa(t)z)

(Ic)u(Sa(t)z)

IN

a.e. t € (0,400), VYu>0.

Since the map ¢ — (I¢),(Sa(t)z) is Lipschitz continuous on bounded inter-
vals, by integrating (2.9) over [0, t] we get (2.8).

Substituting the expression of (I¢),(Sa(t)z) (see, e.g., [1, p. 46]) in (2.8)
we infer that

1

— -P 2

2M||5A(1t)iff' cSa(t)z]]
1 5 W t 9

< —|lz — Pez||”+ = | [|Sa(s)x — PcSa(s)x||“ds ¥Vt > 0.
24 © Jo

Then Gronwall inequality implies (2.3) which completes the proof. O

3. PROOF OF THEOREM 1

If w < 0, the operator B is m-accretive. As A is also an m-accretive
operator with A + B m-accretive, we may conclude by applying the result
known for m-accretive operators. It remains to treat the case w > 0.
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We claim that

lim % (¢ - 55(0Sa(t)z) = Av+ Bx Vee DA)ND(B).  (31)

t—0

To this end, for a fixed x € D(A) N D(B), one sees that
1
~1SB()z = Sp(6)Sa(t)z]| < e[| Az|| vt > 0. (3.2)

Indeed, it is known from Lemma 1 that the operator B belongs to the class
A(w). Then the following estimate holds

IS5(t)y — Sp(t)z|l < e'lly — 2l ¥Vt >0, y,z€ D(B) (3-3)
(see relation (1.5) in [4]). Using (3.3) and (1.2) we find that
1 1
S188(t)z = Sp(1)Sa(®)z]| < e 2|z = Sa(t)z]

1t (3.4)
:e“’tg/ |ASa(T)x||dT.
0

Part (6) of Theorem 3.1 in Brézis [2, p. 54], ensures that the mapping 7 —
||AS 4(7)z|| is nonincreasing. Hence (3.4) yields (3.2).
We note that

(=500 25002229002 Hsp(0)a- $n(0)5a(0)s). 6~ Sa(0)e)

%(5 Ss(t)¢ = (I = Sp(1)Sa(t)a,¢ = Sa(t)z)
= <[l = 84l ~ (S5(€ ~ Sn()Sa0)2,6 ~ Sa(t)z)]
> 2 [le = Sa()al” - 1550 ~ Sn(S sl ~ Sate)zl]

V¢ € D(B), Yz € D(A)nD(B).

By (3.3) this leads to

(5 St x—SA<t>x_x—SBW_%(sBmgc_sB(t)sA(t)x),£—SA<t>x)

t t
g = Sa®)all* — e“*llg = Sa(t)=|”] (3.5)

(1—e“N||¢ = Sa(t)z]|> V&€ D(B), Vze D(A)ND(B).

wl»—nwlr—t
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Since the left-hand side of (3.4) is bounded as ¢ — 0, there exists the weak
limit (in H)

%(SB ()5 — Sp(1)Sa(t)z) — y weakly as ¢ — 0. (3.6)

Letting ¢ — 0 in (3.5), on the basis of definition for the generator of a semi-
group of type w (see [1, pp. 102-104]) and (3.6) we find

(B¢ + Az — Bz — y,& — 1) > —wll¢ — 2%
Equivalently, this is expressed as follows
(B+wl)f—(Bzx—Az+y+wz),E—x)>0 (3.7)

forall € D(B) and x € D(A)ND(B). Because B is w-m-accretive we derive
from (3.7) that (B +wl)z = Bx — Az + y + wz, that is

y = Az. (3.8)
By (3.2) and (3.8) we get
. 1
limsup —|[Sp(t)z — Sp(t)Sa(t)z] < |l Azl = |yl
t—0
This in conjunction with the weak convergence in (3.6) implies
1
n (SB(t)(II — Sp (t)SA(t)x) — Az strongly as ¢t — 0. (3.9)
Then, in view of (3.9), it is seen that the claim in (3.1) is proved.

By Lemma 1 we know
A+ B e Aw), (3.10)

while Lemma 2 insures that
1
R(I+XNA+B)=H Yo<\A<—. (3.11)
w

For proving the convergence in (1.3) we proceed by applying Theorem 3.2
in Brézis and Pazy [4] for the family of mappings

T(t) = Sp(t)Sa(t) : D(A) N D(B) — D(A) ND(B) Vt>0.  (3.12)
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The mapping T'(¢) as introduced in (3.12) is from D(A) N D(B) to itself due
to Lemma 5 used with C' = D(A) N D(B) and A + B in place of A. Let us
remark that the set D(A) N D(B) is convex because the operator A+ B+ wl
is maximal monotone.
Assumption (i) of Theorem 3.2 in Brézis and Pazy [2] holds with M(t) =
e“t ¢t > 0, since
1Tz =Tyl = |S(#)Sa(t)z — Sp(t)Sat)yll

3.13
< eSat)r = Syl < o —yl. P

Relation (3.13) shows that the mapping 7'(¢) is Lipschitz continuous with
the Lipschitz constant e“* > 1. Then we may apply Lemma 2.2 part (i) in
Brézis and Pazy [4]. Consequently, there exists on D(A) N D(B) the mapping

A -1 A
<I+?(I—T(t))) if0< S < (e~ )7
We deduce that there exists the mapping from D(A) N D(B) into itself
A -1 1
(I+;(I—T(t))) if0 <A< o—and0<t <ty (3.14)

for some tg > 0.

Let us check now that assumption (ii) of Theorem 3.2 in Brézis and Pazy
[4] is fulfilled for T'(¢) given by (3.12) and Ag = 5. To justify this claim we
have to show that

<I+%(I—T(t))>_lm—>(I+>\(A+B))_1:1: imnHast—0 (3.15)

for every € D(A)ND(B) and 0 < A < 5-.
Towards this, taking into account (3.12) and (3.13) we can write

G ((I + %(I —T@)) e —T)(I+ %(I — T(t)))_lx) — %(f — T(t)¢),
(143 -T(0) o)
> % H(I+ %(I—T(t)))_lx—f (3.16)

-1

. % HT(t) (I+ %(I ~T() =- T(MH H (7+ %(I =) - €H

2
1

\U+§U—Tw»‘x—g,

1
> ;(1 — )
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forall 0 <t < ty, 0 < A< 5, &z € D(A) N D(B). Since

%((H%(I—T(t)))_lx—T(t) (I—i—%(I—T(t)))_lx) - % (i_(H%(I_T(t)))_lx),

relation (3.16) implies

(=), 1+ 2= 1) 2 €) ~ (He-T08), (T + 2 (1= 7(1) o)

> (; _ %(ewt 1) H (T + %(1 @) ¢ (3.17)

for all 0 < ¢t < tg, 0 < A < 5, &,z € D(A)ND(B). Using the Cauchy-
Schwarz inequality we derive

1 1
Sllz = €1+ 1€ - T(o)el

> (5 -1 =) o+ Fu-T) ¢

(3.18)
t ‘ ’

forall 0 <t <, 0 <A< 5, &z € D(A)ND(B). Let us fix 0 < A < 5=
and £ € D(A) N D(B) in (3.18). By the choice of ¢y > 0 it is true that

1
(e*t —1) > 3 2w >0 whenever 0 <t < 1.

> =
| =

According to (3.1) and (3.12) we know that

1
Z(f —T(t)¢) is bounded in H, 0<t<t (3.19)

for a possibly smaller ¢5. Then, combining (3.18) and (3.19) we deduce that
for any z € D(A)ND(B) and 0 < A < 5=

2w?
>\ —1
(I + 2 - T(t))) ¢ isbounded in H, 0<t< to. (3.20)

Let
A ~1
<I+?(I—T(t))) x — 2z weaklyin H ast— 0
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for some z € H. The existence of a weak limit point z is guaranteed by (3.20).
Passing to the limit as ¢ — 0 in (3.17) and making use of (3.1), one finds that

A
(5 )l el < (5 o) g + 30 - @) - I
< timsup (7 + 57 = 7(9) o — ¢

< Tim sup [(%(x —6), (I + %(I - 1(1)) e - €)

t—0

1 A -1
—— =T, (T+-(T—-T( x—&
(e~ Te (14 30 -1(0) o - ¢)| o

< (j@-0.5-¢) - g+ B2 -9
It turns out that
((A+B+w1)§+ %(z—m) —wz,{—z) >0,

for 0 < A < 5=, & € D(A)ND(B), z € H. In view of m-w-accretiveness

of operator A + B, i.e., A + B + wl is maximal monotone, it follows that
z € D(A)N D(B) and

1
Az+ Bz+wz = —(z — 2z) + wz.

A
On the basis of (3.13) the formula above can be expressed as follows
2= (I+XMA+B)) 'z (3.22)

Since z is an arbitrary weak limit in (3.20) we infer from (3.22) that
A
(I+ ?(I ~Tt)) 'z = I+ XA+ B)) 'z weaklyin H ast — 0 (3.23)

for every 0 < A < 5= and z € H (see (3.14)).
Choosing &€ = (I + A\(A + B))"!z in (3.21), property (3.21) shows that
2
<0. (3.24)

lim sup
t—0
Combining (3.23) and (3.24) it results that the claim in (3.15) is true.
All the hypotheses of Theorem 3.2 of Brézis-Pazy [2] are verified. Therefore
we are in a position to conclude that the convergence result stated in (1.3) is
valid. This completes the proof of Theorem 1. O

‘(I + %(I —T@)) - I+ XA+ B) 'z
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4. EXAMPLE

As application of Theorem 1 we treat the Caginalp’s model, namely:

ut—i-g(pt:kAu inQ:(O,T)xQ,
52 1 2 .
}pe="Rot o —(p—y )+Tu in Q, (@1)
ou 6(,0
5 6y on > = (O,T) X 89,
U(O,IE) - UO(x)a 90(073:) = 900(:1:) S Qa

where € is an open bounded subset of R” whose boundary 012 is sufficiently
smooth (for instance of class C?), u is the reduced temperature, ¢ repre-
sent the phase function, and the positive parameters 7,&,4, k, a are physical
constants (see [5] for details).

Setting y = u + 2% the system (4.1) takes the form

.
—kAy—i—%A(p:O in @,
2 1 1 1 2 )
vt—§—A<p+— (ﬁ——><p+—s0 —-y=0 mnQ,
T T 2 2at
5 5 (4.2)
9y _ 9% _
ov  Ov 0 on 2,
/
L y(O,IL‘) = u0($) + 5900(:1:)7 (»0(07]7) = 900(]7) z €.

Next, let us put (4.2) in an abstract framework. To this end we consider the
space H = L?(Q) x L?(Q2) endowed with the norm || - || defined by

y
H( )H = lyllz2() + @2 ()-
¥ H

dy Oy

: _ 200)2. Y _9¥
We define the operator A : D(A) = {(y,p) € H*(Q)* : 3 = By

H — H by

=0} C
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and the operator B : D(B) = L?(Q) x L°(Q) Cc H — H by
0
B(y> -1 1 1, 2
2 - )t g ¥~y
T 2a 2a1 T

Thus the system (4.2) becomes

£+ ()<

Lemma 4.1. If k¢? < 16£2/7 then the operator A is m-accretive.

Proof. Using Green formula and Cauchy-Schwarz’s inequality, we get

(—kAer%A(p) (y>
_§A<p "\p =

v, ¢
= k|Vyll72 (o) - 5 (VY. Vo) 2 mn) + ?HV‘:OH%Z(Q)
¥, ¢
Zk||Vy||%2(Q)—7| 7|

IVylle o) - IVellL2 @) + =1VellZ: q)-

Since kf? < 16£2 /7 we have

ke ¢
kIVyll 72 — EHV?/HL%Q) [IVellrz () + ?”V‘P“%Z(Q) >0,

It is well-known that for every (g ) € H = D(A) the system

thus

ke
y— AkAy = f — )\?Ago € L*(Q),

2
o — /\%Aso =g € L*(Q),

has a unique solution (Y) € D(A) for every A > 0 (see Barbu [1] p. 80), so
@

the operator A is m-accretive.

0
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Lemma 4.2. The operator B is m-w-accretive.

Proof. Let us choose

1 1 1
w2max{—,——(€———1>}. (4.4)
T T 2a
We have

(Bren(l)-mron().(0) - (2),

1 1
=l — el + (5 (£- 50 ) +9) o1 = valliae

T

1, 5 2
+ 2—<901 — 5,01 — p2)r2(Q) — =(Y1 — Y2, P1 — P2)12(Q)
aT T
1

> (o= L) g = ol + (2 (=2 —1) £0) o1 — palZaey >0
- T L) T 2a L2(@) =

where (4.4) has been used.
It remains to check that R(B+(A+w)I) = H, YA > 0. Given o, 8 € L2(9),
the system

A+ w)y =«

1 1 1 2

|- et~ Syt N twp=p
T 2a 2a1 T

has a unique solution (y, @) € L?(Q) x L°(Q2) for every A > 0. This expresses
that the operator B : D(B) C H — H is m~w-accretive. O

The lemmas above show that the conditions of Theorem 1 are satisfied.
Theorem 1 suggests the following approximating scheme for solving system

(4.2)
( i(%) +A(y€> =0, in [ie, (i + 1)e],

dt \ p. Ve
ya(ig) = ¢E((Z + 1)6)a
\ (pg(is)zzg((i+1)8), 1=0,1,...,.M —1,

(4 (7’/’) +B (7'/’) — 0, in [ie, (i + 1)e],

dt \ z. Ze
Pe(ie) = yF(ie), yF(0) =y(0,2),

\ 2e(ie) = T (i€), »F(0) = po(z), i=0,1,...,M —1,

A\
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where 0 < € < --+ < Me = T is a partition of the time—interval [0,7], and
yX (i€), ot (ie) are the right limits of y., ¢., respectively, at 7. Theorem 1
justifies the convergence of this approximating scheme to the unique solution
of system (4.2) (or (4.1)). For an abstract result regarding a model more
general than (4.1) we refer to Morosanu and Motreanu [7].
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