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THE JENSEN’S EQUATION IN BANACH

MODULES OVER A C∗-ALGEBRA

Won-Gil Park

Abstract. We prove the generalized Hyers-Ulam-Rassias stability of Jensen’s
equations in Banach modules over a unital C∗-algebra.

0. Introduction

Let E1 and E2 be Banach spaces, and f : E1 → E2 a mapping such that
f(tx) is continuous in t ∈ R for each fixed x ∈ E1. Assume that there exist
constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1. Rassias [6] showed that there exists a unique R-linear
mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E1.
The stability problems of functional equations have been investigated in

several papers ([4], [5], [6]).
Throughout this paper, let A be a unital C∗-algebra with norm | · |, Inv(A)

the set of invertible elements in A, A1 = {a ∈ A | |a| = 1}, A+ the set of
positive elements in A, R+ the set of positive real numbers, and let AM1 and
AM2 be left Banach A-modules with norms ‖ · ‖ and ‖ · ‖, respectively (see
[3], [7]).

We are going to prove the generalized Hyers-Ulam-Rassias stability of the
Jensen’s equation in Banach modules over a unital C∗-algebra.
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1. The Jensen’s Equation in Banach Modules over a C∗-algebra

In this section, let A have stable rank 1, which implies that Inv(A) is dense
in A (see [1], [3]), and f : AM1 → AM2 a mapping such that, for each fixed
x ∈ AM1,

f(ax) is continuous in a ∈ A (i)

and
lim

n→∞
3−nf(3nax) converges uniformly on A1. (ii)

Theorem 1.1. Let ϕ : AM1 \ {0}×AM1 \ {0} → [0,∞) be a function and let

ϕ̃(x, y) =
∞∑

k=0

3−kϕ(3kx, 3ky) < ∞ (iii)

and

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, y)

for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x, y ∈ AM1 \ {0}. Then there
exists a unique A-linear mapping T : AM1 → AM2

‖f(x)− f(0)− T (x)‖ ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x)) (iv)

for all x ∈ AM1 \ {0}.
Proof. By Theorem 1 in [5], it follows from the inequality of the statement for
a = 1 that there exists a unique additive mapping T : AM1 → AM2 satisfying
(iv). The additive mapping T given in the proof of Theorem 1 in [5] is similar
to the additive mapping T given in the proof of Theorem in [6]. By the same
reasoning as the proof of Theorem in [6], it follows from the assumption that
f(ax) is continuous in a ∈ A for each fixed x ∈ AM1 that the additive mapping
T : AM1 → AM2 is R-linear. By the assumption,

‖2f(3nax)− af(2 · 3n−1x)− af(4 · 3n−1x)‖ ≤ ϕ(2 · 3n−1x, 4 · 3n−1x)

for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x ∈ AM1 \ {0}. Using the fact
that there exists a K > 0 such that, for each a ∈ A and each z ∈ AM2,
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‖az‖ ≤ K|a| · ‖z‖,

‖f(3nax)− af(3nx)‖ =‖f(3nax)− 1
2
af(2 · 3n−1x)− 1

2
af(4 · 3n−1x)

+
1
2
af(2 · 3n−1x) +

1
2
af(4 · 3n−1x)− af(3nx)‖

≤1
2
ϕ(2 · 3n−1x, 4 · 3n−1x)

+
1
2
K|a| · ‖2f(3nx)− f(2 · 3n−1x)− f(4 · 3n−1x)‖

≤1 + K

2
ϕ(2 · 3n−1x, 4 · 3n−1x)

for all a ∈ [Inv(A)∩A1 ∩A+]∪{i} and all x ∈ AM1 \ {0}. So 3−n‖f(3nax)−
af(3nx)‖ → 0 as n → ∞ for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all
x ∈ AM1 \ {0}. Hence

T (ax) = lim
n→∞

3−nf(3nax) = lim
n→∞

3−naf(3nx) = aT (x) (1)

for all a ∈ [Inv(A) ∩A1 ∩A+] ∪ {i} and all x ∈ AM1 \ {0}. So

T (ax) = aT (x)

for all a ∈ [Inv(A) ∩A1 ∩A+] ∪ {i} and all x ∈ AM1.
Let b ∈ (A1 ∩ A+) \ Inv(A). Since Inv(A) is dense in A, there exists a

sequence {bm} in Inv(A) such that bm → b as m →∞. Put cm = 1
|bm|bm, then

cm → 1
|b|b = b as m → ∞ and cm ∈ Inv(A) ∩ A1 ∩ A+. Put am =

√
cm

∗cm,

then am →
√

b∗b = b as m → ∞ and am ∈ Inv(A) ∩ A1 ∩ A+. Thus there
exists a sequence {am} in Inv(A) ∩ A1 ∩ A+ such that am → b as m → ∞,
and so

lim
m→∞

T (amx) = lim
m→∞

lim
n→∞

3−nf(3namx)

= lim
n→∞

lim
m→∞

3−nf(3namx) by (ii)

= lim
n→∞

[3−nf(3n lim
m→∞

amx)] by (i) (2)

= lim
n→∞

3−nf(3nbx)

= T (bx)
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for all x ∈ AM1. By (1),

‖T (amx)− bT (x)‖ = ‖amT (x)− bT (x)‖ → ‖bT (x)− bT (x)‖ = 0 (3)

as m →∞. By (2),

‖3−nf(3namx)− T (amx)‖ → ‖3−nf(3nbx)− T (bx)‖ (4)

as m →∞. By (3) and (4),

‖T (bx)− bT (x)‖ ≤ ‖T (bx)− 3−nf(3nbx)‖+ ‖3−nf(3nbx)− 3−nf(3namx)‖
+ ‖3−nf(3namx)− T (amx)‖+ ‖T (amx)− bT (x)‖ (5)

→‖T (bx)− 3−nf(3nbx)‖+ ‖3−nf(3nbx)− T (bx)‖ as m →∞
→0 as n →∞

for all x ∈ AM1. By (1) and (5),

T (ax) = aT (x)

for all a ∈ (A1 ∩A+) ∪ {i} and all x ∈ AM1.
Thus

T (ax) = |a| · T (
a

|a|x) = aT (x)

for all a ∈ (A+ \ {0}) ∪ {i} and all x ∈ AM1.
For any element a ∈ A, a = a1 + ia2, where a1 = a+a∗

2 and a2 = a−a∗
2i are

self-adjoint elements, furthermore, a = a1
+ − a1

− + ia2
+ − ia2

−, where a1
+,

a1
−, a2

+, and a2
− are positive elements (see Lemma 38.8 in [2]). So

T (ax) =T (a1
+x− a1

−x + ia2
+x− ia2

−x)

=(a1
+ − a1

− + ia2
+ − ia2

−)T (x)

=aT (x)

for all a ∈ A and all x ∈ AM1.
Therefore, there exists a unique A-linear mapping T : AM1 → AM2, as

desired. ¤
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Corollary 1.2. Let p < 1 and

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ‖x‖p + ‖y‖p

for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x, y ∈ AM1 \ {0}. Then there
exists a unique A-linear mapping T : AM1 → AM2 such that

‖f(x)− f(0)− T (x)‖ ≤ 3 + 3p

3− 3p
‖x‖p

for all x ∈ AM1 \ {0}.
Proof. Define ϕ : AM1 \ {0} × AM1 \ {0} → [0,∞) by ϕ(x, y) = ‖x‖p + ‖y‖p

and apply Theorem 1.1. ¤
Theorem 1.3. Let ϕ : AM1 \ {0} × AM1 \ {0} → [0,∞) be a function such
that

ϕ̃(x, y) =
∞∑

k=0

3kϕ(3−kx, 3−ky) < ∞ (v)

and
‖2f(

ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, y)

for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x, y ∈ AM1 \ {0}. Then there
exists a unique A-linear mapping T : AM1 → AM2 such that

‖f(x)− f(0)− T (x)‖ ≤ ϕ̃(
x

3
,
−x

3
) + ϕ̃(

−x

3
, x) (vi)

for all x ∈ AM1 \ {0}.
Proof. By Theorem 6 in [5], it follows from the inequality of the statement for
a = 1 that there exists a unique additive mapping T : AM1 → AM2 satisfying
(vi). The additive mapping T given in the proof of Theorem 6 in [5] is similar
to the additive mapping T given in the proof of Theorem in [6]. By the same
reasoning as the proof of Theorem in [6], it follows from the assumption that
f(tx) is continuous in t ∈ R for each fixed x ∈ AM1 that the additive mapping
T : AM1 → AM2 is R-linear.

By the assumption,

‖2f(3−nax)− af(2 · 3−n−1x)− af(4 · 3−n−1x)‖ ≤ ϕ(2 · 3−n−1x, 4 · 3−n−1x)
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for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x ∈ AM1 \ {0}. Using the fact
that for each a ∈ A and each z ∈ AM2, ‖az‖ ≤ K|a| · ‖z‖ for some K > 0,

‖f(3−nax)− af(3−nx)‖ = ‖f(3−nax)− 1
2
af(2 · 3−n−1x)− 1

2
af(4 · 3−n−1x)

+
1
2
af(2·3−n−1x)+

1
2
af(4 · 3−n−1x)−af(3−nx)‖

≤ 1
2
ϕ(2 · 3−n−1x, 4 · 3−n−1x)

+
1
2
K|a|·‖2f(3−nx)−f(2·3−n−1x)−f(4·3−n−1x)‖

≤ 1 + K

2
ϕ(2 · 3−n−1x, 4 · 3−n−1x)

for all a ∈ [Inv(A)∩A1∩A+]∪{i} and all x ∈ AM1\{0}. Thus 3n‖f(3−nax)−
af(3−nx)‖ → 0 as n → ∞ for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all
x ∈ AM1 \ {0}. Hence

T (ax) = lim
n→∞

3nf(3−nax) = lim
n→∞

3naf(3−nx) = aT (x)

for all a ∈ [Inv(A) ∩A1 ∩A+] ∪ {i} and all x ∈ AM1 \ {0}.
By a similar method to the proof of Theorem 1.1, one can show that

T (ax) = aT (x)

for all a ∈ A and all x ∈ AM1.
Therefore, there exists a unique A-linear mapping T : AM1 → AM2 satis-

fying (vi). ¤
Corollary 1.4. Let p > 1 and

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ‖x‖p + ‖y‖p

for all a ∈ [Inv(A) ∩ A1 ∩ A+] ∪ {i} and all x, y ∈ AM1 \ {0}. Then there
exists a unique A-linear mapping T : AM1 → AM2 such that

‖f(x)− f(0)− T (x)‖ ≤ 3p + 3
3p − 3

‖x‖p

for all x ∈ AM1.

Proof. Define ϕ : AM1 \ {0} × AM1 \ {0} → [0,∞) by ϕ(x, y) = ‖x‖p + ‖y‖p

and apply Theorem 1.3. ¤
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Remark 1.1.
(1) When the inequalities

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, y)

in the statements are replaced by

‖2af(
x + y

2
)− f(ax)− f(ay)‖ ≤ ϕ(x, y),

the results do also hold.
(2) When the inequalities

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, y) or

‖2af(
x + y

2
)− f(ax)− f(ay)‖ ≤ ϕ(x, y)

in the statements are replaced by

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y),

‖f(ax)− af(x)‖ ≤ ϕ(x, x),

the results do also hold.
(3) If the inequalities

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, y)

in the statements are replaced by

‖2f(
ax + y

2
)− af(x)− f(y)‖ ≤ ϕ(x, y),

then

‖2f(
ax + ay

2
)− af(x)− f(ay)‖ ≤ ϕ(x, ay),

‖2f(
ax + ay

2
)− f(ax)− af(y)‖ ≤ ϕ(y, ax),

‖2f(
ax + ay

2
)− f(ax)− f(ay)‖ ≤ ϕ(ax, ay).

So

‖2f(
ax + ay

2
)− af(x)− af(y)‖ ≤ ϕ(x, ay) + ϕ(y, ax) + ϕ(ax, ay),

hence the results do also hold.

Remark 1.2. The A-linear mappings T : AM1 → AM2, constructed above,
are continuous A-linear.
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