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GENERALIZATIONS OF HARDY INTEGRAL INEQUALITY

Young-Ho Kim and Themistocles M. Rassias

Abstract. In this paper, some new generalizations of Hardy type integral
inequalities are proved.

1. Introduction

The following Inequality is due to Hardy (cf. [1, Theorem 326]): If p >
1, an ≥ 0 and An = a1 + a2 + ... + an, then

∑(An

n

)p

<
( p

p− 1

)p ∑
ap

n, (1.1)

unless all the a’s are zero. The coefficient constant is the best possible.

This inequality was discovered in the course of attempts to simplify the
proofs of the Hilbert’s double series theorem (cf. [4, Theorem 315]). In fact
Hilbert’s double series theorem was completed by the above inequality. More-
over, the corresponding Hardy’s inequality [1, Theorem 327] for integrals can
be stated as follows: If f(x) ≥ 0, p > 1 and 0 <

∫∞
0

fp(x)dx < ∞, then

∫ ∞

0

[
1
x

∫ x

0

f(t)dt

]p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(t)dt, (1.2)

where (p/(p− 1))p is the best possible constant.

The inequalities given in (1.1) and (1.2), led to great many papers dealing
with alternative proofs, various generalizations, and numerous variants and
applications in analysis. For the earlier development of this kind of inequality
and several important applications in analysis one can see [1, Chapter IX]. It
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is obvious that, for parameters a and b such that 0 < a < b < ∞, the following
inequality is also valid,

∫ b

0

[
1
x

∫ x

0

f(t)dt

]p

dx ≤
(

p

p− 1

)p ∫ b

a

fp(t)dt, (1.3)

where 0 <

∫ ∞

0

fp(x)dx < ∞.

The main purpose of this paper is to establish some new generalizations of
inequality (1.2) by using a fairly elementary treatment. Our results as special
cases yield some recent generalizations of the Hardy’s inequality given in [5].

2. Main Results

In this section the function Q is a real valued function such that 0 < Q(s) ≤
s for each s > 0 and Q(0) = 0. In all the theorems it is assumed, without
further mention, that the integrals exist on the respective domains of their
definitions. Our results are given in the following theorems:

Lemma 2.1. Let 0 < b ≤ ∞, pQ(1) > 1, 1/p + 1/q = Q(1), f ≥ 0, and let

0 <

∫ b

0

fp/Q(1)(t)dt < ∞. Then there exists a real number x0 ∈ (0, b) such

that for any x ∈ (x0, b), the following inequality is true:

∫ x

0

f(t)dt < K1x
(p−Q(1))/pqQ(1)

(∫ x

0

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)

, (2.1)

where K1 = (p/(p−Q(1)))1/qQ(1) = (p/(p−Q(1)))p/(p+q).

Proof. For any x ∈ (0, b), by Hölder’s inequality, we have
∫ x

0

f(t)dt =
∫ x

0

t1/pqf(t)t−1/pqdt

≤
(∫ x

0

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)(∫ x

0

t−Q(1)/pdt

)1/qQ(1)

(2.2)

= K1x
(p−Q(1))/pqQ(1)

(∫ x

0

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)

,

where K1 = (p/(p−Q(1)))1/qQ(1) = (p/(p−Q(1)))p/(p+q). We need to show
that there exists a real number x0 ∈ (0, b) such that for any x ∈ (x0, b), the
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equality in (2.2) does not hold. Otherwise, there exists x = xn ∈ (0, b), where
n = 1, 2, ..., with xn ↑ b such that (2.2) becomes an equality. Then there exist
cn and dn which are not always zero, and satisfy (Kuang [2, p. 29])

cn

(
t1/pqf(t)

)p/Q(1)

= dn

(
t−1/pq

)q/Q(1)

, a.e. in [0, xn].

However f(t) 6= 0 a.e. in (0, b), thus there exists as integer N such that for
n > N, f(t) 6= 0 a.e. in (0, xn). Hence for both cn = c 6= 0 and dn = d 6= 0 for
n > N, we obtain

∫ b

0

fp/Q(1)(t)dt = lim
n→∞

∫ xn

0

fp/Q(1)(t)dt

= lim
n→∞

d

c

∫ xn

0

t−1/pQ(1)

t1/qQ(1)
dt

= lim
n→∞

d

c

∫ xn

0

t−1dt = ∞.

This contradicts the fact that 0 <

∫ b

0

fp/Q(1)(t)dt < ∞. Therefore (2.1) is

valid and this completes the proof of the lemma. ¤
Lemma 2.2. Let a ≥ 0, pQ(1) > 1, 1/p + 1/q = Q(1), f ≥ 0, and let

0 <

∫ ∞

a

fp/Q(1)(t)dt < ∞. Then there exists a real number x0 ∈ (a,∞) such

that for any x > x0 the following inequality is true:
∫ x

a

f(t)dt < K1

(
T x

a

)1/qQ(1)
(∫ x

a

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)

, (2.3)

where
K1 = (p/(p−Q(1)))1/qQ(1) = (p/(p−Q(1)))p/(p+q)

and
T x

a = x(p−Q(1))/p − a(p−Q(1))/p.

Proof. For any x ∈ (a,∞), by Hölder’s inequality as in Lemma 2.1, we have
∫ x

a

f(t)dt ≤
(∫ x

a

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)(∫ x

a

t−Q(1)/pdt

)1/qQ(1)

= K1

(
T x

a

)1/qQ(1)
(∫ x

a

tQ(1)/qfpQ(1)(t)dt

)1/pQ(1)

, (2.4)
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where
K1 = (p/(p−Q(1)))1/qQ(1) = (p/(p−Q(1)))p/(p+q)

and
T x

a = x(p−Q(1))/p − a(p−Q(1))/p.

We shall show that there exists a real number x0 ∈ (a,∞) such that (2.4) does
not assume equality for any x > x0. Otherwise, there exists x = xn ∈ (a,∞),
where n = 1, 2, ..., with xn ↑ ∞ such that (2.4) becomes an equality. By the
same argument as in Lemma 2.1 there exist c > 0 and N such that for n > N ,

(
t1/pqQ(1)f(t)

)p/Q(1)

= c
(
t−1/pqQ(1)

)q/Q(1)

, a.e. in [a, xn].

Hence

∫ xn

a

fp/Q(1)(t)dt = c

∫ xn

a

t−1/pQ(1)

t1/qQ(1)
dt

= c

∫ xn

a

t−[1/pQ(1)+1/qQ(1)]dt

= c

∫ xn

a

t−1dt →∞ as n →∞.

This contradicts the fact that 0 <
∫∞

a
fp/Q(1)(t)dt < ∞. Hence (2.3) holds

true and the proof is complete. ¤
Remark 2.1. If we set Q(s) = s in Lemmas 2.1 and 2.2, then our results
reduce to the corresponding Lemmas 2.1 and 2.2 obtained in [5].

Theorem 2.3. Let 0 < a < b ≤ ∞, pQ(1) > 1, 1/p+1/q = Q(1), f ≥ 0, and

let 0 <

∫ b

a

fp/Q(1)(t) dt < ∞. Then

∫ b

a

(
1
x

∫ x

a

f(t)dt

)pQ(1)

dx

< K2
q

Q(1)

(
1−

(a

b

)Q(1)/q
) (

T 1
a/b

)p/q
∫ b

a

fpQ(1)(t)dt,

(2.5)

where K2 = (p/(p−Q(1)))p/q = (p/(p−Q(1)))pQ(1)−1 and T x
a = x(p−Q(1))/p−

a(p−Q(1))/p.
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Proof. Using (2.3), we obtain

∫ b

a

(
1
x

∫ x

a

f(t)dt

)pQ(1)

dx

< K2

∫ b

a

1
xpQ(1)

(
T x

a

)p/q
∫ x

a

tQ(1)/qfpQ(1)(t) dt dx

= K2

∫ b

a

{∫ b

t

x−pQ(1)+(p−Q(1))/q

[
T 1

a/x

]p/q

dx

}
tQ(1)/qfpQ(1)(t) dt

< K2

∫ b

a

{∫ b

t

x−pQ(1)+(p−Q(1))/q

[
T 1

a/b

]p/q

dx

}
tQ(1)/qfpQ(1)(t) dt

= K2

[
T 1

a/b

]p/q ∫ b

a

{∫ b

t

x−1−Q(1)/q dx

}
tQ(1)/qfpQ(1)(t) dt

= K2
q

Q(1)

[
T 1

a/b

]p/q ∫ b

a

[
1−

( t

b

)Q(1)/q
]
fpQ(1)(t) dt

< K2
q

Q(1)

[
T 1

a/b

]p/q ∫ b

a

[
1−

(a

b

)Q(1)/q
]
fpQ(1)(t) dt

= K2
q

Q(1)

[
1−

(a

b

)Q(1)/q
][

T 1
a/b

]p/q ∫ b

a

fpQ(1)(t) dt,

where K2 = (p/(p−Q(1)))p/q = (p/(p−Q(1)))pQ(1)−1 and T x
a = x(p−Q(1))/p−

a(p−Q(1))/p. This completes the proof of our theorem. ¤
Remark 2.2. If we set Q(s) = s in Theorem 2.3, then our results reduce to
the following inequality

∫ b

a

(
1
x

∫ x

a

f(t)dt

)p

dx < qp

(
1−

(a

b

)1/q
)p ∫ b

a

fp(t) dt

which was obtained in [5]. This shows that inequality (2.5) is a generalization
of inequality (1.2). Also inequality (2.5) is an improvement of (1.3).

Theorem 2.4. Let a > 0, pQ(1) > 1, 1/p + 1/q = Q(1), f ≥ 0, and let

0 <

∫ ∞

a

fp/Q(1)(t) dt < ∞. Then

∫ ∞

a

(
1
xα

∫ x

a

f(t) dt

)pQ(1)

dx < K3

∫ ∞

a

[
1− θp(t)

]
fpQ(1)(t) dt, (2.6)
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where α = 2 − Q(1)/p − 1/qQ(1), K3 = (p/(p − Q(1)))(p+q)/q = (p/(p −
Q(1)))pQ(1) and

θp(t) = 1 +
1

pQ(1)

{ ∞∑

k=1

(
pQ(1)

k

)
(−1)k

(a

t

)k(p−Q(1))/p
}

a(Q(1)−p)/ptQ(1)/q

> 1− tQ
2(1)−1

with θp(a) = 1− aQ2(1)−1/pQ(1), for t > a and q > 0.

Proof. Applying inequalities (2.3) and (2.4), we have
∫ ∞

a

(
1
xα

∫ x

a

f(t) dt

)pQ(1)

dx

< K2

∫ ∞

a

x−αpQ(1)
(
T x

a

)p/q
∫ x

a

tQ(1)/qfpQ(1)(t) dt dx

= K2

∫ ∞

a

{∫ ∞

t

x−2+Q(1)/p
(
T 1

a/x

)p/q

dx

}
tQ(1)/qfpQ(1)(t) dt

= K3

∫ ∞

a

{∫ ∞

t

(
T 1

a/x

)p/q

d
(
T 1

a/x

)}
a(Q(1)−p)/ptQ(1)/qfpQ(1)(t) dt

= K3

∫ ∞

a

q

p + q

{
1−

(
T 1

a/t

)pQ(1)
}

a(Q(1)−p)/ptQ(1)/qfpQ(1)(t) dt

= K3

∫ ∞

a

[
1− θp(t)

]
fpQ(1)(t) dt,

where α = 2 − Q(1)/p − 1/qQ(1), K2 = (p/(p − Q(1)))p/q, K3 = (p/(p −
Q(1)))(p+q)/q = (p/(p−Q(1)))pQ(1), T x

a = x(p−Q(1))/p − a(p−Q(1))/p, and

θp(t) = 1− q

p + q

{
1−

(
T 1

a/t

)pQ(1)
}

a(Q(1)−p)/ptQ(1)/q,

since
(
T 1

a/t

)pQ(1)

=
∞∑

k=0

(
pQ(1)

k

)
(−1)k

(a

t

)k(p−Q(1))/p

(t > a > 0).

From this we easily obtain

θp(a) = 1− 1
pQ(1)

aQ2(1)−1,

θp(t) = 1 +
1

pQ(1)

{ ∞∑

k=1

(
pQ(1)

k

)
(−1)k

(a

t

)k(p−Q(1))/p
}

a(Q(1)−p)/ptQ(1)/q
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for t > a > 0. Applying Bernoulli’s inequality (see [3, p. 65]), we obtain

1− pQ(1)
(a

t

)(p−Q(1))/p

<

[
1−

(a

t

)(p−Q(1))/p
]pQ(1)

,

and therefore one has

θp(t) > 1− 1
pQ(1)

{
1−

[
1− pQ(1)

(a

t

)(p−Q(1))/p
]}

a(Q(1)−p)/ptQ(1)/q

= 1− 1
pQ(1)

[
pQ(1)

(a

t

)(p−Q(1))/p
]
a(Q(1)−p)/ptQ(1)/q

= 1− tQ
2(1)−1

Hence, the proof is complete. ¤
Theorem 2.5. Let 0 < b ≤ ∞, r ≥ pQ(1) > 1, 1/p+1/q = Q(1), f ≥ 0, and

let 0 <

∫ b

0

x−r+pQ(1)fp/Q(1)(x) dx < ∞. Then

(i) For b ∈ (0,∞), we have

∫ b

0

x−r

(∫ x

0

f(t) dt

)pQ(1)

dx

< βK2

∫ b

0

[
1−

( t

b

)r−pQ(1)+Q(1)/q
]
t−r+pQ(1)fpQ(1)(t) dt,

(2.7)

where 1/β = r − pQ(1) + Q(1)/q and K2 = (p/(p − Q(1)))p/q = (p/(p −
Q(1)))pQ(1)−1. In particular, when r = pQ(1) we obtain

∫ b

0

(
1
x

∫ x

0

f(t) dt

)pQ(1)

dx < K2
q

Q(1)

∫ b

0

[
1−

( t

b

)Q(1)/q
]
fpQ(1)(t) dt. (2.8)

(ii) For b = ∞, we have

∫ ∞

0

x−r

(∫ x

0

f(t) dt

)pQ(1)

dx < βK2

∫ ∞

0

t−r+pQ(1)fpQ(1)(t) dt, (2.9)

where 1/β = r − pQ(1) + Q(1)/q and K2 = (p/(p − Q(1)))p/q = (p/(p −
Q(1)))pQ(1)−1.
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Proof. For case (i), b ∈ (0,∞), we use (2.1) to obtain

∫ b

0

x−r

(∫ x

0

f(t) dt

)pQ(1)

dx

< K2

∫ b

0

x−r+(p−Q(1))/q

∫ x

0

tQ(1)/qfpQ(1)(t) dt dx

= K2

∫ b

0

(∫ b

t

x−r+(p−Q(1))/q dx

)
tQ(1)/qfpQ(1)(t) dt

= −βK2

∫ b

0

(b−r+1+(p−Q(1))/q − t−r+1+(p−Q(1))/q)tQ(1)/qfpQ(1)(t) dt

= βK2

∫ b

0

[
1−

( t

b

)r−pQ(1)+Q(1)/q
]
t−r+pQ(1)fpQ(1)(t) dt,

where 1/β = r − pQ(1) + Q(1)/q and K2 = (p/(p − Q(1)))p/q = (p/(p −
Q(1)))pQ(1)−1. This proves (2.7).

For case (ii), b = ∞, we use (2.1) to find,

∫ ∞

0

x−r

(∫ x

0

f(t) dt

)pQ(1)

dx

< K2

∫ ∞

0

x−r+(p−Q(1))/q

∫ x

0

tQ(1)/qfpQ(1)(t) dt dx

= K2

∫ ∞

0

(∫ ∞

t

x−r+(p−Q(1))/q dx

)
tQ(1)/qfpQ(1)(t) dt

= βK2

∫ ∞

0

t−r+pQ(1)fpQ(1)(t) dt,

where 1/β = r − pQ(1) + Q(1)/q and K2 = (p/(p − Q(1)))p/q = (p/(p −
Q(1)))pQ(1)−1. This proves (2.9) and the proof of the theorem is complete.
¤

Remark 2.3. In the limits as a→0 and b→∞, and the function as Q(s)=s,
(2.6) reduces to (1.2). This shows that inequality (2.6) is a generalization of
inequality (1.2). When r = p and Q(s) = s, inequality (2.9) reduces to (1.2).
This means (2.9) and (2.7) provide also a generalization of inequality (1.2).
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Remark 2.4. If we let Q(s) = s− 1/c(c > 1), in (2.9), then we shall obtain
the following inequality:

∫ ∞

0

x−r

(∫ x

0

f(t) dt

)p(1−1/c)

dx (2.10)

< K∗

(
1

r − (1− 1/c)(p− 1/q)

) ∫ ∞

0

t−r+p(1−1/c)fp(1−1/c)(t) dt,

where K∗ = (p/(p− (1− 1/c)))p(1−1/c)−1. If we let c →∞ in (2.10), then one
obtains the following inequality:

∫ ∞

0

x−r

(∫ x

0

f(t) dt

)p

dx <
qp

(r − p)q + 1

∫ ∞

0

t−r+pfp(t) dt. (2.11)

If we set r = p in (2.11) we shall get inequality (1.2).
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