THE JENSEN'S EQUATION IN BANACH MODULES OVER A C^{*}-ALGEBRA

Won-Gil Park

Abstract

We prove the generalized Hyers-Ulam-Rassias stability of Jensen's equations in Banach modules over a unital C^{*}-algebra.

0. Introduction

Let E_{1} and E_{2} be Banach spaces, and $f: E_{1} \rightarrow E_{2}$ a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Rassias [6] showed that there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$.
The stability problems of functional equations have been investigated in several papers ([4], [5], [6]).

Throughout this paper, let A be a unital C^{*}-algebra with norm $|\cdot|, \operatorname{Inv}(A)$ the set of invertible elements in A, $A_{1}=\{a \in A| | a \mid=1\}, A^{+}$the set of positive elements in A, \mathbb{R}^{+}the set of positive real numbers, and let ${ }_{A} M_{1}$ and ${ }_{A} M_{2}$ be left Banach A-modules with norms $\|\cdot\|$ and $\|\cdot\|$, respectively (see [3], [7]).

We are going to prove the generalized Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a unital C^{*}-algebra.

Received September 3, 2001.
2000 Mathematics Subject Classification: Primary 39B72, 39B52 Secondary 47Jxx.
Key words and phrases: Jensen's equation, stability, C^{*}-algebra.

1. The Jensen's Equation in Banach Modules over a C^{*}-algebra

In this section, let A have stable rank 1 , which implies that $\operatorname{Inv}(A)$ is dense in A (see [1], [3]), and $f:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ a mapping such that, for each fixed $x \in{ }_{A} M_{1}$,

$$
\begin{equation*}
f(a x) \text { is continuous in } a \in A \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} a x\right) \text { converges uniformly on } A_{1} \tag{ii}
\end{equation*}
$$

Theorem 1.1. Let $\varphi:{ }_{A} M_{1} \backslash\{0\} \times{ }_{A} M_{1} \backslash\{0\} \rightarrow[0, \infty)$ be a function and let

$$
\begin{equation*}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{-k} \varphi\left(3^{k} x, 3^{k} y\right)<\infty \tag{iii}
\end{equation*}
$$

and

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq \varphi(x, y)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x, y \in{ }_{A} M_{1} \backslash\{0\}$. Then there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$

$$
\begin{equation*}
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{iv}
\end{equation*}
$$

for all $x \in{ }_{A} M_{1} \backslash\{0\}$.
Proof. By Theorem 1 in [5], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ satisfying (iv). The additive mapping T given in the proof of Theorem 1 in [5] is similar to the additive mapping T given in the proof of Theorem in [6]. By the same reasoning as the proof of Theorem in [6], it follows from the assumption that $f(a x)$ is continuous in $a \in A$ for each fixed $x \in{ }_{A} M_{1}$ that the additive mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ is \mathbb{R}-linear. By the assumption,

$$
\left\|2 f\left(3^{n} a x\right)-a f\left(2 \cdot 3^{n-1} x\right)-a f\left(4 \cdot 3^{n-1} x\right)\right\| \leq \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. Using the fact that there exists a $K>0$ such that, for each $a \in A$ and each $z \in{ }_{A} M_{2}$,

$$
\begin{aligned}
& \|a z\| \leq K|a| \cdot\|z\|, \\
& \qquad \begin{aligned}
\left\|f\left(3^{n} a x\right)-a f\left(3^{n} x\right)\right\|= & \| f\left(3^{n} a x\right)-\frac{1}{2} a f\left(2 \cdot 3^{n-1} x\right)-\frac{1}{2} a f\left(4 \cdot 3^{n-1} x\right) \\
& +\frac{1}{2} a f\left(2 \cdot 3^{n-1} x\right)+\frac{1}{2} a f\left(4 \cdot 3^{n-1} x\right)-a f\left(3^{n} x\right) \| \\
\leq & \frac{1}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right) \\
& +\frac{1}{2} K|a| \cdot\left\|2 f\left(3^{n} x\right)-f\left(2 \cdot 3^{n-1} x\right)-f\left(4 \cdot 3^{n-1} x\right)\right\| \\
\leq & \frac{1+K}{2} \varphi\left(2 \cdot 3^{n-1} x, 4 \cdot 3^{n-1} x\right)
\end{aligned}
\end{aligned}
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. So $3^{-n} \| f\left(3^{n} a x\right)-$ $a f\left(3^{n} x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. Hence

$$
\begin{equation*}
T(a x)=\lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} a x\right)=\lim _{n \rightarrow \infty} 3^{-n} a f\left(3^{n} x\right)=a T(x) \tag{1}
\end{equation*}
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. So

$$
T(a x)=a T(x)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1}$.
Let $b \in\left(A_{1} \cap A^{+}\right) \backslash \operatorname{Inv}(A)$. Since $\operatorname{Inv}(A)$ is dense in A, there exists a sequence $\left\{b_{m}\right\}$ in $\operatorname{Inv}(A)$ such that $b_{m} \rightarrow b$ as $m \rightarrow \infty$. Put $c_{m}=\frac{1}{\left|b_{m}\right|} b_{m}$, then $c_{m} \rightarrow \frac{1}{|b|} b=b$ as $m \rightarrow \infty$ and $c_{m} \in \operatorname{Inv}(A) \cap A_{1} \cap A^{+}$. Put $a_{m}=\sqrt{c_{m}{ }^{*} c_{m}}$, then $a_{m} \rightarrow \sqrt{b^{*} b}=b$ as $m \rightarrow \infty$ and $a_{m} \in \operatorname{Inv}(A) \cap A_{1} \cap A^{+}$. Thus there exists a sequence $\left\{a_{m}\right\}$ in $\operatorname{Inv}(A) \cap A_{1} \cap A^{+}$such that $a_{m} \rightarrow b$ as $m \rightarrow \infty$, and so

$$
\begin{align*}
\lim _{m \rightarrow \infty} T\left(a_{m} x\right) & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} a_{m} x\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 3^{-n} f\left(3^{n} a_{m} x\right) \text { by (ii) } \\
& =\lim _{n \rightarrow \infty}\left[3^{-n} f\left(3^{n} \lim _{m \rightarrow \infty} a_{m} x\right)\right] \text { by (i) } \tag{2}\\
& =\lim _{n \rightarrow \infty} 3^{-n} f\left(3^{n} b x\right) \\
& =T(b x)
\end{align*}
$$

for all $x \in{ }_{A} M_{1}$. By (1),

$$
\begin{equation*}
\left\|T\left(a_{m} x\right)-b T(x)\right\|=\left\|a_{m} T(x)-b T(x)\right\| \rightarrow\|b T(x)-b T(x)\|=0 \tag{3}
\end{equation*}
$$

as $m \rightarrow \infty$. By (2),

$$
\begin{equation*}
\left\|3^{-n} f\left(3^{n} a_{m} x\right)-T\left(a_{m} x\right)\right\| \rightarrow\left\|3^{-n} f\left(3^{n} b x\right)-T(b x)\right\| \tag{4}
\end{equation*}
$$

as $m \rightarrow \infty$. By (3) and (4),

$$
\begin{aligned}
\|T(b x)-b T(x)\| \leq & \left\|T(b x)-3^{-n} f\left(3^{n} b x\right)\right\|+\left\|3^{-n} f\left(3^{n} b x\right)-3^{-n} f\left(3^{n} a_{m} x\right)\right\| \\
& \quad+\left\|3^{-n} f\left(3^{n} a_{m} x\right)-T\left(a_{m} x\right)\right\|+\left\|T\left(a_{m} x\right)-b T(x)\right\| \\
\rightarrow & \left\|T(b x)-3^{-n} f\left(3^{n} b x\right)\right\|+\left\|3^{-n} f\left(3^{n} b x\right)-T(b x)\right\| \text { as } m \rightarrow \infty \\
\rightarrow 0 & \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in{ }_{A} M_{1}$. By (1) and (5),

$$
T(a x)=a T(x)
$$

for all $a \in\left(A_{1} \cap A^{+}\right) \cup\{i\}$ and all $x \in{ }_{A} M_{1}$.
Thus

$$
T(a x)=|a| \cdot T\left(\frac{a}{|a|} x\right)=a T(x)
$$

for all $a \in\left(A^{+} \backslash\{0\}\right) \cup\{i\}$ and all $x \in{ }_{A} M_{1}$.
For any element $a \in A, a=a_{1}+i a_{2}$, where $a_{1}=\frac{a+a^{*}}{2}$ and $a_{2}=\frac{a-a^{*}}{2 i}$ are self-adjoint elements, furthermore, $a=a_{1}{ }^{+}-a_{1}{ }^{-}+i a_{2}{ }^{+}-i a_{2}{ }^{-}$, where $a_{1}{ }^{+}$, $a_{1}{ }^{-}, a_{2}{ }^{+}$, and $a_{2}{ }^{-}$are positive elements (see Lemma 38.8 in [2]). So

$$
\begin{aligned}
T(a x) & =T\left(a_{1}{ }^{+} x-a_{1}^{-} x+i a_{2}{ }^{+} x-i a_{2}^{-} x\right) \\
& =\left(a_{1}{ }^{+}-a_{1}^{-}+i a_{2}{ }^{+}-i a_{2}^{-}\right) T(x) \\
& =a T(x)
\end{aligned}
$$

for all $a \in A$ and all $x \in{ }_{A} M_{1}$.
Therefore, there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$, as desired.

Corollary 1.2. Let $p<1$ and

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x, y \in{ }_{A} M_{1} \backslash\{0\}$. Then there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3+3^{p}}{3-3^{p}}\|x\|^{p}
$$

for all $x \in{ }_{A} M_{1} \backslash\{0\}$.
Proof. Define $\varphi:{ }_{A} M_{1} \backslash\{0\} \times{ }_{A} M_{1} \backslash\{0\} \rightarrow[0, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$ and apply Theorem 1.1.
Theorem 1.3. Let $\varphi:{ }_{A} M_{1} \backslash\{0\} \times{ }_{A} M_{1} \backslash\{0\} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 3^{k} \varphi\left(3^{-k} x, 3^{-k} y\right)<\infty \tag{v}
\end{equation*}
$$

and

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq \varphi(x, y)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x, y \in{ }_{A} M_{1} \backslash\{0\}$. Then there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ such that

$$
\begin{equation*}
\|f(x)-f(0)-T(x)\| \leq \widetilde{\varphi}\left(\frac{x}{3}, \frac{-x}{3}\right)+\widetilde{\varphi}\left(\frac{-x}{3}, x\right) \tag{vi}
\end{equation*}
$$

for all $x \in{ }_{A} M_{1} \backslash\{0\}$.
Proof. By Theorem 6 in [5], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ satisfying (vi). The additive mapping T given in the proof of Theorem 6 in [5] is similar to the additive mapping T given in the proof of Theorem in [6]. By the same reasoning as the proof of Theorem in [6], it follows from the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{A} M_{1}$ that the additive mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ is \mathbb{R}-linear.

By the assumption,

$$
\left\|2 f\left(3^{-n} a x\right)-a f\left(2 \cdot 3^{-n-1} x\right)-a f\left(4 \cdot 3^{-n-1} x\right)\right\| \leq \varphi\left(2 \cdot 3^{-n-1} x, 4 \cdot 3^{-n-1} x\right)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. Using the fact that for each $a \in A$ and each $z \in{ }_{A} M_{2},\|a z\| \leq K|a| \cdot\|z\|$ for some $K>0$,

$$
\begin{aligned}
\left\|f\left(3^{-n} a x\right)-a f\left(3^{-n} x\right)\right\|= & \| f\left(3^{-n} a x\right)-\frac{1}{2} a f\left(2 \cdot 3^{-n-1} x\right)-\frac{1}{2} a f\left(4 \cdot 3^{-n-1} x\right) \\
& +\frac{1}{2} a f\left(2 \cdot 3^{-n-1} x\right)+\frac{1}{2} a f\left(4 \cdot 3^{-n-1} x\right)-a f\left(3^{-n} x\right) \| \\
\leq & \frac{1}{2} \varphi\left(2 \cdot 3^{-n-1} x, 4 \cdot 3^{-n-1} x\right) \\
& +\frac{1}{2} K|a| \cdot\left\|2 f\left(3^{-n} x\right)-f\left(2 \cdot 3^{-n-1} x\right)-f\left(4 \cdot 3^{-n-1} x\right)\right\| \\
\leq & \frac{1+K}{2} \varphi\left(2 \cdot 3^{-n-1} x, 4 \cdot 3^{-n-1} x\right)
\end{aligned}
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. Thus $3^{n} \| f\left(3^{-n} a x\right)-$ $a f\left(3^{-n} x\right) \| \rightarrow 0$ as $n \rightarrow \infty$ for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$. Hence

$$
T(a x)=\lim _{n \rightarrow \infty} 3^{n} f\left(3^{-n} a x\right)=\lim _{n \rightarrow \infty} 3^{n} a f\left(3^{-n} x\right)=a T(x)
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x \in{ }_{A} M_{1} \backslash\{0\}$.
By a similar method to the proof of Theorem 1.1, one can show that

$$
T(a x)=a T(x)
$$

for all $a \in A$ and all $x \in{ }_{A} M_{1}$.
Therefore, there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ satisfying (vi).
Corollary 1.4. Let $p>1$ and

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $a \in\left[\operatorname{Inv}(A) \cap A_{1} \cap A^{+}\right] \cup\{i\}$ and all $x, y \in{ }_{A} M_{1} \backslash\{0\}$. Then there exists a unique A-linear mapping $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3^{p}+3}{3^{p}-3}\|x\|^{p}
$$

for all $x \in{ }_{A} M_{1}$.
Proof. Define $\varphi:{ }_{A} M_{1} \backslash\{0\} \times{ }_{A} M_{1} \backslash\{0\} \rightarrow[0, \infty)$ by $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$ and apply Theorem 1.3.

Remark 1.1.

(1) When the inequalities

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq \varphi(x, y)
$$

in the statements are replaced by

$$
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(x, y)
$$

the results do also hold.
(2) When the inequalities

$$
\begin{aligned}
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| & \leq \varphi(x, y) \quad \text { or } \\
\left\|2 a f\left(\frac{x+y}{2}\right)-f(a x)-f(a y)\right\| & \leq \varphi(x, y)
\end{aligned}
$$

in the statements are replaced by

$$
\begin{aligned}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| & \leq \varphi(x, y) \\
\|f(a x)-a f(x)\| & \leq \varphi(x, x)
\end{aligned}
$$

the results do also hold.
(3) If the inequalities

$$
\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq \varphi(x, y)
$$

in the statements are replaced by

$$
\left\|2 f\left(\frac{a x+y}{2}\right)-a f(x)-f(y)\right\| \leq \varphi(x, y)
$$

then

$$
\begin{aligned}
& \left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-f(a y)\right\| \leq \varphi(x, a y) \\
& \left\|2 f\left(\frac{a x+a y}{2}\right)-f(a x)-a f(y)\right\| \leq \varphi(y, a x) \\
& \left\|2 f\left(\frac{a x+a y}{2}\right)-f(a x)-f(a y)\right\| \leq \varphi(a x, a y)
\end{aligned}
$$

So
$\left\|2 f\left(\frac{a x+a y}{2}\right)-a f(x)-a f(y)\right\| \leq \varphi(x, a y)+\varphi(y, a x)+\varphi(a x, a y)$,
hence the results do also hold.
Remark 1.2. The A-linear mappings $T:{ }_{A} M_{1} \rightarrow{ }_{A} M_{2}$, constructed above, are continuous A-linear.

References

1. B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6 (1992), 267-284.
2. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
3. K. R. Davidson, C^{*}-Algebras by Example, Fields Institute Monograghs, vol. 6, Amer. Math. Soc., Providence, R. I., 1996.
4. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Berlin, Basel and Boston, 1998.
5. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
6. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
7. H. Schröder, K-Theory for Real C^{*}-Algebras and Applications, Pitman Research Notes in Math. Ser., vol. 290, Longman Sci. Tech., Essex, 1993.

Won-Gil Park
Department of Mathematics
Chungnam National University
Daejeon 305-764
South Korea
E-mail address: wgpark@math.cnu.ac.kr

