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ON EQUI-STABILITY WITH RESPECT TO PARAMETERS

IN FUNCTIONAL DIFFERENTIAL EQUATIONS

István Győri and Ferenc Hartung

Abstract. In this paper we study stability of certain delay differential equa-
tions through equi-stability of a corresponding family of more simple delay dif-
ferential equations. We apply our method to formulate stability theorems for
explicit and implicit (threshold-type) state-dependent delay differential equa-
tions.

1. Introduction

In this paper we show that stability (including asymptotic and exponential
stability) properties of certain classes of delay equations can be obtained by
investigating the same type of equi-stability of some more simple associated
differential equations. We present this general comparison principle in Section
3. Our main interest in this paper is to apply this method for state-dependent
delay equations. In this case we can reduce the stability investigation of such
equations to studying stability properties of equations with delays which are
state-independent, but which depend on a parameter (a function in our case).
We note that this approach was motivated by papers [3] and [8].

One of our major tool in this direction will be the results of Section 2,
where we study preservation of exponential stability of linear delay differential
systems under perturbing the coefficient function and the delay function. We
will show that if a trivial solution of a linear delay equation is exponentially
stable, then there always exists a certain “neighborhood” of the parameters
such that any equation corresponding to parameters from this “neighborhood”
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330 István Győri and Ferenc Hartung

has an exponentially equi-stable trivial solution. Stability of delay perturbed
differential equations has been studied by several papers (see, e.g., [2], [5],
[19]), but not in the context of equi-stability. The results of Section 2 will
extend some of our earlier works in this direction [9], [11].

Section 4 will contain applications of the results of the comparison princi-
ple of Section 3 and the perturbation results of Section 2. Inspired by some
earlier results given for linear equations in the papers [14] and [20] and for
state-dependent equations in [8] we prove some similar, sometimes more gen-
eral stability results for nonlinear equations. It is worth to note that our
method works for threshold-type differential equations, as well. To the best
of our knowledge our approach is original in the stability investigation of such
equations.

2. Perturbation Results

First we introduce some basic notations used throughout this paper: a
positive integer n and r > 0 are fixed. Let A = (aij) and B = (bij) be
matrices of the same dimension. By the notation A ≤ B we mean that relation
aij ≤ bij holds for all i and j, and by max(A,B) we denote a matrix with the
ij-th component max(aij , bij). Let | · | denote a fixed vector norm on Rn such
that the corresponding induced matrix norm on Rn×n (which is denoted by
| · |, as well) is monotone, i.e., it satisfies |A| ≤ |B| for matrices 0 ≤ A ≤ B,
and |A| = |max(A,−A)|. For example the | · |1 or | · |∞ norms satisfy these
properties. We denote the space of continuous functions ψ : [−r, 0] → Rn

equipped with the supremum norm ‖ψ‖ ≡ max{|ψ(t)| : t ∈ [−r, 0]} by C, and
the identically zero function of C by 0. For a function x : [−r,∞) → R we
define xt : [−r, 0] → Rn, xt(s) ≡ x(t + s) for t ≥ 0 and −r ≤ s ≤ 0.

Consider the linear delay systems

ẋ(t) = A(t)x(t− σ(t)), t ≥ 0 (2.1)

and
ẏ(t) = B(t)y(t− η(t)), t ≥ 0, (2.2)

with the respective initial conditions

x(t) = ϕ(t), t ∈ [−r, 0] (2.3)

and
y(t) = ϕ(t), t ∈ [−r, 0]. (2.4)

Throughout this paper ϕ ∈ C, and we assume
(H1) A,B : [0,∞) → Rn×n are continuous functions;
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(H2) the delay functions σ, η : [0,∞) → R are continuous, and

0 ≤ σ(t) ≤ γ(t) and 0 ≤ η(t) ≤ γ(t), t ≥ 0

for some continuous γ : [0,∞) → R satisfying 0 ≤ γ(t) ≤ t + r and
limt→∞ t− γ(t) > 0.

The solution of (2.1) corresponding to the initial time 0 and the initial func-
tion ϕ is denoted by x(t; ϕ). If we want to emphasize that the solution corre-
sponds to the coefficient A and the delay σ we use the more detailed notation
x(t; ϕ,A, σ).

The trivial solution (i.e., x = 0) of the linear equation (2.1) is exponentially
stable with order α > 0, if there exists a constant Kα ≥ 1 such that the
solution of (2.1) corresponding to initial function ϕ satisfies

|x(t;ϕ)| ≤ Kαe−αt‖ϕ‖, t ≥ 0. (2.5)

We will consider B and η to be fixed such that the trivial solution of (2.2)
be exponentially stable. Equation (2.1) is considered as a perturbed equation
of (2.2), i.e., we assume that A and σ are “close” to B and η, respectively.
We will show in Theorem 2.2 that if the perturbations are “small enough”,
then the exponential stability of (2.2) is preserved for (2.1).

Preservation of stability under delay perturbation has been studied, e.g.,
in [2], [5], [11] and [19]. In these papers it was assumed that the delays and
the coefficients are bounded. We relax this condition in this section. Our
Theorem 2.2 extends the results of [11] using the approach of [8]. Note that
it was shown in [2] that there always exists a “neighborhood” of B and η
inside which the exponential stability is preserved, but the proof gives only
the existence of such a “neighborhood”, not the size of it. We will define
the “neighborhood” explicitly. Moreover, in Theorem 2.3 we define such a
“neighborhood”, inside which the exponential stability of the corresponding
equation is uniform with respect to the parameters, i.e., the constants Kα and
α in the definition of the exponential stability can be selected independently
of the parameters. This is the result we will need in Section 4.

In the proof of our main theorem we need the following estimate which can
be proved easily by using Gronwall’s inequality (see, e.g., Lemma 2.1 in [8]).

Lemma 2.1. Assume (H1) and (H2). Then the solution x of the initial value
problem (2.1)-(2.3) satisfies

|x(t)| ≤ e
∫ t
0 |A(s)| ds‖ϕ‖ (2.6)

for all t ≥ 0.

Next we prove the main result of this section.
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Theorem 2.2. Assume (H1) and (H2), and the trivial solution of (2.2) is
exponentially stable with order α > 0. Then for any 0 < β < α there exists
ε > 0 such that if

lim
t→∞

(
|A(t)−B(t)|eβγ(t) + |B(t)|eβγ(t)

∣∣∣∣∣
∫ t−η(t)

t−σ(t)

|B(s)|eβγ(s) ds

∣∣∣∣∣

)
< ε, (2.7)

then the trivial solution of the corresponding equation (2.1) is exponentially
stable with order β, i.e., there exists Kβ ≥ 1 such that

|x(t; ϕ)| ≤ Kβe−βt‖ϕ‖, t ≥ 0. (2.8)

Proof. We can rewrite (2.1) in the form

ẋ(t) = B(t)x(t− η(t)) + f(t),

where
f(t) ≡ A(t)x(t− σ(t))−B(t)x(t− η(t)).

Let V be the fundamental solution of (2.2), i.e., the matrix valued solution of
the initial value problem

∂V

∂t
(t, s) = B(t)V (t− η(t), s), t ≥ s,

V (t, s) =
{

I, t = s,

0, t < s,

where I and 0 is the identity and the zero matrix, respectively. Then the
variation-of-constants formula (see, e.g., [13]) implies

x(t) = y(t) +
∫ t

0

V (t, s)f(s) ds, t ≥ 0. (2.9)

It is known (see, e.g., [13]) that the assumed exponential stability with order
α of the trivial solution of (2.2) implies that there exist constants α > 0,
Kα ≥ 1 and K̃α ≥ 1 such that y and V satisfy

|y(t; ϕ)| ≤ Kαe−αt‖ϕ‖, and |V (t, s)| ≤ K̃αe−α(t−s) for t ≥ s. (2.10)
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Therefore we get from (2.9) for any t1 > 0 that

|x(t)| ≤ |y(t)|+
∫ t

0

|V (t, s)||f(s)| ds (2.11)

≤




Kαe−αt‖ϕ‖+ K̃αe−αt
∫ t1
0

eαs|f(s)|ds, t ∈ [0, t1]

Kαe−αt‖ϕ‖+ K̃αe−αt
(∫ t1

0
eαs|f(s)|ds +

∫ t

t1
eαs|f(s)|ds

)
, t > t1.

Let 0 < β < α be fixed,

ε ≡ α− β

K̃α

, (2.12)

and let A and σ be such that (2.7) holds. We introduce the simplifying
notation

d ≡ lim
t→∞

(
|A(t)−B(t)|eβγ(t) + |B(t)|eβγ(t)

∣∣∣∣∣
∫ t−η(t)

t−σ(t)

|B(s)|eβγ(s) ds

∣∣∣∣∣

)
,

and let δ > 0 be such that d+δ < ε, and let t1 > 0 be such that the inequalities

t− σ(t) ≥ 0, t− η(t) ≥ 0, t ≥ t1 (2.13)

and

|A(t)−B(t)|eβγ(t)+|B(t)|eβγ(t)

∣∣∣∣∣
∫ t−η(t)

t−σ(t)

|B(s)|eβγ(s)ds

∣∣∣∣∣ < d+δ, t ≥ t1 (2.14)

hold. Let t > t1. Then (2.11) and the definition of f yield

|x(t)| ≤ Kαe−αt‖ϕ‖

+ K̃αe−αt

∫ t1

0

eαs(|A(s)||x(s− σ(s))|+ |B(s)||x(s− η(s))|) ds

+ K̃αe−αt

∫ t

t1

eαs|A(s)−B(s)||x(t− σ(s))| ds

+ K̃αe−αt

∫ t

t1

|B(s)||x(s− σ(s))− x(s− η(s))| ds. (2.15)

The first integral of the right-hand-side of (2.15) can be estimated using
Lemma 2.1 as

K̃αe−αt

∫ t1

0

eαs(|A(s)||x(s− σ(s))|+ |B(s)||x(s− η(s))|)ds

≤ Ce−αt‖ϕ‖,
(2.16)
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where C is defined by

C ≡ K̃α

(
max

s∈[0,t1]
|A(s)|e

∫ t1
0 |A(s)| ds + max

s∈[0,t1]
|B(s)|e

∫ t1
0 |B(s)| ds

)

× eαt1 − 1
α

.

(2.17)

We have x(s − η(s)) − x(s − σ(s)) =
∫ s−η(s)

s−σ(s)
ẋ(u) du for s ≥ t1 by (2.13).

Therefore the third integral of the right-hand-side of (2.15) can be rewritten
as

K̃αe−αt

∫ t

t1

|B(s)||x(s− σ(s))− x(s− η(s))| ds

= K̃αe−αt

∫ t

t1

eαs|B(s)|
∣∣∣∣∣
∫ s−η(s)

s−σ(s)

ẋ(u) du

∣∣∣∣∣ ds

≤ K̃αe−αt

∫ t

t1

eαs|B(s)|
∣∣∣∣∣
∫ s−η(s)

s−σ(s)

|A(u)||x(u− σ(u))| du

∣∣∣∣∣ ds.

(2.18)

Multiplying both sides of (2.15) by eβt, using the estimates (2.16) and (2.18),
and introducing z(t) ≡ eβt|x(t)| we get for t > t1

z(t) ≤ (Kα + C)‖ϕ‖

+ K̃αe−αt+βt

∫ t

t1

eαs|A(s)−B(s)|z(s− σ(s))e−β(s−σ(s))ds

+ K̃αe−αt+βt

∫ t

t1

eαs|B(s)|
∣∣∣∣∣
∫ s−η(s)

s−σ(s)

|B(u)|z(u−σ(u))e−β(u−σ(u))du

∣∣∣∣∣ ds

≤ (Kα + C)‖ϕ‖

+ K̃αe−(α−β)t max
−r≤u≤t

z(u)
∫ t

t1

e(α−β)s|A(s)−B(s)|eβσ(s)ds

+ K̃αe−(α−β)t max
−r≤u≤t

z(u) (2.19)

×
∫ t

t1

e(α−β)s|B(s)|
∣∣∣∣∣
∫ s−η(s)

s−σ(s)

|B(u)|e−β(u−s−σ(u))du

∣∣∣∣∣ds.

Suppose η(s) ≤ σ(s). Then −σ(s) ≤ u−s ≤ −η(s) for u ∈ [s−σ(s), s−η(s)],
and so s − u ≤ σ(s). In the case when σ(s) ≤ η(s) relation s − u ≤ η(s)
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follows similarly for u ∈ [s− η(s), s− σ(s)], hence in both cases s− u ≤ γ(s).
Therefore (2.19) and (2.14) imply

z(t) ≤ (Kα + C)‖ϕ‖

+ K̃αe−(α−β)t max
−r≤u≤t

z(u)
∫ t

t1

e(α−β)s|A(s)−B(s)|eβγ(s) ds

+ K̃αe−(α−β)t

× max
−r≤u≤t

z(u)
∫ t

t1

e(α−β)s|B(s)|
∣∣∣∣∣
∫ s−η(s)

s−σ(s)

|B(u)|eβ(γ(s)+γ(u)) du

∣∣∣∣∣ds

≤ (Kα + C)‖ϕ‖+ K̃αe−(α−β)t max
−r≤u≤t

z(u)(d + δ)
∫ t

t1

e(α−β)s ds

= (Kα + C)‖ϕ‖+ K̃αe−(α−β)t max
−r≤u≤t

z(u)(d + δ)
e(α−β)t − e(α−β)t1

α− β

≤ (Kα + C)‖ϕ‖+
d + δ

ε
max

−r≤u≤t
z(u). (2.20)

It is easily follows from (2.11) that (2.20) holds for t ∈ [0, t1], as well. Since
the right-hand-side of (2.20) is monotone in t, and z(t) = eβt|ϕ(t)| ≤ ‖ϕ‖ ≤
Kα‖ϕ‖ for t ≤ 0, therefore (2.20) yields

max
−r≤u≤t

z(u) ≤ (Kα + C)‖ϕ‖+
d + δ

ε
max

−r≤u≤t
z(u),

and hence z(t) ≤ max−r≤u≤t z(u) ≤ Kβ‖ϕ‖, where

Kβ ≡ Kα + C

1− d+δ
ε

. (2.21)

This implies that |x(t)| ≤ Kβe−βt‖ϕ‖ for t ≥ 0. ¤
Next we give conditions when the constant Kβ in (2.8) is independent of

the selection of the coefficient matrix A and the delay σ satisfying (2.7), i.e.,
the trivial solution of (2.1) is exponentially equi-stable with respect to A and
σ satisfying (2.7) (see the formal definition in Section 3 below).

Theorem 2.3. Assume (H1) and (H2), and the trivial solution of (2.2) is
exponentially stable with the order α > 0. Let K̃α be such that the fundamental
solution V of (2.2) satisfies |V (t, s)| ≤ K̃αe−α(t−s) for t ≥ s, and let 0 < β <
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α be fixed. Suppose the functions Γ+, Γ− : [0,∞) → Rn×n and ∆+, ∆− :
[0,∞) → R are such that

0 ≤ Γ+(t), 0 ≤ Γ−(t), 0 ≤ ∆−(t) ≤ η(t), 0 ≤ ∆+(t) ≤ γ(t)− η(t) (2.22)

for t ≥ 0, and

lim
t→∞

(
|max(Γ+(t), Γ−(t))|eβγ(t) + |B(t)|eβγ(t)

∫ t−η(t)+∆−(t)

t−η(t)−∆+(t)

|B(s)|eβγ(s)ds

)

<
α− β

K̃α

. (2.23)

Suppose the parameters A : [0,∞) → Rn×n and σ : [0,∞) → R belong to the
set

Π ≡
{

(A, σ) : B(t)− Γ−(t) ≤ A(t) ≤ B(t) + Γ+(t) and

η(t)−∆−(t) ≤ σ(t) ≤ η(t) + ∆+(t) for t ≥ 0
}

.
(2.24)

Then there exists Kβ ≥ 1 such that

|x(t; ϕ,A, σ)| ≤ Kβe−βt‖ϕ‖, t ≥ 0, (A, σ) ∈ Π,

i.e., for any (A, σ) ∈ Π the trivial solution of the corresponding equation (2.1)
is exponentially stable with order β, and the constant Kβ is independent of
the parameters (A, σ) ∈ Π.

Proof. If (A, σ) ∈ Π then σ satisfies (H2). We denote ij-th element of the
matrices A(t), B(t), Γ+(t) and Γ−(t) by aij(t), bij(t), γ+

ij(t) and γ−ij(t), re-
spectively. The definition of Π yields that |aij(t)−bij(t)| ≤ max(γ+

ij(t), γ
−
ij (t))

for all i and j, therefore the assumed properties of the matrix norm implies
|A(t)−B(t)| ≤ |max(Γ+(t),Γ−(t))| for all t ≥ 0. Therefore we have

|A(t)−B(t)|eβγ(t) + |B(t)|eβγ(t)

∣∣∣∣∣
∫ t−η(t)

t−σ(t)

|B(s)|eβγ(s) ds

∣∣∣∣∣ (2.25)

≤ |max(Γ+(t), Γ−(t))|eβγ(t) + |B(t)|eβγ(t)

∫ t−η(t)+∆−(t)

t−η(t)−∆+(t)

|B(s)|eβγ(s)ds,

which, together with (2.12) and (2.23), implies that A and σ satisfy (2.7).
Therefore the constant Kβ defined by (2.21) in the proof of Theorem 2.2
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satisfies (2.8). We have to show that Kβ can be defined independently of the
particular choice of (A, σ) ∈ Π. For this (see (2.21) and (2.17)) it is enough
to prove that C can be selected independently of (A, σ) ∈ Π. In view of
the inequality |A(t)| ≤ |B(t)| + |max(Γ+(t), Γ−(t))| (t ≥ 0) and (2.17), we
have to show only that t1 can be independent of A and σ. We recall that
t1 is defined by inequalities (2.13) and (2.14). Assumption (H2) yields that
t− σ(t) ≥ t− γ(t) and t− η(t) ≥ t− γ(t) for t ≥ 0, therefore t1 can be chosen
so that (2.13) be satisfied for any selection of the delays. It follows from (2.25)
that t1 can be such that (2.14) holds for any (A, σ) ∈ Π, which completes the
proof of this theorem. ¤

Remark 2.4. It is easy to see that the function

∆ε(t) (2.26)

≡
{

1, |B(t)| = 0,

min
(
1, ε

3|B(t)|eβγ(t) max{|B(s)|eβγ(s): s∈[t−η(t)−1,t−η(t)+1]}

)
, |B(t)| 6= 0

satisfies

lim
t→∞

|B(t)|eβγ(t)

∫ t−η(t)+∆ε(t)

t−η(t)−∆ε(t)

|B(s)|eβγ(s) ds < ε.

Therefore if the trivial solution of (2.2) is exponentially stable, there always
exists a “neighborhood” of (B, η) of the form (2.24) such that the trivial solu-
tion of (2.1) corresponding to coefficient A and delay σ from this neighborhood
is exponentially stable, as well.

Corollary 2.5. If the delay functions are bounded, i.e., γ in (H2) is γ(t) ≡ r,
then the statement of Theorem 2.3 remains valid when condition (2.23) is
replaced by

lim
t→∞

(
|max(Γ+(t), Γ−(t))|eβr + e2βr|B(t)|

∫ t−η(t)+∆−(t)

t−η(t)−∆+(t)

|B(s)|ds

)
<

α− β

K̃α

.

If, in addition, |B(t)| ≤ b0 for t ≥ 0, then Γ+, Γ−, ∆+ and ∆− can be se-
lected as Γ+(t) = Γ−(t) = Γ is a componentwise nonnegative constant matrix,
∆+(t) = ∆−(t) = ∆ is a nonnegative constant satisfying

|Γ|eβr + 2∆b2
0e

2βr <
α− β

K̃α

. (2.27)
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We note that if
|Γ|+ 2∆b2

0 <
α

K̃α

,

then relation (2.27) holds, as well, for some 0 < β < α.
The results of this section can be immediately generalized to linear equa-

tions of the form

ẋ(t) =
m∑

k=1

Ak(t)x(t− σk(t)), t ≥ 0, (2.28)

where the functions Ak and σk satisfy conditions (H1) and (H2), respectively,
for all k = 1, . . . , m with bounds γk. We formulate the generalization of
Theorem 2.3 for this equation. Theorem 2.2 can be stated similarly.

Theorem 2.6. Assume Bk and ηk satisfy conditions (H1) and (H2) with γk,
respectively, and suppose the trivial solution of

ẋ(t) =
m∑

k=1

Bk(t)x(t− ηk(t)), t ≥ 0 (2.29)

is exponentially stable with the order α. Let K̃α be such that the fundamental
solution V of (2.29) satisfies |V (t, s)| ≤ K̃αe−α(t−s) for t ≥ s, let 0 < β < α be
fixed. Suppose the functions Γ+

k , Γ−k : [0,∞) → Rn×n and ∆+
k , ∆−

k : [0,∞) →
R are such that

0 ≤ Γ+
k (t), 0 ≤ Γ−k (t), 0 ≤ ∆−

k (t) ≤ ηk(t), 0 ≤ ∆+
k (t) ≤ γk(t)− ηk(t)

for t ≥ 0, k = 1, . . . , m, and

lim
t→∞

( m∑

k=1

|max(Γ+
k (t), Γ−k (t))|eβγk(t)

+
m∑

k=1

|Bk(t)|eβγk(t)

∫ t−ηk(t)+∆−k (t)

t−ηk(t)−∆+
k (t)

|Bk(s)|eβγk(s) ds

)
<

α− β

K̃α

.

Define the parameter set

Π ≡
{

(A1, . . . , Am, σ1, . . . , σm) : Bk(t)− Γ−k (t) ≤ Ak(t) ≤ Bk(t) + Γ+
k (t) and

ηk(t)−∆−
k (t) ≤ σk(t) ≤ ηk(t) + ∆+

k (t) for t ≥ 0, k = 1, . . . ,m
}

.

Then there exists Kβ ≥ 1 such that

|x(t;ϕ, A1, . . . , Am, σ1, . . . , σm)| ≤ Kβe−βt‖ϕ‖,
for t ≥ 0, (A1, . . . , Am, σ1, . . . , σm) ∈ Π.
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3. Equi-Stability with respect to a Set of Parameters

In Section 2 we studied a linear delay equation where we considered the
coefficient and the delay function as parameters in the equation. In Theorem
2.3 we gave conditions when the solution tends to zero exponentially, and
when the constants in the exponential estimate can be selected independently
of the particular choice of the parameters. In this section we study this “in-
dependence from the parameters” in a more general form. We introduce the
notion of equi-stability with respect to a set of parameters, and then prove
our comparison principle for a certain class of functional differential equations.
Consider

ẏ(t) = g(t, yt, p), t ≥ 0 (3.1)
with initial condition

y(t) = ϕ(t), t ∈ [−r, 0], (3.2)

where g : [0,∞) × Ω × U → Rn, Ω ⊂ C including the zero function 0, the
parameter p belongs to a certain parameter set U , and g(t, 0, p) = 0 for all
t ≥ 0 and p ∈ U . Note that in the applications we will show in Section 4 and
in the next theorem the set U will be a subset of a function space, but for
the sake of the following definitions U can be an arbitrary set without any
structure in it. A solution of (3.1)–(3.2) corresponding to initial function ϕ
and parameter p ∈ U is denoted by y(t) = y(t; ϕ, p).

We say that the trivial (y = 0) solution of (3.1)–(3.2) is equi-stable with
respect to U , if for any ε > 0 there exists δ = δ(ε) > 0 such that |y(t; ϕ, p)| < ε
for any t ≥ 0, ‖ϕ‖ < δ and p ∈ U . We say that the trivial solution of (3.1)–
(3.2) is asymptotically equi-stable with respect to U , if it is equi-stable with
respect to U , and there exists θ > 0 that limt→∞ y(t; ϕ, p) = 0 for ‖ϕ‖ < θ
and p ∈ U . We say that the trivial solution of (3.1)–(3.2) is exponentially
equi-stable with respect to U , if for any ε > 0 there exist δ = δ(ε) > 0,
K = K(ε) ≥ 1 and α = α(ε) > 0 such that |y(t;ϕ, p)| < Ke−αt‖ϕ‖ for any
t ≥ 0, ‖ϕ‖ < δ and p ∈ U .

Consider the functional differential equation

ẋ(t) = f(t, xt, xt), t ≥ 0, (3.3)

with initial condition

x(t) = ϕ(t), t ∈ [−r, 0], (3.4)

where
(A) f : [0,∞)×Ω1 ×Ω2 → Rn is continuous, Ω1 and Ω2 are open subsets

of C both containing the identically zero function 0, and f(t, 0, u) = 0
for t ∈ [0,∞) and u ∈ Ω2.
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Let % > 0 be fixed, and S(%) denote the set of continuous functions u :
[−r,∞) → Rn satisfying |u(t)| ≤ % for t ≥ −r. Suppose % is small enough to
satisfy S(%) ⊂ Ω2, and fix a function u ∈ S(%). We associate the equation

ẏ(t) = f(t, yt, ut), t ≥ 0, (3.5)

to the function u and to Equation (3.3) with the initial condition (3.2) corre-
sponding to (3.4). A solution of (3.5)–(3.2) corresponding to initial function
ϕ and the function u ∈ S(%) is denoted by y(t) = y(t; ϕ, u). Assumption
(A) yields that the identically zero function is a solution of both initial value
problems (3.3)–(3.4) and (3.5)–(3.2).

The next theorem shows that the equi-stability of the trivial solution of
(3.5) implies the stability of the trivial solution of (3.3).

Theorem 3.1. Assume (A), let % > 0 be such that S(%) ⊂ Ω2, and u ∈ S(%).
Then

(i) if the trivial solution of (3.5) is equi-stable with respect to S(%), then
the trivial solution of (3.3) is stable, as well;

(ii) if the trivial solution of (3.5) is asymptotically equi-stable with respect
to S(%), then the trivial solution of (3.3) is asymptotically stable, as
well;

(iii) if the trivial solution of (3.5) is exponentially equi-stable with respect
to S(%), then the trivial solution of (3.3) is exponentially stable, as
well.

Proof. (i) Fix any 0 < ε < %, and let 0 < δ < % be a constant corresponding to
ε in the definition of equi-stability with respect to S(%) of the trivial solution
of (3.5). Let ϕ satisfy ‖ϕ‖ < δ, and let x(t) = x(t;ϕ) be any corresponding
solution of (3.3)–(3.4). Since, by assumption, |x(0)| < %, the continuity of x
yields that |x(t)| < % for t > 0 close to 0. Suppose there exists T > 0 such
that |x(t)| < % for t ∈ [0, T ) and |x(T )| = %. Define

u(t) =
{

x(t), t ∈ [−r, T ),
x(T ), t ≥ T.

Then u ∈ S(%). Let y(t) = y(t; ϕ, u) be the solution of the corresponding
(3.5)–(3.2). By the equi-stability with respect to S(%) of (3.5), |y(t; ϕ, u)| <
ε < % for t ≥ 0. On the other hand, y(t) = x(t) for t ∈ [0, T ). Therefore, by
continuity, |x(T )| = |y(T )| = % gives a contradiction to the definition of T .
Hence |x(t)| = |y(t)| < ε for t ≥ 0, which proves (i).
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(ii) By part (i) the trivial solution of (3.3) is stable, therefore there exists
δ > 0 such that |x(t;ϕ)| < % for t ≥ 0 and ‖ϕ‖ < δ. The asymptotic equi-
stability of (3.5) implies the existence of θ > 0 that limt→∞ y(t;ϕ, u) = 0 for
‖ϕ‖ < θ and u ∈ S(%). Let u(t) = x(t;ϕ) for a fixed ϕ satisfying ‖ϕ‖ < θ,
then u ∈ S(%). Therefore limt→∞ x(t) = 0, as well, since x(t; ϕ) = y(t;ϕ, u).

(iii) As in part (ii), there exists δ0 > 0 such that |x(t;ϕ)| < % for t ≥ 0,
‖ϕ‖ < δ0. By assumption, there exist δ > 0, K ≥ 1 and α > 0 such that
|y(t; ϕ, u)| ≤ Ke−αt‖ϕ‖ for t ≥ 0, ‖ϕ‖ < δ and u ∈ S(%). But for ‖ϕ‖ <
min{δ0, δ} and u = x(·; ϕ) we have x(t; ϕ) = y(t; ϕ, u), and so |x(t; ϕ)| ≤
Ke−αt‖ϕ‖, t ≥ 0. ¤

Theorem 3.1 can be applied for example for state-dependent delay equa-
tions of the form

ẋ(t) = h(t, x(t), x(t− τ(t, xt))), t ≥ 0, (3.6)

where the delay function τ : [0,∞)×C → R is continuous, and 0 ≤ τ(t, ψ) ≤
t + r for t ≥ 0 and ψ ∈ C and h(t, 0, 0) = 0, t ≥ 0. The associated state-
independent delay equation to (3.6) is

ẏ(t) = h(t, y(t), y(t− τ(t, ut))), t ≥ 0. (3.7)

Therefore some type of equi-stability of the trivial solution of (3.7) implies the
same type of stability of the trivial solution of (3.6). We note that such re-
sults can be generalized for for state-dependent delay equations with multiple
delays, and for other classes of differential equations, e.g., for equations with
unbounded delays, (i.e., where the initial interval is [−r, 0] = (−∞, 0]) or for
neutral differential equations. The applicability of these theorems depends on
if we can give conditions implying equi-stability of the associated equation.
In the next section we will present such conditions for several classes of delay
equations including equations with state-dependent delays.

4. Applications

In our first example we give a condition implying the equi-stability of a
certain delay equation. Consider the linear delay equation

ẋ(t) = −
m∑

i=1

ai(t, p)x(t− τi(t)), t ≥ 0, (4.1)

where p is a parameter in the equation belonging to a certain set U .
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Theorem 4.1. Let r > 0, and assume τi : [0,∞) → [0, r] and ai : [0,∞) ×
U → [0,∞) for i = 1, . . . , m, and there exist constants 0 ≤ dik < 1 (i, k =
1, . . . , m), T ≥ r and K > 0 such that

∫ t

t−τi(t)

ak(s, p) ds ≤ dik, t ≥ T, p ∈ U , i, k = 1 . . . ,m,

where
m∑

i,k=1

dik < 1, (4.2)

and ∫ T

0

m∑

i=1

ai(s, p) ds ≤ K, p ∈ U .

(i) Then the trivial solution of (4.1) is equi-stable with respect to U .

(ii) If we assume further that
∫ ∞

0

m∑

j=1

aj(s, p)ds = ∞ for p ∈ U , then the

trivial solution of (4.1) is asymptotically equi-stable with respect to U .
(iii) If, moreover, there exists α > 0 such that

∫ t

s

ai(s, p)ds ≥ α(t− s) for t ≥ s ≥ 0, p ∈ U and i = 1, . . . ,m,

then the trivial solution of (4.1) is exponentially equi-stable with respect
to U .

Proof. (i) Fix p ∈ U . We have

ẋ(t) = −
(

m∑

i=1

ai(t, p)

)
x(t) +

m∑

i=1

ai(t, p)(x(t)− x(t− τi(t))), t ≥ 0.

Using the variation-of-constant formula for ODEs we get

x(t) = e−
∫ t
0

∑m
i=1 ai(s,p)dsx(0)

+
m∑

i=1

∫ t

0

e−
∫ t

s

∑m
j=1 aj(u,p)duai(s, p)(x(s)− x(s− τi(s)))ds.
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Using t− τi(t) ≥ 0 for t ≥ T ≥ r and i = 1, . . . ,m, Equation (4.1) yields for
t ≥ T

x(t) = e−
∫ t
0

∑m
i=1 ai(s,p) dsx(0)

+
m∑

i=1

∫ T

0

e−
∫ t

s

∑m
j=1 aj(u,p) duai(s, p)(x(s)− x(s− τi(s))) ds

−
m∑

i=1

∫ t

T

e−
∫ t

s

∑m
j=1 aj(u,p) duai(s, p)

∫ s

s−τi(s)

m∑

k=1

ak(u, p)x(u−τk(u))duds.

A simple generalization of Lemma 2.1 to Equation (4.1) implies

|x(t)| ≤ e
∫ T
0

∑m
j=1 aj(s,p) ds‖ϕ‖ ≤ eK‖ϕ‖, t ∈ [0, T ], p ∈ U ,

therefore, for t ≥ T

|x(t)|

≤ e−
∫ t
0

∑m
j=1 aj(s,p)ds|x(0)|+ 2eK‖ϕ‖

m∑

i=1

∫ T

0

e−
∫ t

s

∑m
j=1 aj(u,p)duai(s, p)ds

+
m∑

i=1

∫ t

T

e−
∫ t

s

∑m
j=1 aj(u,p)duai(s, p)

∫ s

s−τi(s)

m∑

k=1

ak(u, p)|x(u−τk(u))|duds (4.3)

≤ e−
∫ t
0

∑m
j=1 aj(s,p)ds|x(0)|

+ 2eK‖ϕ‖
(
e−

∫ t
T

∑m
j=1 aj(u,p)du − e−

∫ t
0

∑m
j=1 aj(u,p)du

)

+ max
−r≤s≤t

|x(s)|
m∑

i,k=1

∫ t

T

e−
∫ t

s

∑m
j=1 aj(u,p)duai(s, p)

∫ s

s−τi(s)

ak(u, p)duds

≤ (
1 + 2eK

) ‖ϕ‖+ max
−r≤s≤t

|x(s)|
m∑

i,k=1

dik

∫ t

T

e−
∫ t

s
ai(u,p)duai(s, p)ds

=
(
1 + 2eK

) ‖ϕ‖+ max
−r≤s≤t

|x(s)|
m∑

i,k=1

dik

(
1− e−

∫ t
T

ai(u,p)du
)

(4.4)

≤ (
1 + 2eK

) ‖ϕ‖+ max
−r≤s≤t

|x(s)|
m∑

i,k=1

dik.

Note that the last inequality holds for t ∈ [−r, T ], as well. It follows therefore

max
−r≤s≤t

|x(s)| ≤ (
1 + 2eK

) ‖ϕ‖+ d max
−r≤s≤t

|x(s)|,
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where

d ≡
m∑

i,k=1

dik < 1,

hence

|x(t)| ≤ max
−r≤s≤t

|x(s)| ≤ 1 + 2eK

1− d
‖ϕ‖,

which yields the stability of the trivial solution of (4.1).
(ii) Let x be any fixed solution of (4.1), then, by part (i), limt→∞ |x(t)| is

finite. Let ε > 0 be fixed, and let t1 > T be such that |x(t)| ≤ limt→∞ |x(t)|+ε
for t ≥ t1 − r. Similarly to (4.4) one can easily obtain

|x(t)| ≤ e
− ∫ t

t1

∑m
j=1 aj(s,p)ds|x(t1)|

+ ( lim
s→∞

|x(s)|+ ε)
m∑

i,k=1

dik

(
1− e

− ∫ t
t1

ai(s,p)ds
)

, t ≥ t1.
(4.5)

Then taking the limit as t →∞ we get

lim
s→∞

|x(s)| ≤ d( lim
s→∞

|x(s)|+ ε),

or equivalently,

lim
s→∞

|x(s)| ≤ dε

1− d
,

which yields limt→∞ x(t) = 0, since ε > 0 was arbitrary.
To prove part (iii) fix 0 < β < α such that

de2βr

(
1 +

β

α− β

)
< 1,

and introduce z(t) = |x(t)|eβt. Multiplying both sides of (4.3) by eβt and
using that

e−
∫ t
0

∑m
j=1 aj(s,p) ds ≤ e−βt, t ≥ 0, p ∈ U ,

we get

z(t) ≤ ‖ϕ‖+ 2eK‖ϕ‖eβt
(
e−

∫ t
T

∑m
j=1 aj(u,p)du − e−

∫ t
0

∑m
j=1 aj(u,p)du

)

+ eβt
m∑

i,k=1

∫ t

T

e−
∫ t

s

∑m
j=1 aj(u,p)duai(s, p)

×
∫ s

s−τi(s)

ak(u, p)|z(u− τk(u))|e−β(u−τk(u))duds
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≤ ‖ϕ‖+ 2eK‖ϕ‖e
∫ T
0

∑m
j=1 aj(u,p)du

+ eβr max
−r≤s≤t

z(s)
m∑

i,k=1

∫ t

T

e−
∫ t

s
ai(u,p)du+βtai(s, p)e−β(s−τi(s))

∫ s

s−τi(s)

ak(u, p)duds

≤ (1 + 2e2K)‖ϕ‖+ e2βr max
−r≤s≤t

z(s)
m∑

i,k=1

dik

∫ t

T

e−
∫ t

s
ai(u,p)du+β(t−s)ai(s, p)ds.

Integration by parts and inequality e−
∫ t

s
ai(s,p) ds ≤ e−α(t−s) yield

z(t) ≤ (1 + 2e2K)‖ϕ‖+ e2βr max
−r≤s≤t

z(s)
m∑

i,k=1

dik

(
1− e−

∫ t
T

ai(u,p) du+β(t−T )

+ β

∫ t

T

e−
∫ t

s
ai(u,p) dueβ(t−s) ds

)

≤ (1 + 2e2K)‖ϕ‖+ e2βr max
−r≤s≤t

z(s)
m∑

i,k=1

dik

(
1 + β

∫ t

T

e(α−β)(s−t) ds

)

≤ (1 + 2e2K)‖ϕ‖+ e2βr max
−r≤s≤t

z(s)d
(

1 +
β

α− β

)
,

which implies easily z(t) ≤ Mβ‖ϕ‖, where

Mβ ≡ 1 + 2e2K

1− de2βr
(
1 + β

α−β

) .

This therefore means that |x(t)| ≤ Mβe−βt‖ϕ‖, i.e., the trivial solution of
(4.1) is exponentially equi-stable with respect to U . ¤

It has been shown in [14] by Krisztin (as a special case of a result proved
for distributed delay case) that the trivial solution of the scalar equation

ẋ(t) = −
m∑

i=1

ai(t)x(t− τi(t)), t ≥ 0 (4.6)

is asymptotically stable, if 0 ≤ ai(t) ≤ αi and 0 ≤ τi(t) ≤ qi for t ≥ 0, and

m∑

i=1

αiqi < 1.
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Yoneyama [20] proved the asymptotic stability of the trivial solution of the
equation

ẋ(t) = −a(t)x(t− τ(t)), t ≥ 0 (4.7)

under the integral condition that

0 < inf
t≥0

∫ t

t−τ0

a(s) ds ≤ sup
t≥0

∫ t

t−τ0

a(s) ds <
3
2
,

when 0 ≤ a(t) and 0 ≤ τ(t) ≤ τ0 for t ≥ 0. Our Theorem 4.1 was motivated by
Yoneyama’s condition and reformulates Krisztin’s result using integral condi-
tion. Note that the upper limit 3

2 in the above condition was increased in [9]
(but at the same time the lower limit 0 had to be increased, as well), where it
was shown that if

∫∞
0

a(s) ds = ∞ and the function t 7→ ∫ t

0
a(s) ds is mono-

tone increasing, then for any c ∈ (0, π/2) there exists b ∈ (0, c) such that the
trivial solution of (4.7) is asymptotically stable, assuming

b < lim
t→∞

∫ t

t−τ(t)

a(s) ds ≤ lim
t→∞

∫ t

t−τ(t)

a(s) ds < c.

In our next example we consider the scalar equation

ẋ(t) = −
m∑

i=1

ai(t, xt)x(t− τi(t)), t ≥ 0. (4.8)

Theorems 3.1 and 4.1 have the following corollary.

Theorem 4.2. Assume τi : [0,∞) → [0, r], ai : [0,∞) × C → [0,∞), there
exist constants % > 0, 0 ≤ dik < 1 (i, k = 1, . . . ,m), T ≥ r and K > 0 such
that

∫ t

t−τi(t)

ak(s, us) ds ≤ dik, t ≥ T, u ∈ S(%), i, k = 1, . . . , m,

where
m∑

i,k=1

dik < 1,

and ∫ T

0

m∑

i=1

ai(s, us) ds ≤ K, u ∈ S(%).
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(i) Then the trivial solution of (4.8) is stable.

(ii) If we assume further that
∫ ∞

0

m∑

j=1

aj(s, us) ds = ∞ for u ∈ S(%), then

the trivial solution of (4.8) is asymptotically stable.
(iii) If, moreover, there exists α > 0 such that

∫ t

s

ai(s, us)ds ≥ α(t− s) for t ≥ s ≥ 0, u ∈ S(%) and i = 1, . . . ,m,

then the trivial solution of (4.8) is exponentially stable.

Next we study the exponential stability of the state-dependent delay system

ẋ(t) = B(t)x(t− τ(t, xt)), t ≥ 0, (4.9)

with the associated initial condition (2.3). We assume that B satisfies (H1),
and τ satisfies

(H3) τ : [0,∞) × C → [0,∞) is continuous, and there exist % > 0 and a
continuous function γ : [0,∞) → R such that 0 ≤ γ(t) ≤ t + r for
t ≥ 0, limt→∞ t− γ(t) > 0, and

τ(t, ut) ≤ γ(t) for t ≥ 0, u ∈ S(%).

Note that these conditions imply the local existence of solutions of (4.9)-(2.3),
but not necessary the uniqueness of the solution (see, e.g., [4], [10]).

Remark 2.4 yields that for every n,m ∈ N there exist functions ∆+
n,m,

∆−
n,m : [0,∞) → [0,∞) satisfying

lim
t→∞

|B(t)|e 1
m γ(t)

∫ t−τ(t,0)+∆+
n,m(t)

t−τ(t,0)−∆−n,m(t)

|B(s)|e 1
m γ(s) ds <

1
n

(4.10)

and

0 ≤ ∆−
n,m(t) ≤ τ(t, 0), 0 ≤ ∆+

n,m(t) ≤ γ(t)− τ(t, 0) for t ≥ 0.

With the help of these functions we can test if the exponential stability of the
trivial solution of

ẋ(t) = B(t)x(t− τ(t, 0)), t ≥ 0 (4.11)

is preserved for that of (4.9). In particular, assume that τ is such that
(H4) for every n,m ∈ N there exist T = Tn,m > 0 and 0 < δ = δn,m ≤ %

such that

τ(t, 0)−∆−
n,m(t) ≤ τ(t, ut) ≤ τ(t, 0) + ∆+

n,m(t), t ≥ T and u ∈ S(δ). (4.12)

Then we have the following result.
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Theorem 4.3. Assume (H1), (H3) and (H4), and the trivial solution of
(4.11) is exponentially stable. Then the trivial solution of (4.9) is exponentially
stable, as well.

Proof. For any u ∈ S(%) we associate equation

ẏ(t) = B(t)y(t− τ(t, ut)), t ≥ 0 (4.13)

to (4.9). The assumptions imply that there exists K̃α ≥ 1 and α > 0 such
that the fundamental solution V of (4.11) satisfies |V (t, s)| ≤ K̃αe−α(t−s) for
t ≥ s. Fix 1

α < m0, and let n0 ∈ N be such that K̃α/(α − 1
m0

) < n0, and let
T and δ be the corresponding constants from (H4). We define the functions

∆+(t) ≡
{

∆+
n0,m0

(t), t ≥ T,

γ(t)− τ(t, 0), 0 ≤ t < T

and

∆−(t) ≡
{

∆−
n0,m0

(t), t ≥ T,

τ(t, 0), 0 ≤ t < T

and the set
Π = {σ : τ(t, 0)−∆−(t) ≤ σ(t) ≤ τ(t, 0) + ∆+(t), t ≥ 0}.

Then τ(·, u·) ∈ Π for u ∈ S(δ), and

lim
t→∞

|B(t)|e 1
m0

γ(t)
∫ t−τ(t,0)+∆+(t)

t−τ(t,0)−∆−(t)

|B(s)|e 1
m0

γ(s) ds <
α− 1

m0

K̃α

.

Hence Theorem 2.3 implies that the trivial solution of (4.13) is exponentially
equi-stable with order 1/m0 with respect to the set S(δ). Therefore Theo-
rem 3.1 implies that the trivial solution of (4.9) is exponentially stable, as
well. ¤

Note that if |B(t)|eβγ(t) is bounded for t > 0 and for some β > 0, then, for
large enough m, ∆+

n,m and ∆−
n,m can be selected to be constants functions. If

both |B(t)| and γ(t) are bounded, Corollary 2.5 and the last theorem imply
immediately the next corollary, which slightly improves Theorem 2.2 of [8].

Corollary 4.4. If |B(t)| ≤ b0 for t ≥ 0 and τ : [0,∞) × C → [0, r], then
Theorem 4.3 remains true when assumption (H4) is replaced by
(H4’) for every ε > 0 there exists δ > 0 such that

limt→∞ |τ(t, 0)− τ(t, ut)| < ε, u ∈ S(δ). (4.14)
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We note that in [8] it was proved, that if we have more smoothness on the
delay τ , then the exponential stability of the trivial solution of (4.11) is not
only sufficient, but also necessary for the exponential stability of the trivial
solution of (4.9).

Our final result is formulated for the scalar delay equation

ẋ(t) = a(t)x(t− τ(t, xt)), t ≥ 0, (4.15)

where the delay function is defined by the threshold relation
∫ t

t−τ(t,xt)

f(t, s, xt) ds = m, t ≥ 0 (4.16)

for some m > 0. Recently such threshold-type delay equations have received
considerable attention from modelling and theoretical point of view, as well
(see, e.g., [1], [6], [7], [15]–[18]), but very little is known about the general
stability theory of such equations (see [15]).

Let F be a positive constant, r ≡ m/F , and we assume
(A1) a : [0,∞) → R is continuous and bounded,
(A2) f : [0,∞)× [−r,∞)× C → (0,∞) is such that

(i) for every ε > 0 there exist δ > 0 and T > 0 such that |f(t, s, ψ) −
f(t, s, 0)| < ε for t ≥ T , s ≥ T − r and ψ ∈ S(δ),

(ii) f(t, s, 0) ≥ F for t ≥ 0 and s ≥ −r.
Note that assumption (A2) (ii) implies 0 < τ(t, 0) ≤ r for t ≥ 0.

Theorem 4.5. Assume (A1) and (A2), and suppose the trivial solution of

ẋ(t) = a(t)x(t− τ(t, 0)), t ≥ 0, (4.17)

is exponentially stable. Then the trivial solution of (4.15) is exponentially
stable, as well.

Proof. By Remark 4.4 it is enough to show that (4.14) holds. Assumption
(A2)(i) yields that for any ε > 0 there exist δ > 0 and T > 0 such that
∫ t

t−τ(t,ut)

(f(t, s, 0)−ε) ds ≤
∫ t

t−τ(t,ut)

f(t, s, ut) ds ≤
∫ t

t−τ(t,ut)

(f(t, s, 0)+ε) ds

for t > T and any u ∈ S(δ). On the other hand for such u the definition of
τ(t, ut) implies

∫ t

t−τ(t,ut)

f(t, s, ut) ds =
∫ t

t−τ(t,0)

f(t, s, 0) ds = m,



350 István Győri and Ferenc Hartung

therefore
∫ t

t−τ(t,ut)

(f(t, s, 0)− ε) ds ≤
∫ t

t−τ(t,0)

f(t, s, 0) ds ≤
∫ t

t−τ(t,ut)

(f(t, s, 0) + ε) ds,

and so

−ετ(t, ut) ≤
∫ t−τ(t,ut)

t−τ(t,0)

f(t, s, 0) ds ≤ ετ(t, ut).

Hence

F |τ(t, ut)− τ(t, 0)| ≤
∣∣∣∣∣
∫ t−τ(t,ut)

t−τ(t,0)

f(t, s, 0) ds

∣∣∣∣∣ ≤ ετ(t, ut) (4.18)

for t > T and u ∈ S(δ). Assumption (A2) (i) yields

m =
∫ t

t−τ(t,ut)

f(t, s, ut) ds ≥ (F − ε)τ(t, ut).

Therefore it follows from (4.18) that

|τ(t, ut)− τ(t, 0)| ≤ εm

(F −m)F
, t > T, u ∈ S(δ),

which implies property (H4’). ¤
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